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Abstract: Long-term preventive maintenance planning using finite annual budgets is vital for main-
taining the service performance of airport runway composite pavements. Using the pavement
condition index (PCI) to quantify composite pavement performance, this study investigated the PCI
deterioration tendencies of middle runways, terminal runways, and taxiways and developed predic-
tion models related to structural thickness and air traffic. Performance jump (PJ) and deterioration
rate reduction (DRR) were used to measure maintenance benefits. Based on 112 composite pavement
sections in the Long-term Pavement Performance Program, this study analyzed the influences of five
typical preventive maintenance technologies on PJ, DRR, and PCI deterioration rates. The logarithmic
regression relationship between PJ and PCI was obtained. For sections treated with crack sealing and
crack filling, the DRR was nearly 0. For sections treated with fog seal, thin HMA overlay, and hot-mix
recycled AC, the DRR was 0.2, 0.7, and 0.8, respectively. To solve the multi-objective maintenance
problem, this study proposed a decision-making optimization method based on dynamic program-
ming, and the solution algorithm was optimized, which was applied in a five-year maintenance plan.
Considering different PCI deterioration tendencies of airport regions, as well as PJ, DRR, and costs of
maintenance technologies, the preventive maintenance decision-making optimization method meets
performance and financial requirements sufficiently.

Keywords: composite pavement; performance prediction model; preventive maintenance; decision-
making optimization method; dynamic programming

1. Introduction

Concrete pavements are the main structure type for airport runways; however, with
the approach to their designed service life and the rapid increase in air traffic volumes, the
runway pavement performance deteriorates. Composite pavements are a special pavement
structure type used for runway rehabilitation, where a hot mix asphalt (HMA) concrete
overlay is paved onto the initial surface layer of the Portland cement concrete (PCC) pave-
ment. Composite pavements have been widely adopted in airport runways constructed
since the 1990s [1]. However, due to the modulus difference between PCC and HMA,
composite pavements exhibit different distress features from both concrete pavements and
asphalt pavements [2,3]. Thus, the timely and pertinent preventive maintenance of runway
composite pavements is vital for improving the current performance or decelerating the
performance deterioration rate so as to delay the demand for the next major repair or
rehabilitation. Because of limited maintenance funds, it is necessary to make long-term
preventive maintenance decisions that are economical and efficient. Long-term preventive
maintenance aims to recover the surface performance before sharp deterioration occurs,
which can contribute to the minimization of the total maintenance costs [4,5]. This mainte-
nance strategy combines several maintenance methods to suit various annual maintenance
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funds. An effective long-term preventive maintenance strategy includes determining the
runway region to be maintained, selecting the optimal maintenance time [6,7], and deciding
the optimal maintenance method [8,9].

Accurate performance prediction for composite pavements is the prerequisite for con-
ducting maintenance decisions [10]. Many scholars have developed prediction models to
quantify the tendency for performance deterioration. Khattak et al. [11] developed distress
prediction models for composite pavements in Louisiana based on the fundamental concept
of pavement rate of deterioration as a function of age, which provided good prediction
capabilities for assessing pavement deterioration. Kaya et al. [12] developed performance
prediction models for composite pavements in Iowa based on statistics and artificial intelli-
gence (AI) techniques, and the prediction accuracy was validated at the project and network
level. Pandya et al. [13] predict the performance of eight long-term pavement performance
(LTPP) composite pavement sections using layer thickness, material properties, traffic
volumes, climatic data, and national calibration prediction models. Nur et al. [3] developed
transverse cracking and longitudinal cracking performance prediction models for overlay
treatment of composite pavements in Louisiana, considering the influence factors that
included equivalent single axle load (ESAL), thickness of composite pavement structural
layers, temperature indexes, etc. These researches focus on predicting the performance
of road or highway composite pavements and show feasibility in these fields, while few
prediction methods have been conducted on airport runway composite pavements, which
present different structural and traffic conditions.

After predicting the pavement performance tendency, suitable preventive maintenance
at a proper time is needed to prevent pavement performance from sharp deterioration.
The linear programming method aiming to minimize total costs was first used to conduct
pavement maintenance decision-making [14]. With the objective of minimizing the total
maintenance cost while meeting the demand of pavement performance threshold, the
mixed-integer programming model was also developed [15]. Yoon et al. [16] proposed a
decision-making process to select appropriate maintenance treatments for reflective crack-
ing in composite pavements. Selecting the optimal maintenance method and the optimal
time is actually a multi-objective optimization problem, which aims to acquire the greatest
improvement in pavement condition using as few maintenance funds as possible [17–19].
Compared to the linear optimization method, which maximizes maintenance benefits with
limited costs, the multi-objective optimization method can both maximize maintenance
benefits and minimize costs [20]. Meneses et al. [21] developed and implemented a multi-
objective decision-aid tool that considers the minimization of costs and maximization of the
residual value of pavements. Long-term preventive maintenance for multiple pavements is
an even more complicated multi-objective optimization problem, which requires a multi-
year maintenance plan and a combination of various maintenance strategies that consider
the total maintenance benefits and costs for all pavements [22,23]. Roh et al. [24] proposed
an airport pavement maintenance decision-making strategy based on multi-facility and
multi-year network optimization models and analyzed the effect of initial budget, mainte-
nance methods, costs, and thresholds on decision outcomes. To solve the multi-objective
optimization problem of multi-pavement and multi-year maintenance, the dynamic pro-
gramming (DP) method has drawn many scholars’ interests [25]. Yoo et al. [26] proposed a
hybrid DP procedure to determine the most cost-effective maintenance and rehabilitation
activities for each section in a highway pavement network. Kuhn [27] used the approximate
DP method to reduce the complexity of maintenance optimization problems. Mao et al. [28]
developed a multi-stage DP model to achieve an optimal pavement maintenance strategy
in a 30-year life cycle. Albatayneh et al. [29] developed an optimization algorithm based on
DP to select the optimal treatment maintenance for road networks.

Despite plentiful studies on pavement maintenance planning, to the best of the authors’
knowledge, few studies have been conducted on composite pavements due to a lack of
performance deterioration and maintenance improvement data. This study first aimed to
predict the pavement performance deterioration tendencies of different regions in airport
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runways with composite pavements. Then, this study investigated the benefits of typical
preventive maintenance technologies according to data from the Long-term Pavement
Performance (LTPP) program. Finally, a decision-making optimization method based on
DP for long-term preventive maintenance was proposed, applied, and verified in a five-year
maintenance plan.

2. Methods
2.1. Composite Pavement Performance Prediction

The occurrence times and deterioration rates of different pavement diseases vary
because of such influences as pavement structure, climate, and traffic. The pavement
condition index (PCI) was proposed to quantify the comprehensive surface performance of
pavements [30]. The PCI can be used as an auxiliary decision-making indicator of long-term
preventive maintenance. Sun et al. [31] proposed the following PCI predictive model for
asphalt pavements:

PCI = PCI0[1 − e−( α
y )

β

] (1)

α = λ[1 − e−(
η
l0
)

ζ

] (2)

λ = a1hb1ESALc1 (3)

η = a2hb2ESALc2 (4)

ζ = a3hb3ESALc3 (5)

β = a4hb4ESALc4ld
0 (6)

where PCI0 is the initial PCI, which is usually 100 when construction or rehabilitation is
completed; y is the pavement age; α is the pavement service life factor; β is the deterioration
curve shape factor; l0 is the initial pavement deflection (0.01 mm); h is the thickness of the
asphalt layer (cm); ESAL is the daily equivalent single axle loading repetitions based on the
B737-800 aircraft (/day); and an, bn, cn (n is 1, 2, 3, 4) and d are the regression coefficients.

The structures of asphalt pavement and composite pavement differ, as do their deteri-
oration curves. This article replaces h in Equations (3)–(6) with he, which can be calculated
as follows [32]:

he = (0.4CFhF + CRhR)/F (7)

where he is the equivalent thickness of composite pavement (cm); CF is the thickness
discount coefficient of asphalt concrete (AC) overlay; hF is the thickness of AC overlay (cm);
CR is the thickness discount coefficient of portland cement concrete (PCC) pavement; hR is
the thickness of PCC pavement (cm); and F is the crack control coefficient of PCC pavement.
F is calculated as follows [33]:

F = (0.08534
ns

100
− 0.3594k0 + 106.2946)/100 (8)

where ns is the annual sorties of aircraft with take-off speeds faster than 140 knots (/year),
and k0 is the modulus of subgrade reaction (MN/m3).

2.2. Preventive Maintenance Benefit Analysis
2.2.1. Performance Jump

This study used performance jump (PJ) as the measure of short-term maintenance ef-
fectiveness, which is an “immediate improvement” [34–36]. PJ is associated with the initial
performance of pavement before maintenance [37,38]. Labi et al. [37] used a logarithmic
model to describe the relationship between PJ and the initial performance condition. This
study used the following logarithmic regression model to predict PJ:

PJ = a × ln(PCIb) + b (9)
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where PCIb is the PCI before maintenance, and a and b are the regression coefficients.
In this study, relationships between PJ and PCIb were analyzed for composite pave-

ments treated with five typical maintenance methods, namely crack sealing, crack filling,
fog seal, thin HMA overlay, and hot-mix recycled AC. This study selected 112 sections of
composite pavements from the LTPP program, comprising 33 sections treated with crack
sealing, 28 with crack filling, 21 with fog seal, 19 with thin HMA overlay, and 11 with
hot-mix recycled AC. The PCI of the selected sections was calculated according to the perfor-
mance data in the LTPP database, where PJ was the difference between PCIa (immediately
after maintenance) and PCIb (immediately before maintenance).

2.2.2. Deterioration Rate Reduction

Deterioration rate reduction (DRR) is used to describe the “slowing down” of pave-
ment performance deterioration caused by maintenance [38,39]. The deterioration rate of
PCI during the service years and DRR was calculated according to the performance data of
the 112 composite pavement sections.

2.3. Long-Term Maintenance Decision-Making Optimization Method

This study aimed to propose a decision-making optimization method for long-term
preventive maintenance based on DP. The application of DP in multi-objective decision-
making optimization problems requires certain parameters, including stage variables, state
variables, decision variables, state transfer equations, objective functions, basic equations,
and constraints.

2.3.1. Stage Variable

The maintenance cost of composite pavements in airports is not supposed to exceed the
limit of the annual maintenance budget. Thus, an optimization model based on DP should
divide the maintenance period into several stages at intervals of 1 year chronologically. The
stage variable is defined as k. As for a long-term preventive maintenance plan for K years,
k is 0, 1, 2, . . ., K.

2.3.2. State Variable

The target of multi-objective decision-making optimization is to allocate as few mainte-
nance funds as possible for preventive maintenance of several or all composite pavement re-
gions while maintaining the overall pavement performance in an acceptable state during the
whole maintenance period. This study established two state variables: s1

k=t,ni = PCIk=t,ni

and s2
k=t,ni = ck=t,ni. PCIk=t,ni represents the current PCI of region n at the end of stage

t, which is treated by maintenance technology i at the beginning of stage t. Furthermore,
ck=t,ni represents the cumulative cost of maintenance technology i, which has been imple-
mented in region n several times until the end of stage t.

2.3.3. Decision Variable

According to the aforementioned preventive maintenance technologies, six types of
maintenance decisions are available for composite pavements (i.e., no maintenance, crack
sealing, crack filling, fog seal, thin HMA overlay, and hot-mix recycled AC), and decision i
is 0, 1, . . ., I (I = 5), respectively. For an airport with N composite pavement regions, the
maintenance decision variable xkni represents whether maintenance is implemented in
region n (n = 1, 2, . . ., N) at stage k. Here, the maintenance decision variable xkni is set to
0 if no preventive maintenance is implemented in the composite pavement region (i = 0);
otherwise, xkni is set to 1 if any of the five preventive maintenance technologies are adopted
(i = 1 to 5).

2.3.4. State Transfer Variable

The state transfer equation describes the transformation from a certain state to the
next being affected by the decision variable. According to the principle of DP, the state
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variable sk+1 in stage (k + 1) is entirely determined by the state variable sk and decision
variable xk in stage k. The state transfer equation is expressed as sk+1 = Tk(sk, xk). The
decision variable xk is 0 when no maintenance is implemented on composite pavements or
1 otherwise. Thus, the state transfer equation of s1

k and s2
k is a piecewise function related

to xk.
When xk is 0 at the beginning of a stage, no maintenance is implemented on the

composite pavement region, and thus, both the improvement of the PCI and the additional
cost of maintenance are 0 until the next stage. As for s1

k=t+1,n1(PCIk=t+1,n1), if no preventive
maintenance is implemented on region n at the beginning of stage (t + 1), its variation
will follow the tendency of the PCIk=t,ni curve. PCIt+1>k>t,n1 can be calculated based on
Equations (1)–(6) and the 13 regression coefficients in Table 3, which vary as ESAL during
stage (t + 1). The state transfer equation of s1

k=t+1,ni (i = 0) is shown in Equation (10):

T1
t+1>k>t,ni = s1

t+1>k>t,ni − s1
k=t,ni = PCIt+1>k>t,ni − PCIk=t,ni (10)

As for s2
k=t+1,n1(ck=t+1,n1), it remains the same as s2

k=t,n1 because of no additional
maintenance costs in stage (t + 1). The state transfer equation of s2

k=t+1,n1 is shown in
Equation (11):

T2
t+1>k>t,ni = s2

k=t+1,ni − s2
k=t,ni = ck=t+1,ni − ck=t,ni = 0 (11)

When xk is 1, certain maintenance is implemented on the composite pavement region,
which influences both the deterioration tendency of PCI and the preventive maintenance
cost. As for s1

k=t+1,n1(PCIk=t+1,n1), a jump in PCI (PJ) occurs immediately after mainte-
nance, followed by a slower deterioration (DRR) during stage (t + 1). The PCIk=t+1,n1 curve
after various types of preventive maintenance can be calculated from corresponding PJ
regression models and DRR statistical results. The state transfer equation of s1

k=t+1,ni(i = 1
to 5) is the same as Equation (10).

As for s2
k=t+1,n1(ck=t+1,n1), it equals s2

k=t,ni plus ∆ck=t+1,ni, which is the additional mainte-
nance cost in stage (t + 1). ∆ck=t+1,ni is calculated based on Equation (12) considering inflation:

∆ck=t+1,ni = ∆ck=t,ni(1 + Rk=t) = ∆ck=1,ni

t

∏
k=1

(1+Rk) (12)

where ∆ck=1,ni is the cost of maintenance method i implemented in region n at the beginning
of the initial stage (k = 1), and Rk is the inflation rate in stage k.

Thus, the state transfer equation of s2
k=t+1,ni (i = 1 to 5) is as shown in Equation (13):

T2
t+1>k>t,ni = s2

k=t+1,ni − s2
k=t,ni = ∆ck=1,ni

t

∏
k=1

(1+Rk) (13)

2.3.5. Objective Function and Basic Equation

The objective function was used to estimate the maintenance decision in each stage,
which is defined as Vk(sk, xk) and consists of state variable sk and decision variable xk.
Vk(sk, xk) represents the total cumulative benefit or cost from stage k to the final stage.
The basic equation fk(sk) is the combination of all the optimum decisions from stage k to
the final stage, which means it is the extremum of Vk(sk, xk). The state transfer equation
Tk(sk, xk) represents the benefit and cost of each stage; therefore, fk(sk) can be calculated
based on a backward algorithm, as shown in Equation (14):

fk(sk) = opt{Vk(sk, xk)} =opt{Tk(sk, xk) + fk+1(sk+1)}, k = n, n − 1, . . . , 1 (14)

Both the maximum total improvement in the PCI and minimum total maintenance cost
from stage k to the final stage are required. The state transfer equations are used to calculate the
average variation of PCIkni and ckni in stage k, as shown in Equations (15) and (16), respectively.
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T1
k (s

1
k , xk) =

1
N

N

∑
n=1

I

∑
i=0

(s1
kni − s1

(k−1)ni)xkni =
1
N

N

∑
n=1

I

∑
i=0

∆PCIknixkni (15)

T2
k (s

2
k , xk) =

1
N

N

∑
n=1

I

∑
i=0

(s2
kni − s2

(k−1)ni)xkni =
1
N

N

∑
n=1

I

∑
i=0

∆cknixkni (16)

where ∆PCIkni and ∆ckni are calculated based on Equations (10)–(13).
Thus, the basic equations are as follows:

f 1
k (sk) = max

{
T1

k (sk, xk) + f 1
k+1(sk+1)

}
(17)

f 2
k (sk) = min

{
T2

k (sk, xk) + f 2
k+1(sk+1)

}
(18)

2.3.6. Constraint

In view of the preventive maintenance requirement, four constraints were established:
(1) xkni is either 0 or 1; (2) a maximum of one maintenance technology can be implemented
in each region per stage; (3) the PCI must not exceed the range between the minimum
acceptable value (PCImin) and 100; and (4) the maintenance cost is not negative and the sum
of all the regions must not exceed the annual maintenance budget Cmax,k. These constraints
are presented as follows:

xkni = 0 or 1 (19)

I

∑
i=0

xkni ≤ 1 (20)

PCImin ≤ PCIk =
1
N

N

∑
n=1

I

∑
i=0

PCIknixkni ≤ 100 (21)

0 ≤ Ck =
N

∑
n=1

I

∑
i=0

∆cknixkni ≤ Cmax,k (22)

2.4. Optimization Incremental Dynamic Programming Algorithm

Multi-objective decision-making optimization based on DP is a multi-stage solution
process. Incremental DP (IDP) is a widely used backward algorithm from the final stage to
the initial stage. In other words, the maintenance decision of the final stage is made first,
followed by that of the former stage successively. Finally, decisions for all stages are made,
and the long-term maintenance plan is completed during the entire period. Considering
both remaining pavement service performance and reducing the influence of inflation,
maintenance should be implemented at the beginning of each stage. Thus, the PCI at the
beginning of stage k (s1

kni′) equals the PCI at the end of stage (k − 1) (s1
(k−1)ni) plus the

PJ calculated from the regression models. Moreover, the PCI at the end of stage k (s1
kni)

equals s1
kni′ minus the deterioration value, which is less than that with no maintenance by

DRR (%).
In the first step of iterative computation based on IDP, s1

k=K,n,i=1 and s2
k=K,n,i=1 at the

final stage, are calculated from the state transfer equation when xkni is 0, which means
no maintenance is implemented during the whole planning period. This is the most
economical maintenance plan because of zero cost, but it perhaps does not meet the
requirement of PCImin. Thus, the implementation of some maintenance technology may be
required in advance. The maintenance decision combination of all the regions in stage k is
pk =

[
in=1 in=2 · · · in=N

]
. The set of non-inferior solutions in stage K consists of all

pK satisfying constraints from Equations (19)–(22). The optimal solution p∗K is determined
as shown in Figure 1, where the dots represent the CK and PCIK corresponding to each pK;
the horizontal and vertical lines represent the limits of Cmax,K and PCImin; and the dashed
oblique line is the optimal split line. The vertical distance between the dot and the optimal
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split line is positive if the dot is above the line otherwise the opposite is true. Furthermore,
p∗K corresponds to the dot where the maximum vertical distance exists.
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Figure 1. Non-inferior solutions and the optimal solution.

In the subsequent steps, the set of non-inferior solutions in stage k (k < K) consists
of pk and p∗k+1, . . ., p∗K, and p∗k is determined using the same method. Based on the IDP
backward algorithm, the optimal preventive maintenance plan could be determined, which
is a combination of p∗1 , . . ., p∗K.

For composite pavement consisting of N regions, which can be treated using I types of
maintenance technology, there are (I + 1)N types of decision combinations per stage as well
as numerous calculations. In terms of long-term preventive maintenance decision-making,
calculation costs must be reduced via optimizing the IDP algorithm. IDP consists of two
parts: a set of non-inferior solutions and the optimal solution. The two calculation processes
were optimized as follows.

In the calculation process of non-inferior solutions, some pk may exceed the constraint
of Cmax,k, or different pk may correspond to the same PCIk and Ck. Taking a 3-year preven-
tive maintenance plan as an example, the composite pavement consists of three regions
and two available maintenance technologies. PCImin is 90 and Cmax,k=3 is 13, and the costs
of the three decision variables x0, x1, and x2 are 0, 5, and 8, respectively. Furthermore, the
PJ is 0, 4, and 6, respectively, when PCIb is 94. Figure 2a plots the deterioration of the PCI.
Considering the constraint Cmax,k=3 = 13, 16 decision combinations are available, much
fewer than that (33 = 27 combinations) without Cmax,k=3. The 16 pk=3 correspond entirely to
five types of non-inferior solutions, as shown in Figure 2b. For example, the dot (10, 92.67)
corresponds to the three decision combinations where maintenance I (x1) is implemented
on any two regions, and the other is not treated. Thus, calculating all non-inferior solutions
is unnecessary.
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Figure 2. Calculation example of non-inferior solutions. (a) PCI curves; (b) Non-inferior solutions.

In light of the aforementioned information, the calculation process of non-inferior
solutions is optimized as follows. First, the decision combinations with Ck over Cmax,k
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are excluded in advance to avoid the unnecessary calculation of PCIk. On the other
hand, one of the decision combinations corresponding to the same Ck and PCIk is selected
randomly to calculate the vertical distance to the optimal split line, thereby avoiding
repetitive calculations.

In the calculation process of the optimal solution, the maximum vertical distance must
be determined. Considering that PCIk monotonically increases as Ck increases, a median
approach algorithm is proposed to reduce calculation times. This algorithm approaches
the optimal solution by bisecting the possible interval step by step. Figure 3 shows the
steps for determining the optimal solution. First, the vertical distances to the optimal split
line of the two boundary dots ( 1⃝ and 2⃝) are determined. Then, the dot that is the closest
to the middle of the non-inferior solution interval is defined as the median dot ( 3⃝), and
its distance is calculated. Next, the distance of the median dot is compared with those of
the boundary dots; if the former is larger than any of the latter, the closer boundary dot is
replaced with the median dot, thereby establishing the new non-inferior solution interval
( 1⃝ and 3⃝). Finally, these steps are repeated until there are only two boundary dots or three
dots, including the newest median dot, and the optimal solution is determined ( 6⃝). As
shown in Figure 3, there are a total of 6 dots with vertical distances to the optimal split line
that must be calculated, which is much fewer than that in the original IDP algorithm.
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3. Results and Discussion
3.1. Performance Deterioration of Runway Composite Pavement Regions

This study surveyed five typical airports in China with composite pavements. Table 1
presents their structural and traffic conditions. In Table 1, CZX represents Changzhou
Benniu Airport, DLC represents Dalian Zhouzishui Airport, TAO represents Qingdao
Liuting Airport, XMN represents Xiamen Gaoqi Airport, and SHA represents Shanghai
Hongqiao Airport according to International Air Transport Association (IATA) codes.

Table 1. Structural and traffic conditions of the investigated airports.

Airport
Code Airport Region Year of AC

Overlay
Thickness of AC Overlay

(cm)
Thickness of PCC Pavement

(cm)
he

(cm)
Years of Traffic

Investigated
ESAL
(/day)

CZX
Middle runway

2013

SMA-13: 5
42 39.89

2013–2017
31AC-20: 11

Taxiway SMA-13: 5
56 51.58 8AC-20: 12.5

DLC

Middle runway

2005

SMA-16: 6
32 34.11

2007–2011

93AC-21: 15

Terminal runway SMA-16: 6
37 35.95 47AC-21: 10

Taxiway
SMA-16: 6

32 34.11 19AC-21: 6
AC-25: 9
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Table 1. Cont.

Airport
Code Airport Region Year of AC

Overlay
Thickness of AC Overlay

(cm)
Thickness of PCC Pavement

(cm)
he

(cm)
Years of Traffic

Investigated
ESAL
(/day)

TAO

Middle runway

2010

SMA-16: 6
32 30.74

2013–2017

320AC-20: 7

Terminal runway SMA-16: 6
34 34.42 160AC-20: 12

Taxiway SMA-16: 6
34 34.42 54AC-20: 12

XMN

Middle runway

2008

SMA-16: 6
30 32.95

2011–2015

135AC-20: 16

Terminal runway SMA-16: 6
30 32.11 68AC-20: 14

Taxiway SMA-16: 6
33 31.26 27AC-20: 12

SHA

Middle runway

2011

SMA-13: 5

38 44.79

2012–2016

357
AC-16: 7

SMA-16: 6
AC-20: 19

Terminal runway

SMA-13: 5

31 40.15 179
AC-16: 7

SMA-16: 6
AC-20: 19

Figure 4 plots the PCI curves of different regions in the five investigated airports. The
PCI data were collected manually on-site every four years.
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According to the PCI curves of different airports and regions, the deterioration rate of
PCI increases as he decreases and ESAL increases. In Equation (1), the factors α and β are
regressed by various PCI, y, he, and ESAL, as shown in Table 2. The 13 coefficients an, bn, cn,
and d in Equations (3)–(6) are regressed by various α, β, he, and ESAL, as shown in Table 3.

Table 2. α and β in PCI regression curves.

Region of the Airport Airport Code α β

Middle runway

CZX 167.6163 0.3366
DLC 125.9302 0.3105
TAO 92.5086 0.2906
XMN 114.7053 0.3041
SHA 104.9870 0.3287

Terminal runway

DLC 187.4970 0.3074
TAO 133.8690 0.2955
XMN 160.0943 0.2944
SHA 140.8225 0.3094

Taxiway

CZX 478.9010 0.2529
DLC 264.9978 0.2108
TAO 196.3031 0.2037
XMN 226.6756 0.2021

Table 3. Regression coefficients.

Region of Airport
Regression Coefficients

a1 b1 c1 a2 b2 c2

Middle runway 23.9802 0.8943 −0.2087 194.3201 −2.8224 −0.0845
Terminal runway 24.1403 0.8423 −0.2246 183.1502 −2.1321 −0.0912

Taxiway 31.9805 0.8217 −0.2456 171.2804 −1.8321 −0.0972

Region of Airport
Regression Coefficients

a3 b3 c3 a4 b4 c4 d

Middle runway 1.1020 −0.2411 −0.0803 0.0453 0.3349 −0.0255 −0.0981
Terminal runway 1.4210 −0.2121 −0.0942 0.0557 0.3144 −0.0211 −0.0975

Taxiway 1.5691 −0.2033 −0.0987 0.0418 0.3578 −0.0311 −0.0985

3.2. Maintenance Benefits of Preventive Maintenance Maintenance Technologies
3.2.1. Performance Jump

Figure 5 plots PJ-PCIb fitting curves, regression models (Equation (9)), and coefficients
of determination R2 for the five maintenance methods. The relevance between PJ and
PCIb is higher than 0.87 when composite pavements are treated with the five maintenance
technologies, which, in order of increasing relevance, are crack sealing, crack filling, fog
seal, thin HMA overlay, and hot-mix recycled AC. According to the five regression models
of PJ and PCIb, the improvements in composite pavement performance after treatment
with the different maintenance technologies could be calculated.
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Figure 5. PJ versus PCIb of sections treated with five different preventive maintenance technologies.
(a) Crack sealing; (b) Crack filling; (c) Fog seal; (d) Thin HMA overlay; (e) Hot-mix recycled AC.

3.2.2. Deterioration Rate Reduction

Figure 6 shows the deterioration rates of PCI before and after the five types of pre-
ventive maintenance, as well as the DRR of each technology. The vertical dashed line
represents the year of maintenance, and the solid line is divided into two parts by this
dashed line. The left part is the deterioration rate of PCI before maintenance, which was
calculated according to the difference of PCI in continuous years, whereas the right part is
the deterioration rate of PCI without maintenance, which was predicted according to the
tendency of the fitting curve. The dashed line represents the PCI deterioration rate after
maintenance. The PCI in each year was calculated according to the performance data in
the LTPP database. The DRR is the relative difference between the PCI deterioration rates
immediately before and after maintenance [40].

Figure 5. PJ versus PCIb of sections treated with five different preventive maintenance technologies.
(a) Crack sealing; (b) Crack filling; (c) Fog seal; (d) Thin HMA overlay; (e) Hot-mix recycled AC.

3.2.2. Deterioration Rate Reduction

Figure 6 shows the deterioration rates of PCI before and after the five types of pre-
ventive maintenance, as well as the DRR of each technology. The vertical dashed line
represents the year of maintenance, and the solid line is divided into two parts by this
dashed line. The left part is the deterioration rate of PCI before maintenance, which was
calculated according to the difference of PCI in continuous years, whereas the right part is
the deterioration rate of PCI without maintenance, which was predicted according to the
tendency of the fitting curve. The dashed line represents the PCI deterioration rate after
maintenance. The PCI in each year was calculated according to the performance data in
the LTPP database. The DRR is the relative difference between the PCI deterioration rates
immediately before and after maintenance [40].
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Figure 6. Deterioration rate of PCI versus year of AC overlay of sections treated with various pre-
ventive maintenance technologies. (a) Crack sealing; (b) Crack filling; (c) Fog seal; (d) Thin HMA 
overlay; (e) Hot-mix recycled AC. 

Figure 6a,b show the deterioration rates of PCI and DRR of representative sections 
after crack sealing and crack filling, respectively. The DRR of all 61 sections is small, or 
0.01 in order of magnitude. Furthermore, the tendency of the deterioration rate of PCI 
after crack sealing or crack filling is similar to that without maintenance. Therefore, crack 
sealing and crack filling rarely influence the deterioration rates of the PCI or DRR of com-
posite pavement. 

Figure 6c shows the deterioration rates of PCI and DRR of representative sections 
treated with fog seal. The average DRR of the 21 sections treated with fog seal is approxi-
mately 0.2. After 2 years of maintenance, the PCI deterioration rate increases to that just 
before maintenance, indicating that the fog seal has an influence on the DRR for 2 years 
after maintenance. The deterioration rate of PCI declines by 20% in the year of fog seal 
maintenance, and that after n (n = 1, 2) years of maintenance is approximately equal to 
that (2 − n) years before maintenance. 

Figure 6. Deterioration rate of PCI versus year of AC overlay of sections treated with various
preventive maintenance technologies. (a) Crack sealing; (b) Crack filling; (c) Fog seal; (d) Thin HMA
overlay; (e) Hot-mix recycled AC.
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Figure 6a,b show the deterioration rates of PCI and DRR of representative sections
after crack sealing and crack filling, respectively. The DRR of all 61 sections is small, or
0.01 in order of magnitude. Furthermore, the tendency of the deterioration rate of PCI
after crack sealing or crack filling is similar to that without maintenance. Therefore, crack
sealing and crack filling rarely influence the deterioration rates of the PCI or DRR of
composite pavement.

Figure 6c shows the deterioration rates of PCI and DRR of representative sections
treated with fog seal. The average DRR of the 21 sections treated with fog seal is approxi-
mately 0.2. After 2 years of maintenance, the PCI deterioration rate increases to that just
before maintenance, indicating that the fog seal has an influence on the DRR for 2 years
after maintenance. The deterioration rate of PCI declines by 20% in the year of fog seal
maintenance, and that after n (n = 1, 2) years of maintenance is approximately equal to that
(2 − n) years before maintenance.

Figure 6d shows the deterioration rates of PCI and DRR of representative sections
treated with a thin HMA overlay. The average DRR of the 19 sections treated with a
thin HMA overlay is approximately 0.7. After 3 years of maintenance, the deterioration
rate of PCI increases to that just before maintenance, indicating that thin HMA overlay
has an influence on the DRR for 3 years following maintenance. The deterioration rate
of PCI declines by 70% in the year of HMA maintenance, and the deterioration rate of
PCI after n (n = 1, 2, 3) years of maintenance is approximately equal to that (3 − n) years
before maintenance.

Figure 6e shows the deterioration rates of PCI and DRR of representative sections
treated with hot-mix recycled AC. The average DRR of the 19 sections treated with hot-mix
recycled AC is approximately 0.8. After 4 years of maintenance, the deterioration rate of
PCI increases to that just before maintenance, indicating that hot-mix recycled AC has an
influence on the DRR for 4 years after maintenance. The deterioration rate of PCI declines
by 80% in the year of hot-mix recycled AC maintenance, and the deterioration rate of PCI
after n (n = 1, 2, 3, 4) years of maintenance is approximately equal to that (4 − n) years
before maintenance.

3.3. Application of Long-Term Maintenance Decision-Making Optimization Method

Based on the abovementioned decision-making optimization method, this study
implemented a five-year preventive maintenance plan on Sunan Shuofang Airport (WUX),
China, which featured eight composite pavement regions.

3.3.1. Decision-Making Model Parameters

In 2010, AC overlay was paved onto PCC pavement at Sunan Shuofang Airport when
the PCI was 100. Table 4 presents the structural and traffic conditions of the eight regions.

Table 4. Structural and traffic conditions of Sunan Shuofang Airport.

Region Code Region of Airport he (cm) ESAL (/day)

1#/2#/3#/4# Terminal runway 36 39
5#/6#/7#/8# Middle runway 39 58

The maintenance period from 2013 to 2017 was divided into five stages at intervals
of 1 year (K = 5). According to the maintenance history, crack filling, fog seal, and hot-
mix recycled AC were available, corresponding to xkn,i=2, xkn,i=3, and xkn,i=5, respectively.
Considering both the maintenance benefit and inflation influence, preventive maintenance
must be implemented as soon as possible, and therefore, the maintenance decision was
made at the beginning of each stage. According to the previous maintenance history,
preventive maintenance was completed quickly; thus, the maintenance time was set as 0 to
simplify calculations.
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The annual average inflation rates in China for each year from 2013 to 2017 were
2.35, 1.98, 1.52, 2.07, and 1.47%, respectively. According to the preventive maintenance
costs [41,42], the cost in each stage can be calculated and the ∆ck=5,ni is as shown in Table 5.
Considering the pavement performance requirement and the annual maintenance budget
limit, the PCImin is 90 and Cmax,k is $64,000.

Table 5. Cost of preventive maintenance in stage 5.

Maintenance Technology Unit Cost Maintenance Length/Area Total Costs (∆ck=5,ni)

Crack filling $2.4/m 11,000 m $26,400
Fog seal $3.3/m2 9000 m2 $29,700

Hot-mix recycled AC $4.0/m2 9000 m2 $36,000

3.3.2. Maintenance Decision-Making Solution

According to the PCI predictive model (Equations (1)–(6)) and the model parameters
in Tables 3 and 4, the average PCI of the terminal runway and middle runway will be 88.4
and 83.9 at the end of stage 5, respectively, if no maintenance has been implemented during
the whole period. Due to PCImin, some maintenance must be implemented in advance.
Based on the optimization IDP algorithm, the non-inferior solutions from stages 5 to 1
are shown in Figure 7. Figure 7 indicates that the optimal solution for each stage is “no
maintenance.” However, considering the constraint PCImin = 90, preventive maintenance
should be implemented in the early stages when it is more economical.
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The average PCI value of composite pavements and the maintenance costs during the
whole period are shown in Figure 8. Based on the abovementioned decision-making opti-
mization method, this study’s five-year preventive maintenance plan not only sufficiently
meets the demand for pavement performance but also spends maintenance funds properly
without exceeding the budget.
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4. Conclusions

This study analyzed the composite pavement performance deterioration of airports
investigated, as well as the benefits of typical preventive maintenance technologies accord-
ing to LTPP data. Furthermore, this study proposed an optimization IDP algorithm for
long-term preventive maintenance decision-making. Key findings and conclusions are
as follows:

1. The PCI deterioration tendencies of the middle runway, terminal runway, and taxiway
in five airports with composite pavements were analyzed, and the corresponding PCI
predictive models were regressed according to the long-term data of the investigated
airports. The 13 coefficients an, bn, cn (n = 1, 2, 3, 4), and d in the PCI predictive models
for different composite pavement regions are shown in Table 3.

2. According to the LTPP database, PJ, DRR, and PCI deterioration rates of 33 composite
pavement sections treated with crack sealing, 28 with crack filling, 21 with fog seal,
19 with thin HMA overlay, and 11 with hot-mix recycled AC were analyzed. Thus, the
maintenance benefit of each maintenance technology was determined. The regression
relationship between PJ and PCI immediately before maintenance is shown in Figure 5,
using a logarithmic model. For sections treated with crack sealing and crack filling,
the DRR is nearly 0, and the PCI deterioration rate is rarely influenced. For sections
treated with fog seal, the average DRR is 0.2, and the reduced PCI deterioration rate
returns to that immediately before maintenance after 2 years. For sections treated
with thin HMA overlay and hot-mix recycled AC, the average DRR is 0.7 and 0.8, and
the recovering time of PCI deterioration rate is 3 and 4 years, respectively.

3. A decision-making optimization method for long-term preventive maintenance based
on DP was proposed, and the DP model parameters include stage variables, state
variables, decision variables, state transfer equations, objective functions, basic equa-
tions, and constraints. An optimization IDP algorithm was developed to reduce the
calculation cost by optimizing the calculation processes of both non-inferior solutions
and the optimal solution. A method was used for preprocessing non-inferior solutions,
and a median approach algorithm was proposed to reduce the time needed to com-
pute the optimal solution. The decision-making optimization method was applied
in a five-year preventive maintenance plan for composite pavements in Sunan Shuo-
fang Airport, China, which sufficiently meets the demand for pavement performance
without exceeding the annual maintenance budget.
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4. In this study, which maintenance technologies to adopt and when to maintain the
pavement were dependent on the condition and deterioration tendency of composite
pavements. Furthermore, the treatment costs were dependent on the type of main-
tenance technologies and inflation. However, the treatment costs were assumed to
be irrelevant to composite pavement conditions, although poorer conditions may
require greater treatment costs for the same maintenance technology. Moreover, the
penalty for the maintenance of aircraft because of poor runway conditions, which
may exacerbate aircraft deterioration and increase airline company costs, was not
considered. These assumptions resulted in yielding “no maintenance” as the optimal
solution in the application. The aforementioned problems must be studied in future
work, including the relationship between treatment costs and pavement condition,
as well as the more comprehensive constraints in the maintenance decision-making
optimization method.
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