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Abstract: The segmentation and localization of Agaricus bisporus is a precondition for its automatic
harvesting. A. bisporus growth clusters can present challenges for precise localization and segmen-
tation because of adhesion and overlapping. A low-cost image stitching system is presented in
this research, utilizing a quick stitching method with disparity correction to produce high-precision
panoramic dual-modal fusion images. An enhanced technique called Real-Time Models for Object
Detection and Instance Segmentation (RTMDet-Ins) is suggested. This approach utilizes SimAM
Attention Module’s (SimAM) global attention mechanism and the lightweight feature fusion module
Space-to-depth Progressive Asymmetric Feature Pyramid Network (SPD-PAFPN) to improve the
detection capabilities for hidden A. bisporus. It efficiently deals with challenges related to intricate
segmentation and inaccurate localization in complex obstacles and adhesion scenarios. The technol-
ogy has been verified by 96 data sets collected on a self-designed fully automatic harvesting robot
platform. Statistical analysis shows that the worldwide stitching error is below 2 mm in the area
of 1200 mm × 400 mm. The segmentation method demonstrates an overall precision of 98.64%.
The planar mean positioning error is merely 0.31%. The method promoted in this research demon-
strates improved segmentation and localization accuracy in a challenging harvesting setting, enabling
efficient autonomous harvesting of A. bisporus.

Keywords: automatic picking robot; mushroom detection; attention mechanism; image processing;
computer vision

1. Introduction

A. bisporus, widely cultivated as an edible mushroom, is renowned for its delectable
taste and rich nutritional content [1,2]. However, against continuous growth in large-scale
production, harvesting A. bisporus remains labor-intensive and heavily dependent on skilled
workers. Labor costs and harvesting efficiency emerge as primary constraints affecting
productivity development [3]. Machine vision-based methods for the segmentation and
localization of A. bisporus have gained widespread application in agricultural harvesting
robot platforms, owing to their advantages such as automation, real-time capability, non-
contact nature, and repeatability [4,5]. These methods are extensively helpful in agricultural
harvesting robot platforms [6,7].

The accurate contour segmentation and precise identification of optimal harvesting
points for A. bisporus are prerequisites for efficient harvesting. Segmentation and localiza-
tion are typically handled by the visual module of the harvesting robot, equipped with an
independent information system. However, in a factory-scale cultivation environment, the
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narrow working space of single-layer mushroom beds makes it challenging to provide suf-
ficient distance for obtaining a panoramic field of view. Particularly, the clustered growth
habits of A. bisporus result in substantial occlusion, making it difficult for the visual system
to accurately segment and locate the optimal harvesting points [8]. The ability to segment
and locate in complex cultivation environments is a prerequisite for achieving efficient
harvesting, and the development of machine vision brings hope to address this challenge.

Reed et al. [9] pioneered designing a mushroom harvesting robot based on two-
dimensional vision in the United Kingdom. In laboratory conditions, they captured the
positional information of mushrooms through cameras to guide the mechanical arm in
completing the harvesting task. However, they did not address the overlapping issue in
the A. bisporus case. Yu et al. [10] introduced a mushroom image region labeling tech-
nique based on sequential scanning, using numbers to label the central area of individual
mushroom images, thereby achieving differentiation of mushroom images. However, this
method merely allows rough segmentation, and lacks precision in localization. Refs. [11,12]
proposed a preliminary segmentation algorithm and a novel iterative label generation
method for initial watershed marking. Although these methods achieved a 95.7% accuracy
in the effective recognition of A. bisporus, significant errors persisted in the radius fitting of
the mushrooms. Furthermore, a method involving the computation of a global gradient
threshold was introduced. It segmented the image based on the edge gradient features,
generating a binary image that underwent filtering and morphological processing. This
resulted in an effective recognition rate of over 96% for A. bisporus. However, the overall
operational efficiency remained low due to the excessive computational workload [13].

Visual solutions based on RGB two-dimensional images encompass various mech-
anisms and technologies, but they struggle to attain high-precision depth information
for the target. Unlike traditional RGB cameras, depth cameras employ an active imaging
approach, providing depth information and proving more suitable for the complex lighting
conditions in A. bisporus cultivation scenes than color cameras. Nathanael et al. [14] pro-
posed an approach that initially segments using RGB information, then employs the Hough
transform to determine the center and radius and, finally, utilized depth information to
provide harvesting height for the mechanical arm. However, this method only utilizes
depth information to determine the height coordinate, and does not enhance the accuracy
of the segmentation and localization algorithm. According to recent research, a depth map
stitching approach incorporating parallax correction and a layered watershed algorithm
based on depth maps achieved a detection rate of 95.82% for occluded bilateral mushrooms
in limited planting conditions. This approach may not correctly address complex planting
conditions due to the simple dataset employed. However, the picture acquisition approach
in the first phases has greatly inspired our research [15].

In recent years, deep learning technology has been widely used in the field of image
segmentation. Compared to traditional instance segmentation methods, CondInst [16]
simplifies the network architecture by dynamically generating a specific mask for each
instance, eliminating the need for ROI cropping and feature alignment. It significantly
simplifies the network structure and reduces the computational burden. SOLOv2 [17]
introduces several innovations on the original SOLO instance segmentation network. These
include using Matrix NMS to improve instances’ positioning and segmentation accuracy.
However, its performance could be improved when dealing with highly overlapping
objects or extremely complex scenes. Zhong et al. [18] proposes a fully automated picking
robotic system that is capable of planning and picking overlapping, dense, and discrete
A. bisporus clusters in the field of view. The system was tested in a real A. bisporus factory,
and the success rate of the robot picking A. bisporus was 94.1%. The above research shows
that the deep learning model can handle complex image segmentation tasks in close to
real-time, and has become the preferred technology for achieving efficient and accurate
instance segmentation.

In summary, it has become increasingly challenging for traditional methodologies to
achieve breakthroughs in the recognition of A. bisporus. The advantages of deep learning-
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based segmentation algorithms are becoming increasingly prominent. Through analysis,
it has been found that the majority of missed detections in current algorithms are due to
occlusion of clusters of A. bisporus in complex environments. Building upon this premise,
this paper proposes a high-precision segmentation and localization system for A. bisporus
to enhance the algorithm’s ability to extract features from small targets and address the
challenge of accurately segmenting A. bisporus in complex environments. By incorporating
a disparity-corrected fast stitching algorithm and an improved RTMDet-Ins instance seg-
mentation network, the accuracy of segmentation and localization in complex cultivation
environments is greatly enhanced. The key innovations and contributions of this research
can be summarized as follows:

• To obtain panoramic information in low-visibility working environments, this paper
introduces a cost-effective and high-precision image stitching method. The method
utilizes multiple local color images and depth information with the fast-stitching
algorithm to acquire a high-precision panoramic image through bimodal fusion.

• This paper proposes using SimAM’s global attention mechanism and SPD-PAFPN’s
lightweight feature fusion module in the RTMDet-Ins instance segmentation network
model to address the extensive occlusion caused by A. bisporus’ clustered growth habits.
This enhancement improves the handling capability of occluded A. bisporus and small-
sized targets. Furthermore, the segmentation and detection capabilities of occluded
areas for A. bisporus are further elevated by employing bimodal fusion images.

2. Materials and Methods
2.1. Harvest Robot Design

The harvesting robot for A. bisporus is equipped with three modules: visual, harvesting,
and motion control. The visual module is the only way the harvesting robot perceives
the external world, and gives the harvesting robotic arm positional information on the
A. bisporus. Figure 1a shows the movement flow of the visual module. The harvesting
module comprises servo motors, a robotic arm, flexible suction cups, and a conveyor belt.
The motion control module coordinates duties for the visual and harvesting modules.
Figure 1b,c depicts both the platform design and the physical machine.

(a) (b) (c)

Figure 1. The A. bisporus picking robot. (a) Movement flow of the visual module; (b) platform design;
(c) physical machine.

The visual module undertakes the preliminary image processing tasks of segmentation
and localization for harvesting, making the rational design of the visual module crucial for
ensuring harvesting efficiency. The working distance for the camera to capture a panoramic
image is insufficient due to the narrow operational space of mushroom beds. For instance,
when the camera is mounted at a height corresponding to the current 300 mm layer, only
a field of view measuring 400 mm × 300 mm is attainable, significantly smaller than the
15,000 mm × 1200 mm expanse of mushroom beds. Therefore, the image acquisition system
is designed to operate in a parallel mode, capturing local sequential images and stitching
them together to generate a composite panoramic image. Additionally, the dim planting
environment and extensive occlusion from clustered mushroom groups make it challenging
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for traditional color cameras to provide features and textures that meet the requirements of
high-precision segmentation and localization.

The RealSense depth camera D435 (D435) made by American Intel Company (Santa
Clara, CA, USA) is used to capture both RGB and depth images at the same time. The
depth image is generated using laser speckle structured light imaging, where infrared laser
emissions create diffraction patterns on the object’s surface. The depth image provides
harvesting height and compensates for the lack of color texture information in dim lighting
conditions through depth information. Laser speckle typically offers higher texture res-
olution than Time-of-Flight imaging technology. The D435 camera has a significant cost
advantage compared to line laser profile measurement devices. Moreover, the D435 camera
provides a depth detection range of 0.2 m to 10 m, effectively covering the planting height
of A. bisporus. Therefore, the low-cost D435 camera is chosen as the visual sensing device
for the harvesting robot.

The camera is driven by a servo rail with a 0.02 mm offset error and an effective motion
range of 1800 mm, ensuring its horizontal movement accuracy.

2.2. Visual Module Workflow Design

The visual module captures a sequence of images, and then stitches them into a
panoramic image to complete an efficient image acquisition and processing workflow. Local
images are captured during the slider’s moving intervals. During the intervals when the
slider is moving, local images are captured. Once the current scene capture is complete, the
slider returns to the starting position. Simultaneously, the motor drives the robot to move
along a horizontal rail along the edge of the mushroom bed, switching to the following
local scene. The robot’s movement and image-processing tasks occur concurrently.

The premise for segmentation and localization is the acquisition of high-precision
global images. Building upon efficient data collection, we propose a high-precision fusion
image stitching algorithm based on disparity correction. Initially, the collected sequences
of color and depth images undergo denoising using the bilateral filtering algorithm. Sub-
sequently, a bimodal image fusion operation is performed on the color and depth images.
Following this, disparity correction is applied to the images, ultimately stitching the cor-
rected fusion images into a panoramic image.

After obtaining the panoramic fusion image for the current region, the improved
RTMDet-Ins model proposed in this paper is introduced to perform segmentation on the
panoramic image. Subsequently, the segmentation results are fitted using the least squares
method for ellipse fitting. Finally, the center of the fitted ellipse is taken as the picking point,
guiding the robotic arm’s operation with depth information. The algorithm processing flow
is illustrated in Figure 2.

RGB Image 

Sequence

Depth Map 

Sequence

Image 

Acquisition

Least Squares Ellipse 

Fitting Localization 

Improved RTMDet-Ins 

Segmentation Algorithm

wNCC  Template 

Matching Algorithm

Parallax 

Correction

Panoramic Image Stitching

Segmentation and Localization

Mechanical 

Arm 

Harvesting

Figure 2. Algorithm processing flow.

2.3. High-Precision Fusion Image Stitching Algorithm Based on Vision Correction

Due to height restrictions between layers of mushroom beds, capturing a 1200 mm
wide field of view in an instance is not feasible. Additionally, imaging at close distances
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introduces significant disparities, severely impacting mushroom localization accuracy.
Therefore, traditional stitching methods cannot meet the precision requirements. This
paper proposes an RGB-D bimodal fusion image stitching algorithm based on disparity
correction, aiming to achieve panoramic image stitching within the 1200 mm range.

2.3.1. Parallax Correction

In real-world planting scenes, there are A. bisporus with varying heights. Their pro-
jected positions on the image will differ because of different depths. Therefore, the trans-
formation relationship between two A. bisporus at different depths in each image will
inevitably differ. This disparity phenomenon can lead to ghosting artifacts in the stitched
image, a crucial factor affecting stitching accuracy. This paper employs a correction method
to mitigate stitching errors caused by disparities. As shown in Figure 3a, for two points
A and B on A. bisporus with different depths and positions, when the camera receives the
capture signal at time t1, their projected coordinates on the imaging plane are A′

1 and B′
1,

respectively. Similarly, at time t2, the projected coordinates are A′
2 and B′

2. The relative
positional relationship between A and B at time t1 is denoted as PA′

1B′
1
, and the relative

positional relationship is denoted as PA′
2B′

2
.

By computing, we conclude that PA′
1B′

1
̸= PA′

2B′
2
, indicating the need to correct dis-

parities before image stitching to eliminate the errors caused by this phenomenon. In
fact, model analysis shows that the relative positional relationship of the orthographic
projections of points A and B in the image is fixed and invariant, as shown in Figure 3b.

Imaging Plane

Lens

𝑨
𝑩

𝑨𝟏
′ 𝑩𝟏

′ 𝑨𝟐
′ 𝑩𝟐

′

t1 t2

Imaging Plane

𝑨
𝑩

Lens

(a)

Camera Light Center

𝒎,𝒏 𝒙𝟏, 𝒚𝟏 𝒖𝟎, 𝒗𝟎

𝒅

𝒅𝟏

𝑨

𝑩

(b)

Figure 3. Parallax principle. (a) Generation process; (b) correction process.

The coordinates of point A, vertically projected onto the imaging plane in the image,
are (x1, y1), and its distance relative to the camera plane is d1. The coordinates of the cam-
era’s optical center on the image are (u0, v0), and the maximum depth value is represented
by d. According to the principles of similar triangles, the following formulas can be derived:

u0 − m
d

=
x1 − m
d − d1

(1)

v0 − n
d

=
y1 − n
d − d1

(2)

After rearranging, Equations (1) and (2) become:

x1 = u0 −
d1

d
(u0 − m) (3)

y1 = v0 −
d1

d
(v0 − m) (4)

A corrected local depth map is obtained by applying Equations (3) and (4) to the depth
map of A. bisporus, and the existing disparities tend to disappear. The results after disparity
correction are shown in Figure 4, where Figure 4a is without disparity correction, and the
positions of A. bisporus are deviated from their actual locations. Figure 4b represents the
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disparity correction algorithm after background separation, and the positions of A. bisporus
are corrected. Figure 4c shows the before-and-after positional relationship by overlaying
the original image with the corrected result.

(a) (b) (c)

Figure 4. Parallax correction results. (a) Original image; (b) parallax correction results after back-
ground separation; (c) positional relationship of A. bisporus before and after parallax correction.

After disparity correction, the locally corrected image will be synthesized into an
RGB-D dual-modal fusion image. Dual-modal images are more suitable for high-precision
segmentation, as they combine visual and spatial information. The color image conveys the
texture and color details of the scene, while the depth image provides distance information
for each pixel. This fusion method allows for a more accurate definition of object boundaries
in the scene, thereby improving the accuracy of scene segmentation.

The D435 camera can simultaneously capture color and depth images, outputing
images with registered states. The fusion of color and depth images is achieved by grayscale
processing of both images and feeding them into their respective channels, as illustrated in
Figure 5. Figure 5a represents the depth energy map, where the orange portion signifies
compost, and the blue corresponds to A. bisporus. The varying saturation levels of blue
denote the differences in elevation of the A. bisporus, with higher saturation indicating
greater height.

(a) (b) (c)

Figure 5. Local deep images and color images of allocation and fusion results. (a) Deep energy map;
(b) Color image; (c) Fusion image after the standard.

2.3.2. Panorama Stitching

Image matching constitutes a pivotal pre-splicing step to seek images or features most
akin to the given image. In this context, it is crucial to determine the optimal overlapping
position between two adjacent sequential images. The template matching algorithm utiliz-
ing normalized cross-correlation exhibits remarkable robustness, manifesting substantial
insensitivity to noise and outliers. It concurrently ensures precision while enhancing the
real-time nature of the matching process [19]. Consequently, this manuscript adopts the
weighted Normalized Cross-Correlation (wNCC) template matching algorithm as the fun-
damental strategy for image stitching. The wNCC template matching algorithm employs
a sliding window to search the image to be registered, computing the similarity between
the template image and the sub-image of identical dimensions. Considering the distinctive



Agriculture 2024, 14, 735 7 of 18

features of the A. bisporus image, the formula introduces additional weighting coefficients,
as expressed in Equation (5).

wNCC(x, y) =

w

∑
i=1

h

∑
j=1

ξ(x, y)(Ix,y(i, j)− Ix,y)
(
Tx′ ,y′(i, j)− Tx′ ,y′

)
√√√√ w

∑
i=1

h

∑
j=1

(
Ix,y (i, j)− Ix ,y

)2
√√√√ w

∑
i=1

h

∑
j=1

(
Tx′ ,y′(i, j)− Tx′ ,y′

)2
(5)

where I represents the matched image, T signifies the template image, (x, y) denotes the
current matching position, and ξ(x, y) represents the weighting coefficient. When (x, y)
lies within the A. bisporus region, its grayscale value significantly surpasses that of the
composting region. At this juncture, ξ(x, y) is set to 1, whereas it is set to 0.1 when in
a non-A. bisporus region. I denotes the grayscale average of the current search region,
T represents the grayscale average of the template image, and wNCC(x, y) signifies the
degree of matching at the (x, y) position. The absolute value of the matching result never
exceeds 1. When it equals to 1, it indicates the highest level of correspondence between the
sub-image in the image to be registered and the template image, as illustrated in Figure 6a.
Here, the X and Y axes denote the current coordinates, while the Z axis represents the
computed result of wNCC(x, y), with the yellow area indicating a high matching level.
Figure 6b is the grayscale image, where the X and Y axes represent the current coordinates,
and the brightness values signify the computed results of wNCC(x, y). Brighter areas in
the image denote higher matching degrees.

(a)

0.9795 0.9872 0.9868 0.9803 0.9698

0.9879 0.9962 0.9967 0.9883 0.9777

0.9923 0.9987 1 0.9921 0.9819

0.9904 0.9964 0.998 0.9914 0.9813

0.9842 0.9891 0.991 0.9857 0.9761

(b)

Figure 6. wNCC Template matching algorithm principle. (a) 3D curved image; (b) gray image.

Given the corresponding states of color imagery and depth information, the stitching
algorithm, aimed at reducing stitching time, computes the overlapping regions based on
depth information and utilizes the computational results to merge the images seamlessly.
In reality, achieving a flawless match during the matching process between adjacent images
is not guaranteed on every occasion. In instances where multiple high-response regions
emerge, employing color imagery for secondary verification facilitates the identification
of the optimal matching window. Figure 7 illustrates a series of locally stitched images,
applying a disparity correction algorithm to generate a panoramic depth map.
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Figure 7. Panorama depth map synthesis results.

2.4. Improved RTMDet-Ins Fusion Image Experimental Segmentation and Localization Algorithm

RTMDet-Ins [20] is a single-stage target instance segmentation algorithm that comes
with both performance and efficiency. It fully leverages the advantages of large-kernel
depth-wise convolutions and a dynamic soft label assignment strategy, achieving a re-
markable 44.6% Mask AP on the COCO dataset. However, the precision of A. bisporus
segmentation has yet to meet the requirements for production scenarios. To further enhance
segmentation precision, an analysis of segmentation failures was conducted. The clustered
nature of A. bisporus led to mutual occlusion, resulting in incomplete mushroom caps in
the images. Additionally, the misidentification of small-sized targets was induced by the
chaotic planting environment. These factors emerge as the current algorithm’s primary
constraints in segmenting and detecting A. bisporus.

This study proposes an improved instance segmentation algorithm for A. bisporus
based on RTMDet-Ins, addressing the abovementioned issues. It integrates the global
attention mechanism from SimAM [21] and the SPD-PAFPN feature fusion module into the
RTMDet-Ins instance segmentation algorithm. The improved overall network framework
is illustrated in Figure 8.

The backbone network module primarily consists of the Convolutional module and
Cross-Stage Partial SimAM Attention module (CSP-Sim). Precisely, the Convolutional
module consists of a conv2d convolution, a BN layer, and a SiLU activation function. The
CSP-Sim module is composed of three Convolutional modules, a CSP-Block with residual
connections, and a SimAM attention module. Each CSP-Block in CSP-Sim is composed
of one Convolutional module and one depthwise separable convolution [22] with a large
kernel. This design structure helps to enhance the model’s ability to extract and repre-
sent image features. After passing through the backbone network, the image generates
three different scale feature maps, which are then sent to the feature fusion module for
processing. The feature fusion module adopts the SPD-PAFPN module, which combines
the Feature Pyramid Network (FPN) [23], the Path Aggregation Network (PAN) [24], and
SPD-Conv [25]. This module innovatively reverses the conventional direction of the FPN
feature pyramid and employs SPD-Conv for downsampling. It achieves effective fusion
of multi-scale features by preserving feature information for small targets, while also inte-
grating and reconstructing high-level and shallow-level features from diverse scale feature
maps. The fused features are fed into the segmentation module, consisting of a kernel pre-
diction head and a mask feature head, similar to CondInst. The mask feature head consists
of four convolutional layers that extract mask features with eight channels from features at
multiple levels. Meanwhile, the kernel prediction head forecasts a 169-dimensional vector
for each instance. This vector is then decomposed into three dynamic convolution kernels.
These kernels interact with the mask features and coordinate features to produce instance
segmentation masks. We employ dice loss [26] as the supervision method for the instance
masks, following standard practices.
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SPD-PAFPN HeadBackbone

Upsample

CSP-Sim

Concat

CSP-Sim

Concat

Upsample

Concat

Concat

SPD-Conv

SPD-Conv

C3

C4

C5

instance

segmentationConcat

instance

segmentationConcat

instance

segmentationConcat

C3 & C4 & C5 : The multi-level features.

Figure 8. Improved RTMDet-Ins network architecture.

2.4.1. Improved to the Base Unit CSP-Sim

CSP-Sim [27] leveraged a cross-stage feature fusion strategy to enhance the variability
of learned features in different layers, significantly reducing computational load and
improving inference speed and accuracy. Attention mechanisms are employed to reinforce
a deep learning model’s extraction of crucial features while reducing the dispersion of target
information. SimAM represents a mechanism where channel and spatial attention coexist,
deriving genuine 3-D attention weights for feature maps without additional parameters.
The mechanism enhances the model’s capability to extract compelling features from RGB-D
fused images. We have replaced the original attention mechanism in the fundamental
building unit of CSP-Sim, and the modified CSPLayer is depicted in Figure 9.

ConvModule

CSPBlock

Concat

SimAM

CSP-Sim CSPBlock

DWConv

SimAM: SimAM Attention Module DWConv: Depthwise Separable  Convolution CSPBlock: Cross Stage Partial Block : Element-wise Addition

ConvModule

Conv2d

BatchNorm

SiLU

ConvModule

ConvModule

ConvModule

Figure 9. CSP-Sim Module Structure.

The SimAM attention mechanism, as compared to the original network, significantly
enhances the ability to focus effectively on crucial regions while maintaining the same
parameter scale. SimAM defines an energy function to measure the linear separability
between an individual feature and all other features within the same channel to rapidly
and efficiently locate important feature information. The energy function for each feature is
defined as follows:

et(wt, bt, y, xi) =
1

M − 1

M−1

∑
i=1

(−1 − (wtxi + bi))
2 + (1 − (wit + bt))

2 + λw2
t (6)

where t and xi represent the target feature and other features within the same channel,
respectively. wt and bt denote the linear transformation weights and bias for t. The index i
pertains to the spatial dimension, λ is a hyperparameter, and M is the number of all feature
information in a single channel. The transformation weights and bias are represented
as follows:

wt =
2(t − ut)

(t − ut)2 + 2σ2
t + 2λ

(7)
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bt = −1
2
(t + ut)wt (8)

where ut =
1

M−1 ∑M−1
i=1 xi and σ2

t = 1
M−1 ∑M−1

i (xi − ut)2 represent the mean and variance,
respectively, of all feature information except t. By computing wt and bt along with the
mean and variance of all feature information in the channel, the minimum energy formula
is obtained as follows:

e∗t =
4(σ̂2 + λ)

(t − µ̂)2 + 2σ̂2 + 2λ
(9)

where µ̂ = 1
M ∑M

i=1 xi and σ̂2 = 1
M ΣM

i=1(xi − ût)2. Equation (9) indicates that the lower
the energy function value et, the greater the distinction between the feature information
and its surrounding features, making it more crucial for image processing. Therefore, the
importance of each feature information can be obtained through 1/et.

2.4.2. Improved Feature Fusion Module

Due to the downsampling process in the feature fusion of RTMDet-Ins, which reduces
the size of feature maps, there is a loss of fine-grained information. The relatively lower
feature extraction capability also rapidly declines detection accuracy at lower resolutions.
To address this issue, SPD-Conv is employed in the feature fusion module to replace
the original downsampling module. This substitution helps reduce the loss of detailed
information while enriching feature details, preserving more effective information from the
RGB-D fused image. SPD-Conv is a traditional image transformation technique applied
within the CNN [28], composed of a space-to-depth layer and a non-stride convolutional
layer. The process of SPD-Conv is illustrated in Figure 10. The leftmost and rightmost
sections of the image represent the input image and the output image, respectively. The
middle section displays different colors to denote different image channels.

Space-to-depth on feature map(X) Convolution(stride=1)

C1

S

S S/2

S/2

C1

4C1
S/2

S/2

S/2

S/2

C2

Y

X

C1

S
(𝑖, 𝑗)

: Concat : ConvolutionS: Height and Width C1: Channels number

Figure 10. SPD-CONV process.

The steps are as follows: Firstly, the feature map X(S × S × C1) is split N times along
the channel axis. Each resulting sub-feature map has dimensions of S

N in length and width
while maintaining the same channel count. These sub-feature maps are then merged along
the channel axis to form the feature map X1, where X(S × S × C1) → X1(

S
N × S

N × N2C1).
Subsequently, a non-stride convolutional layer (Stride = 1) is applied to the feature map
X1, resulting in the feature map X2, where X1(

S
N × S

N × N2C1) → X2(
S
N × S

N × C2).
Unlike other natural images, the distinctive aspect of the A. bisporus fused image is

that in the presence of a more extensive background image, the targets to be detected
are more diminutive and arranged more densely. As convolutional layers increase in
the backbone network, the receptive field gradually enlarges, providing richer high-level
instance information and leading to the loss of feature information for small-sized targets.
However, for A. bisporus targets, the feature information for small-sized targets carried by
shallow feature maps is more critical. The aim is to minimize unnecessary loss during the
processing and increase the proportion of feature information for small-sized targets when
fusing feature information.
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The structure of the SPD-PAFPN module is depicted in the middle section of Figure 8.
By reversing the traditional direction of the FPN feature pyramid, changing it from top-
down to bottom-up, i.e., (C5 > C4 > C3) → (C3 > C4 > C5), early fusion from low-level
occurs due to this alteration in the direction of the feature pyramid. Since downsampling is
employed during this fusion to reduce the size, there is a risk of premature loss of feature
information for small-sized targets in the fused image. SPD-Conv is utilized to downsample
and address this. After the feature pyramid fusion, the feature information carried by the
shallow feature map C3 remains unchanged. However, the deep feature maps C4/C5 have
already incorporated the information from the shallow layers. When the subsequent path
aggregation network adjusts its direction correspondingly from the bottom-up, it enables
the flow of these previously fused shallow feature information from C4/C5 back to the
shallow layers. The reflow increases the proportion of feature information for small-sized
targets in the shallow feature map and incorporates high-level instance information.

2.4.3. Localization Algorithm Based on Least Squares Ellipse Fitting

Determining the segmentation center is a crucial step for precise localization. The
mature contour of A. bisporus caps typically appears circular. However, in the case of
partially inclined growth, the frontal projection of the contour may approximate an ellipse.
Therefore, employing ellipse fitting is an ideal strategy for obtaining the segmentation
center. Least squares fitting [29] balances efficiency and robustness, and can be integrated
with segmentation results. Hence, this study chooses the least squares ellipse fitting to
obtain the segmentation center.

2.4.4. Performance Indicators

The experiment adopts the Average Precision (AP) metric from the COCO dataset
as the criterion to evaluate the algorithm’s segmentation performance. The AP metric
considers metrics such as Intersection over Union (IoU), Precision (P), and Recall (R) for
both predicted and actual masks, providing a comprehensive reflection of the algorithm’s
overall performance. The P-value, Precision, is the ratio of true positives in the model’s
predicted data. The R-value, or Recall, is the ratio of true positives in the actual data. The
specific mathematical expressions are as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

AP =
∫ 1

0
P(R)dR (12)

where True Positive (TP) represents the number of correctly detected A. bisporus, False
Positive (FP) denotes the number of falsely detected A. bisporus, and False Negative (FN)
represents the number of missed A. bisporus. In addition to accuracy metrics for model
detection, parameters (Params) and Floating Point Operations (FLOPs) are commonly used
to evaluate model performance, reflecting its complexity. To provide a more intuitive repre-
sentation of model performance, we also conducted statistics on the algorithm’s runtime.

3. Results and Discussion

To comprehensively evaluate the various performance metrics of the proposed method
in this paper, this section presents experiments on global stitching errors for the image
stitching algorithm, ablation experiments for the image segmentation algorithm, cross-
sectional comparative experiments for the segmentation algorithm, and comprehensive
segmentation and localization performance experiments in complex environments.
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3.1. Experimental Environment and Training Strategy

The RTMDet-Ins model’s training environment was based on Python 3.7.16, PyTorch
1.7.0, and CUDA 11.0.221. It was operated on a server configured with an Intel (R) Core
(TM) i7-12700k 3.6 GHz CPU, 32.00 GB RAM, and an NVIDIA (R) GeForce RTX (TM) 3090
(24 GB) GPU. The server ran on the Ubuntu 20.04 operating system (OS).

The dataset was collected from numerous clustered A. bisporus scenarios designed in
the laboratory, totaling 1320 local images. Through stitching, 15 panoramic depth maps,
panoramic color images, and panoramic fused images with dimensions of 1200 mm × 400 mm
were obtained. The dataset comprises 1188 complete A. bisporus samples.

The training strategy utilizes the AdamW optimizer for iterative updates of network
parameters, with a momentum parameter set to 0.05. The initial learning rate is set to
2 × 0.004/(32 × 8), the batch size is set to 2, and the number of iterations is set to 60. A
linear warm-up learning rate is applied for the first 1000 batches, with an initial warm-up
learning rate of 10−5, gradually increasing to 2.5−4. From the 30th iteration onward, a
cosine annealing mechanism is employed, continuously decreasing the learning rate to
1.25−5 until the end of training.

3.2. Analysis of the Stitch Experiment Results

The primary sources of error in image stitching arise from misalignment in the stitching
position and horizontal disparity caused by camera translation. The experiment quantifies
the extent of error by comparing the distance difference between the stitched position of
reference points and their actual positions. A total of 10 different scenarios, each featuring
the cultivation of various A. bisporus, were employed for the stitching tests. This study
required a more significant number of local images than conventional approaches to ensure
image accuracy, with 44 local images needed for each scene and 43 stitching iterations. The
global error is measured as the Euclidean distance between the measured coordinates of
markers placed at the scene’s tail and their actual coordinates, as presented in the test data
shown in Table 1.

Table 1. Panoramic stitching error results.

Sample ID No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

Panoramic Stitching Errors 1.855 1.932 2.021 1.903 2.029 1.892 1.923 1.929 2.004 1.969after Disparity Correction/mm
Panoramic Stitching Errors 15.236 17.768 18.234 16.246 18.675 19.023 15.912 16.824 18.897 17.932without Correction/mm

The experimental results indicate that the average error decreases to 1.9457 mm after
undergoing rectification through orthographic projection. Compared to the unprocessed
image stitching results, the corrected error accounts for only 11.13% of the uncorrected
error. Transforming the images into a three-dimensional orthographic view for stitching
and fusion significantly reduces errors compared to unprocessed stitched images, aligning
with practical application precision.

3.3. Ablation Study

To validate the segmentation and detection efficacy of the proposed algorithm in
complex scenarios, we conducted ablation experiments on various improvement modules
using the original RTMDet-Ins network as a baseline while maintaining the environment
and parameters as constants. The symbol “✓” indicates the addition of the corresponding
module to the model, and bold font signifies the optimal results for each column, as
illustrated in Table 2. The experimental results of RTMDet-Ins are presented in the first row
of Table 2, serving as the benchmark for other improvement experiments.

RTMDet + SimAM involves optimizing the fundamental construction unit CSP-Sim
and introducing the SimAM global attention mechanism to replace the original attention
mechanism, increasing 2.0% and 2.62% in AP50 and AP75, respectively. RTMDet + SPD-CONV
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improves the feature fusion module SPD-PAFPN, improving accuracy while reducing the
parameter count by 1.4%. Integrating both improvement points in RTMDet-Ins leads to
a 4.63% reduction in parameters, and the running time has been reduced to 25.38 ms
while maintaining detection accuracy at 98.50% and 96.10%. Ablation experiments confirm
each improvement point’s effectiveness and compatibility, validating the enhancement
approach’s rationality.

Table 2. Improved point ablation experiment.

Methods SimAM SPD-Conv Params (M) FLOPs (G) Running
Time (ms) AP50 (%) AP75 (%)

RTMDet-Ins 5.61 11.87 26.26 96.50 93.48
RTMDet-Ins + SimAM ✓ 5.46 11.87 25.73 97.91 95.73

RTMDet-Ins + SPD-Conv ✓ 5.53 10.74 26.15 96.93 94.20
Improved RTMDet-Ins ✓ ✓ 5.35 10.74 25.38 98.50 96.10

The segmentation effects are shown in Figure 11. Figure 11b presents the segmentation
results of RTMDet-Ins, where multiple cases of mis-segmentation of small targets and
incorrect segmentation of occluded A. bisporus can be observed in the red circled parts. In
contrast, as shown in Figure 11c, our method benefitted from the newly added SimAM
attention module and SPD-Conv module, which correctly segmented all targets. Therefore,
from a qualitative and quantitative perspective, the effectiveness of our method can be
demonstrated.

(a) (b) (c)

Figure 11. Segmentation results. (a) Original image; (b) RTMDet-Ins; (c) our method.

3.4. Analysis of Detection Experiment Results

We randomly selected ten complex scenarios from the dataset to validate the enhanced
performance of the RTMDet-Ins algorithm in the authentic segmentation of dense clusters of
A. bisporus. On average, each scenario consists of dense clusters of A. bisporus, constituting
approximately 70% of the scene.

To further validate the superiority of our algorithm, we compared it with other seg-
mentation algorithms, including SOLOv2 [17], CondInst [16], classic deep learning-based
instance segmentation algorithms, and the traditional watershed algorithm [15]. The
experimental results are shown in Table 3.

The data in Table 3 indicates that our method achieved an average accuracy of 98.64%,
reaching 100% in various scenarios. Compared with deep learning algorithms such as
CondInst and SOLOv2, the average accuracy increased by 1.78% and 2.27%, respectively.
The average accuracy increased by 6.42% compared to the traditional watershed algo-
rithm. Our analysis of error segmentation cases in other networks and traditional methods
found that errors are generally concentrated in occlusion or small targets. Our method
demonstrates excellent recognition rates for such complex targets, indicating the mean-
ingful integration of SimAM attention mechanism and SPD-PAFPN in the RTMDet-Ins
model. The experimental results show that our network is more suitable for high-precision
segmentation of occluded A. bisporus.
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Table 3. Segmentation results.

Sample ID Number
Improved RTMDet-Ins SOLOv2 CondInst Watershed

Correct
Number

Correct
Rate (%)

Correct
Number

Correct
Rate (%)

Correct
Number

Correct
Rate (%)

Correct
Number

Correct
Rate (%)

No. 1 31 31 100.00 31 100.00 31 100.00 29 93.55
No. 2 41 41 100.00 39 95.12 41 100.00 38 92.68
No. 3 38 37 97.37 35 92.11 36 97.74 34 89.47
No. 4 33 33 100.00 33 100.00 33 100.00 30 90.91
No. 5 33 32 96.97 32 96.97 32 96.97 30 90.91
No. 6 44 43 97.73 41 93.18 41 93.18 39 88.64
No. 7 38 38 100.00 37 97.37 36 94.74 36 94.74
No. 8 29 29 100.00 28 96.55 28 96.55 28 96.55
No. 9 52 51 98.08 51 98.08 50 96.15 48 92.31

No. 10 53 51 96.23 50 94.34 51 96.23 49 92.45

Average Correct Rate 98.64% 96.37% 96.86% 92.22%

3.5. Analysis of Center Positioning Experiment Results

The fitting effect of the location algorithm is shown in Figure 12, where the red box
is the bounding box of the algorithm to the segmented target. Figure 12a represents the
result of the segmentation algorithm, serving as the input to the localization algorithm.
Figure 12b displays the final output of the localization algorithm, where the green ellipses
demonstrate a high degree of fitting to the contours of the A. bisporus, thereby yielding
precise picking point estimations marked by red dots. It can be demonstrated that the
algorithm accurately fits and locates the A. bisporus.

(a) (b)

Figure 12. Localization results. (a) Origin image; (b) Fitting result.

Additionally, the experiment involved 15 samples of A. bisporus. After segmentation
using the improved RTMDet-Ins algorithm, the manually annotated centers of A. bisporus
were used as reference points for error evaluation. A comparison was made between the
average errors of the least squares ellipse fitting localization algorithm and the traditional
Hough circle fitting localization.

To more accurately evaluate the deviation of the calculated A. bisporus center, we
introduced the Localization Error Rate (LER) [13] as the evaluation metric, expressed
as follows:

LER =

(∣∣∣∣ cm − ca

w

∣∣∣∣+ ∣∣∣∣ rm − ra

h

∣∣∣∣)× 100% (13)
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where cm and rm represent the row and column coordinates of the manually determined
center position of A. bisporus, and ca and ra represent the row and column coordinates of
the algorithmically calculated center position. The values w = 1856 and h = 640 represent
the width and height of the panoramic view containing the tested A. bisporus. The smaller
the value of LER, the more accurate the positioning result. An example of LER calculation
is shown in Table 4. The LER results of least square ellipse fitting and traditional Hough
circle transform fitting are shown in Table 5.

Table 4. Example of LER calculation.

Manual Positiomng Least-Squares Ellipse
Fitting

Hough Transform
Circle Fitting

Positioning example

Coordinate (523, 235) (523, 230) (522, 228)
LER 0 0.78% 1.15%

Table 5. Localization results.

Sample ID Manual
Least-Squares Ellipse Fitting Hough Transform Circle Fitting

Algorithm Location LER (%) Algorithm Location LER (%)

No. 1 (210, 71) (211, 72) 0.21% (208, 69) 0.42%
No. 2 (378, 261) (380, 261) 0.11% (380, 257) 0.73%
No. 3 (104, 338) (102, 335) 0.58% (102, 340) 0.42%
No. 4 (300, 420) (303, 424) 0.79% (303, 423) 0.63%
No. 5 (233, 178) (235, 178) 0.11% (233, 174) 0.63%
No. 6 (157, 409) (152, 406) 0.74% (155, 412) 0.58%
No. 7 (215, 295) (218, 298) 0.63% (213, 292) 0.58%
No. 8 (303, 255) (308, 254) 0.43% (306, 251) 0.79%
No. 9 (61, 183) (61, 182) 0.16% (57, 183) 0.22%

No. 10 (129, 133) (129, 132) 0.16% (128, 130) 0.52%
No. 11 (328, 163) (329, 164) 0.21% (325, 159) 0.79%
No. 12 (146, 243) (146, 242) 0.16% (148, 240) 0.58%
No. 13 (445, 384) (446, 383) 0.21% (441, 387) 0.68%
No. 14 (117, 44) (118, 44) 0.05% (118, 45) 0.21%
No. 15 (381, 29) (380, 29) 0.05% (379, 28) 0.26%

mean LER 0.31% 0.52%

The experimental results show that the traditional Hough circle fitting localization
algorithm successfully fitted all 15 samples, resulting in a mean LER of 0.52% after statistical
analysis of the fitted results. In comparison, the ellipse fitting localization algorithm
demonstrated superior performance. It also successfully delineated the contours of all
A. bisporus samples, achieving a mean LER accuracy of 0.31%. The least squares ellipse
fitting method reduced the absolute LER value by 0.21% compared to the Hough circle
fitting algorithm. In summary, in complex scenarios, the least squares ellipse fitting method
achieves higher accuracy in A. bisporus localization.

4. Conclusions

This study proposed a segmentation and localization algorithm for A. bisporus based
on the improved RTMDet-Ins model. To enhance the algorithm’s ability to extract features
from small targets and address the challenge of accurately segmenting A. bisporus in
complex environments, our method builds upon the RTMDet-Ins instance segmentation
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network, incorporating the SimAM global attention mechanism and the lightweight feature
fusion module SPD-PAFPN. The improved RTMDet-Ins algorithm reduces parameter
count by 4.63% and decreases single-image computation time to 25.38 ms. In the A. bisporus
test set, the AP50 reaches 98.50%, representing an improvement in detection accuracy
and time efficiency compared to the original model. To further validate the algorithm’s
superiority, we compared our method with other classical segmentation networks using
data collected by harvesting robots. Experimental results demonstrate that the improved
RTMDet-Ins algorithm achieves a detection accuracy 98.64%, surpassing SOLOv2, CondInst,
and traditional watershed algorithms. These findings indicate that the improved RTMDet-
Ins instance segmentation algorithm can provide real-time, high-precision distribution
information of A. bisporus for harvesting robots.

Secondly, a low-cost image stitching method based on the wNCC stitching algorithm
with disparity correction is applied to generate high-precision panoramic multimodal fused
images. The system was tested on 1320 photos to validate the model’s effectiveness. The
global stitching error is less than 2 mm within a 1200 mm × 400 mm. range. It provides
high-precision panoramic information for subsequent algorithms.

The experimental results indicate that the method proposed in this paper exhibits
superior segmentation and localization accuracy in complex harvesting environments. This
can provide more precise and efficient visual perception for A. bisporus harvesting robots.

Although the method proposed in this paper has achieved satisfactory results in the
scenarios of the collected dataset, differences in specific factory conditions, such as layer
height and mushroom bed size, lead to significant deviations in captured images. This
makes it challenging for directly transferred algorithms to achieve ideal results. Therefore, it
is necessary to reacquire datasets and conduct annotation and training, incurring additional
costs. Additionally, this design adopts an intermittent pause approach for image acquisition
to ensure image capture quality, reducing the robot’s overall operation efficiency. Therefore,
future research will focus on improving the quality of images captured while in motion
and enhancing the model’s generalization ability, aiming to enhance efficiency further and
reduce operational costs.
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