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Abstract: Background/Objectives: Proficient colposcopy is crucial for the adequate management of
cervical cancer precursor lesions; nonetheless its limitations may impact its cost-effectiveness. The
development of artificial intelligence models is experiencing an exponential growth, particularly in
image-based specialties. The aim of this study is to develop and validate a Convolutional Neural Net-
work (CNN) for the automatic differentiation of high-grade (HSIL) from low-grade dysplasia (LSIL)
in colposcopy. Methods: A unicentric retrospective study was conducted based on 70 colposcopy
exams, comprising a total of 22,693 frames. Among these, 8729 were categorized as HSIL based
on histopathology. The total dataset was divided into a training (90%, n = 20,423) and a testing set
(10%, n = 2270), the latter being used to evaluate the model’s performance. The main outcome mea-
sures included sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive
value (NPV), and the area under the receiving operating curve (AUC-ROC). Results: The sensitivity
was 99.7% and the specificity was 98.6%. The PPV and NPV were 97.8% and 99.8%, respectively.
The overall accuracy was 99.0%. The AUC-ROC was 0.98. The CNN processed 112 frames per
second. Conclusions: We developed a CNN capable of differentiating cervical cancer precursors
in colposcopy frames. The high levels of accuracy for the differentiation of HSIL from LSIL may
improve the diagnostic yield of this exam

Keywords: cervical squamous cell carcinoma; LSIL; HSIL; colposcopy; artificial intelligence

1. Introduction

Cervical cancer poses a significant global challenge, with recent estimates indicating an
incidence of 13.3 cases per 100,000 women-years [1]. This burden is particularly pronounced
in low-income countries, where both incidence and mortality rates are higher [2]. Central to
this disease’s carcinogenesis is the role played by Human of Papillomavirus (HPV) infection,
which affects over 80% of sexually active individuals at some point in their lives [3]. While
most HPV infections are temporary, the persistence of the infection, especially in high-
risk oncogenic types, significantly contributes to the development of precursor dysplastic
lesions, including both low-grade and high-grade squamous Intraepithelial Lesions (LSILs
and HSILs, respectively) [4].

Distinguishing between LSILs, characterized by mild dysplasia, and HSILs, charac-
terized by moderate/severe dysplasia and a higher probability of progressing to invasive
malignancy, is critical for guiding subsequent medical treatments [5]. While LSILs may
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resolve spontaneously due to a decreased propensity for progression, HSILs are considered
to be an actual precancerous lesion and require prompt treatment, often using ablative
techniques or excisional procedures [6].

Despite the discouraging prognosis of advanced disease stages, early detection fa-
cilitates the effective management of cervical cancer [7]. The 90-70-90 targets emphasize
the importance of adequate vaccination rates, HPV screening, and the early treatment of
pre-invasive disease [8]. Screening typically involves HPV testing and/or cytological exam-
ination, with colposcopy is recommended in cases of altered results [9]. In fact, colposcopy
is considered the gold standard for diagnosing cervical cancer, due to its magnification
capabilities, allowing improved morphological mucosal characterization, as well as the
ability to perform targeted biopsies and treat suspected lesions [10]. In this scenario, the
primary aim of colposcopy in cervical cancer screening is to detect and treat HSILs before
they advance to cervical cancer.

Staining methods can be added at the time of colposcopy, to increase its diagnos-
tic yield (HSILs are expected to appear whitish in acetic acid application and show no
coloration with Lugol’s iodine) [11]. While prospective studies support the sequential
application of acetic acid and Lugol’s staining, increasing the diagnostic performance of
colposcopic procedures essentially through heightened sensitivity, there are inherent limita-
tions to this approach [12]. Suboptimal specificity and interobserver variability contribute
to a notable number of false positives, even when incorporating staining in colposcopy.
This exam continues to depend heavily on the clinician’s skill and has high intra and
interobserver variability. The identification of HSILs is still suboptimal, with a recent
study demonstrating an accuracy of approximately 70% for the identification of this lesion
type [13].

Challenges in achieving optimal accuracy persist, emphasizing the need for ongoing
refinement in order to enhance the overall reliability of cervical cancer detection during
colposcopy. In this context, artificial intelligence (AI) models could have a role in increasing
colposcopy’s cost-effectiveness, leading to more target treated decisions and potentially
reducing unnecessary procedures. Convolutional Neural Networks (CNNs) are deep
learning AI models inspired by the human visual cortex, specifically designed for image
patterns analysis [14]. The advantages of CNN development have been explored across
several medical areas [15,16].

The aim of this study is to develop and validate a Convolutional Neural Network
(CNN) for the automatic differentiation of HSILs from LSILs in colposcopy, using still
frames of all the phases of colposcopy exam (non-stained, acetic acid, Lugol’s iodine, and
post-manipulation).

2. Materials and Methods

We retrospectively collected colposcopies performed between December 2022 and
January 2023 in Centro Materno Infantil do Norte, in Porto, Portugal. The colposcopic
procedures were captured using a Zeiss 150 FC colposcope. Subsequently, the collected
videos were segmented into still frames using a VLC Media Player (VideoLan, Paris,
France). The frames underwent a comprehensive review, resulting in the inclusion of a
total of 22,693 frames in the dataset.

This study follows a non-interventional paradigm, given the retrospective nature of
collection of previously performed colposcopies. Furthermore, the study did not precipitate
modifications to the therapeutic conduct in any instance. Ethical committee approval was
obtained prior to the start of the study (IRB 2023.157(131-DEFI/123-CE)), adhering to the
principles outlined in the Helsinki declaration.

Colposcopies were performed by one expert (M.J.C.) and all the collected procedures
followed the current standards of practice. This includes the proper execution of the
biopsies of suspected lesions and the preservation of sampled tissue. Each procedure
may be divided into four segments, as follows: initial non-stained observation, 3% acetic
acid solution observation, Lugol observation, and after therapeutic manipulation (e.g.,
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after laser ablation, plasma coagulation, or surgical ablation). While not all colposcopy
examinations included all four segments (e.g., some may lack Lugol’s staining or adequate
post-procedure images), the dataset includes frames from these four categories (frames
without staining, frames following the application of acetic acid, frames following the
application of Lugol’s solution, and post-manipulation frames). This means that individual
colposcopy procedures within the dataset may include any combination of these categories.

Among the total dataset (n = 22,693), 8729 frames were classified as HSILs, while
the remaining 13,964 frames were categorized as LSILs. The histological report from the
biopsy taken during the colposcopic examination of the observed lesions was consistently
consulted, in order to classify each corresponding colposcopy frame as LSIL or HSIL
(histological assessment is the ground truth of this CNN model). The complete dataset
was split into two parts—a training set comprising 20,423 frames (90% of the total dataset)
and a testing set with 2270 frames (10% of the total dataset). Each frame was exclusively
assigned to either the training or testing category. We used a stratified sampling strategy,
assuring that the distribution of lesions remained consistent across data splits. The testing
set served as an independent validation for the CNN. Figure 1 depicts the study flowchart.
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We constructed this CNN using a ResNet model. The model’s weights were pre-
trained using ImageNet, a comprehensive image dataset designed for object recognition.
We kept the initial convolutional layers to transfer its learned features to our model. The
last fully connected layers were removed and new fully connected layers were attached,
based on the number of classes needed for classifying colposcopy frames. The model’s
architecture includes two blocks, each comprising a fully connected layer followed by
a dropout layer with a drop rate of 0.3. Subsequent to these blocks, we incorporated a
dense layer, whose size was determined using the binary classification (HSIL or LSIL). The
hyperparameters, including learning rate (0.00015), batch size (128), and number of epochs
(10), were fine-tuned through a process of trial and error. Data preparation involved using
FFMPEG, Pandas, and Pillow libraries, while PyTorch was utilized to run the model. The
computational system was driven using a double NVIDIA Quadro RTXTM 80,000 graphic
processing unit (NVIDIA Corp, Santa Clara, CA, USA), alongside an Intel 2.1 GHz Xeon
Gold 6130 processor (Intel, Santa Clara, CA, USA).

The model calculated the probability of each frame being classified as HSIL or LSIL.
Their final classification was determined based on the one category with the highest
probability. Subsequently, the CNN’s classification was compared to the corresponding
histopathological one, regarded as the gold standard. The primary outcome measures
were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive
valued (NPV), and area under the receiver operating curve (AUC-ROC). Heatmaps were
also generated to enhance our understanding of the specific frame regions contributing the
most to the CNN’s prediction (Figure 2). The computational performance was assessed by
measuring the time required to process all frames in the testing set. Sci-Kit learn was used
for statistical analysis [17].
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Figure 2. (A) Example of generated heatmap showing how the CNN distinguishes a precursor
cervical squamous cell carcinoma. (B) The graph shows the output obtained using the CNN model.
The algorithm’s predicted the probability of being categorized as HSIL or LSIL, as indicated by each
bar in the chart. Every frame was assigned to one of these categories, based on the highest probability.
The corresponding assessment using histopathological classification, regarded as the gold standard,
is indicated in a rectangle in the superior upper corner.
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3. Results

A combined total of 22,693 frames were used for the development and validation
of the CNN, with 8729 frames being classified as HSIL. From the complete dataset, 90%
(n = 20,423 frames) were allocated for training the algorithm, while the remaining portion
was used for independent validation. The confusion matrix of the testing set is presented
in Table 1.

Table 1. Confusion matrix of the test set versus histopathological classification (considered the
final diagnosis).

Final Diagnosis

HSIL LSIL

C
N

N
C

la
ss

ifi
ca

ti
on

HSIL 870 20

LSIL 3 1377
CNN: Convolutional Neural Network; HSIL: high-grade squamous intraepithelial lesion; LSIL: low-grade
squamous intraepithelial lesion.

The CNN’s sensitivity was 99.7% and its specificity was 98.6%. The PPV and NPV
were 97.8% and 99.8%, respectively. The overall accuracy was 99.0%. The AUC-ROC was
0.98 (Figure 3). The CNN processing time was 112 frames per second.
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4. Discussion

This study serves as a proof-of-concept deep learning model in gynecology, demon-
strating overall good performance metrics in distinguishing between LSILs and HSILs
in still cervical frames. Although it is based on retrospective data from a single center,
caution should be exercised in interpreting these findings, as their applicability to a broader
population may be limited and there is a risk of overfitting the model. Nevertheless,
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we believe that the development of such deep learning algorithms could propel gyneco-
logical endoscopy forward, leading to the improved management and enhancement of
women’s health.

Several CNNs have been published to detect and differentiate cervical dysplastic
lesions during colposcopy. The first one, published in 2019, used one non-stained frame
per procedure across 330 patients, employing a 5-fold cross-validation design [18]. This
algorithm achieved 80% sensitivity and 88% specificity, with an overall accuracy of 83%
in distinguishing LSILs from HSILs. Subsequently, a large retrospective study involving
22,330 patients, using both non-stained and stained (acetic acid and Lugol) annotated
frames, demonstrated a 93% accuracy in detecting dysplastic lesions [19]. Particularly
for differentiating HSILs, the CNN exhibited an 85% sensitivity. Another study, with a
larger dataset of 19,435 non-stained annotated frames, achieved a 66% sensitivity and a 90%
specificity in distinguishing HSILs [20]. A recent publication from 2022 include a study
involving 18.006 frames from 6.002 patients, with non-stained and stained ones [21]. The
model exhibited an 88% sensitivity and a 94% specificity in differentiating between LSILs
and HSILs. Additionally, another study aimed to differentiate normal, LSILs, HSILs, and
cervical cancer in non-stained frames, achieving an 86% sensitivity for LSILs and an 82%
sensitivity for distinguishing HSILs from other categories [22]. Our results demonstrate
that the performance of our algorithm, using a dataset of 22,693 non-annotated frames, was
high, with a sensitivity and specificity of 99.7% and 98.6%, respectively, and an accuracy of
99.0% in detecting and differentiating LSILs from HSILs. Due to the insufficient number of
histologically confirmed “normal” lesions, it was not possible to conduct a trinary model
(non-dysplastic vs. LSILs vs. HSILs) in this study.

There are some strengths of this study that deserve emphasis. Firstly, the model stands
outs as the first CNN developed for this clinical problem using a European population. The
representability concern is a current topic in the field of data science and AI. The uncertainty
arises from questioning if a previously published algorithm would perform effectively
in a different population. In addition, it is important to acknowledge that this is the first
study to include not only non-stained, but also stained and post-manipulated frames. In a
clinical context, this concern is pivotal, as the ultimate goal is to develop a CNN capable of
recognizing potential lesions without being influenced by the presence of blood or burn
tissue. Moreover, the model development design employed does not necessitate frame
annotation for training the CNN, only labeling is required. This can also be an advantage
in data development, accelerating the AI algorithm’s pattern analysis when frames lack
previous annotations. However, it is crucial to acknowledge that the classification rationale
may not always match our initial assumptions. This leads to addressing another study
detail, namely the generation of heatmaps. These can be crucial for the explainability of our
results, helping in determining whether the algorithm is detecting lesions as anticipated. In
this case, it may indicate that the CNN is classifying frames according to our envisioned
classification, which can eventually assist in guiding biopsies in the future. It is also
worth mentioning that, as expected for this type of AI-enhanced endoscopy algorithm, the
model’s development was based on the gold standard of histologic results from biopsies
at the specific cervix site, rather than relying on expert opinions, assuring the robustness
of the model. Ultimately, our dataset preparation approach consisted in extracting frames
not only from different stainings, but also from different cervical locations. Rather than
consistently opting for low-ampliation images of the entire cervix, we specifically targeted
segments of the cervix displaying a visible lesion (region of interest) that were different
from procedure to procedure. This approach enhanced the heterogeneity of anatomical
locations represented in the dataset, potentially improving model’s ability to detect lesions
in an actual clinical setting.

There are some limitations that should be considered when interpreting these results.
Firstly, it is important to note that this is a single-center and retrospective study, impacting
the generalizability of the findings. Secondly, although it is simultaneously a strength,
given the absence of published research within this specific population, by include a
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Mediterranean population in our dataset, we may have introduced a demographic bias.
Consequently, this also implies that the study’s performance metrics might not be applicable
to other populations. Furthermore, the design involved a 90% training and a 10% testing
split for the CNN’s development, lacking a procedure split. Consequently, there is a
risk of overfitting that cannot be neglected, as similar frames from the same procedure
may appear in both training and testing sets, leading to an overestimation of the results.
However, the split between training and testing, using a stratified sampling, assured a
similar percentage of every lesion type between datasets, assuring a good balance for the
training in the detection of each specific lesion. Moreover, it is important to acknowledge
that we exclusively used frames from one brand of colposcopes, introducing uncertainty
about the CNN’s performance with data from other manufacturers. Additionally, this
algorithm was developed only with still frames, implying that its performance may not
necessarily reflect its accuracy in real-life video circumstances, although the computational
fast performance of 112 frames per second may suggest otherwise.

While we recognize that multiple cervical lesions can occur concurrently in the same
colposcopy (e.g., LSIL and HSIL), addressing this complexity would have necessitated a
larger dataset and a different research approach. Since our dataset preparation did not
entail manual data annotation, and due to the inherent black box nature of these deep
learning models, incorporating frames comprising two lesions with different histologies
could introduce errors during CNN training. Therefore, although the perspective was
to work in future models that could assist physicians in detecting concomitant lesions in
real-life scenarios, this is currently not realistic, taking into consideration that this model is
one of the first proof-of-concept studies in this anatomical location.

Moreover, when type 3 transition zones are present in the cervix, the most important
region to carefully inspect is internal, which makes it difficult for both physicians and deep
learning models to accurately identify lesions. This intrinsic anatomical constraint, known
beforehand, poses a difficult problem for algorithm development and lesion prediction.
Additionally, cervical mucosa is fragile, resulting in the occurrence of minor bleeding, even
in the absence of any instrumentation, during colposcopy. Given the black box nature of
this technology, we do not know if the presence of the blood can influence the accuracy
of the model. Nonetheless, considering the fact that blood can be present in all of the
categories mentioned (non-stained, acetic acid- and Lugol-stained, and post-manipulated),
and given the high-performance metrics of this CNN, we may infer that the model is not
influenced by the presence of blood.

5. Conclusions

This AI algorithm demonstrated an effective performance in identifying and dis-
tinguishing between LSILs and HSILs, demonstrating the potential for altering patient
management. This model was developed using frames from the entire colposcopy exami-
nation, encompassing non-stained, acetic acid- and Lugol-stained, and post-manipulated
frames. This development can signify an incremental advancement, in comparison to
the previous literature, increasing its applicability in a clinical setting. It is important to
note that this is an initial, retrospective, and single-center study, relying on a low number
of still frames. Acknowledging the necessity for an improved robustness and a broader
applicability, our ongoing goal is to significantly expand the dataset for the CNN and
explore the inclusion of additional centers.
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