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Abstract: Crop yield estimation plays a crucial role in agricultural production planning and risk manage-
ment. Utilizing simultaneous localization and mapping (SLAM) technology for the three-dimensional
reconstruction of crops allows for an intuitive understanding of their growth status and facilitates
yield estimation. Therefore, this paper proposes a VINS-RGBD system incorporating a semantic
segmentation module to enrich the information representation of a 3D reconstruction map. Addition-
ally, image matching using L_SuperPoint feature points is employed to achieve higher localization
accuracy and obtain better map quality. Moreover, Voxblox is proposed for storing and representing
the maps, which facilitates the storage of large-scale maps. Furthermore, yield estimation is con-
ducted using conditional filtering and RANSAC spherical fitting. The results show that the proposed
system achieves an average relative error of 10.87% in yield estimation. The semantic segmentation
accuracy of the system reaches 73.2% mIoU, and it can save an average of 96.91% memory for point
cloud map storage. Localization accuracy tests on public datasets demonstrate that, compared to
Shi–Tomasi corner points, using L_SuperPoint feature points reduces the average ATE by 1.933 and
the average RPE by 0.042. Through field experiments and evaluations in a strawberry field, the
proposed system demonstrates reliability in yield estimation, providing guidance and support for
agricultural production planning and risk management.

Keywords: crop yield estimation; semantic segmentation; VINS-RGBD; Voxblox

1. Introduction

In the face of challenges such as escalating global population, rural impoverishment,
and the management of natural resources [1], the imperative for farmers to implement
more sustainable practices to bolster both crop productivity and provision has never been
more critical [2]. The realm of smart agriculture, bolstered by advancements in artificial
intelligence, is witnessing a gradual maturation of technologies aimed at enhancing agricul-
tural yields. Within this context, orchards represent a crucial segment of smart agricultural
practices, experiencing continuous evolution [3]. To achieve intelligent management of
orchards and accomplish tasks such as monitoring tree growth [4,5], yield estimation [6,7],
and assisting agricultural robots in harvesting or spraying [8,9], constructing a real-time
three-dimensional semantic reconstruction system is indispensable.

Due to its capabilities for extensive localization and mapping, visual simultaneous
localization and mapping (SLAM) technology has seen significant application in orchard
management, particularly with UAVs and unmanned ground vehicles (UGVs). Li et al. [10]
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proposed a tree trunk extraction method based on the improved iForest algorithm and
combined it with SLAM technology to achieve more accurate 3D reconstruction of roadside
trees. Sukvichai et al. [11] introduced an ORB SLAM system that generated maps of green-
house tomato fields by integrating unmanned aerial vehicles. Ramirez et al. [12] presented
a dense point cloud reconstruction system by combining the RTAB-Map algorithm with
drones, enabling the creation of 3D maps of vegetation indices for vegetation segmentation.
Gimenez et al. [13] proposed an RGB-D data-based SLAM system for tree trunk detection
which performs well even under low-light conditions. Mitrofanova et al. [14] integrated
rtabmap SLAM with agricultural robots, allowing the robots to adapt better to changing
agricultural environments. Meyer et al. [15] proposed a method for fusing camera and lidar
data, achieving watermelon classification through 3D reconstruction. The aforementioned
studies primarily focus on optimizing data processing algorithms and improving visual
SLAM or 3D reconstruction capabilities. However, the constructed 3D maps are mainly
limited to geometric information, lacking semantic information. Therefore, it is necessary
to integrate semantic information into the maps to enrich map information and expand the
application scope of maps.

Currently, semantic mapping is also being applied in the field of agriculture. Yuan
et al. [16] developed a robust semantic SLAM system based on semantic features such as
corn stalks and ground, used for monitoring the growth status of corn fields throughout the
season. Pan et al. [17] proposed a novel semantic mapping and navigation framework using
a 3D detection network architecture, enabling the autonomous navigation of agricultural
robots. Wei et al. [18] combined visual SLAM technology with the BiSeNetV2 semantic
segmentation network to propose a robust semantic SLAM system in dynamic scenes.
Dong et al. [19] achieved improved pose estimation and mapping quality by extracting
semantic features of corn stalks and applying them to robot navigation. Liu et al. [20]
combined a semantic segmentation module with visual SLAM to achieve judgment of
strawberry ripeness and recognition of fruit positions. The reconstruction of semantic maps
mentioned above is primarily non-real time. However, real-time localization and semantic
mapping are extremely important in agricultural scenarios. Whether it is harvesting robots
or spraying robots, real-time perception of the surrounding environment is necessary for
accurate task completion.

Real-time SLAM has also been preliminarily applied in smart agriculture. Yan et al. [21]
proposed a real-time SLAM system based on multi-sensor fusion, achieving precise pose
estimation and dense mapping in complex greenhouses. Islam et al. [22] introduced a
real-time visual SLAM system based on RGB-D data that was capable of operating in
complex agricultural environments with high accuracy. Li et al. [23] presented a real-time
PL-F-SLAM system based on the ORB-SLAM2 framework and point-line features, enabling
accurate mapping in low-texture agricultural environments. Zhang et al. [24] proposed a
multi-sensor fusion SLAM framework which can be mounted on unmanned vehicles for
real-time positioning and mapping in orchards. Liu et al. [25] introduced an ORB-Livox
system utilizing YOLOv5 for detection, achieving real-time fruit localization. The above
research is still lacking in positioning accuracy, and more accurate positioning accuracy
plays a crucial role in establishing more accurate maps. The selection of high-quality
feature points and the combination of multi-sensor data fusion can effectively improve
positioning accuracy.

In this study, we propose a model based on an improved VINS-RGBD system for 3D
semantic map reconstruction of strawberry orchards. The original Shi–Tomasi corner points
in VINS-RGBD are replaced with L_SuperPoint feature points. A lightweight semantic
segmentation network, PP-LiteSeg-T, is utilized for the semantic segmentation of the
images; a radius outlier removal filter for outlier elimination from the point cloud; and
Voxblox for storing and representing the point cloud map. To evaluate our proposed system,
experiments designed to be conducted in real strawberry orchards are detailed in Section 3,
aiming to verify the feasibility of the overall system. The main contributions of this study
include the following:
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1. We propose a 3D semantic reconstruction system that integrates an improved VINS-
RGBD system with the PP-LiteSeg-T semantic segmentation network. This system
fuses point cloud information into the map, addressing the issue of incomplete informa-
tion representation in traditional point cloud maps and enhancing map applicability.

2. In the VINS-RGBD system’s feature extraction module, the end-to-end lightweight
L_SuperPoint feature points are employed to extract features from strawberry images.
This significantly mitigates the problem of feature point tracking loss in complex
strawberry orchard environments and simultaneously enhances localization accuracy.

3. We design a point cloud data postprocessing method that combines a radius outlier
removal filter (hereinafter referred to as the radius filter) with Voxblox. This approach
not only improves the accuracy of point cloud data and map construction but also
significantly reduces the memory requirements for point cloud storage, effectively
addressing the challenge of storing three-dimensional maps in large scenes.

The structure of this document is outlined as follows: The approach that we developed
is detailed in Section 2. Section 3 presents the experiments and results designed to evaluate
the effectiveness of our method, while Section 4 provides discussions on the findings. This
paper concludes with a summary of the findings in Section 5.

2. Materials and Methods
2.1. Data Collection and Processing

Langfang City, located in the east–central part of Hebei Province, China (38◦28′–40◦15′ N,
116◦7′–117◦14′ E), is situated in the middle of the country. The strawberry picking season
here extends from March to May each year. On 16 March 2024, photographs of strawberries
were captured in a strawberry garden using an Intel RealSense D435i video camera and
a Sony CX450 video camera. The D435i was utilized for taking wide-angle photographs
of the strawberry plants, whereas the Sony CX450 was employed for close-up shots of the
strawberry fruits. The experimental setup is depicted in Figure 1. The D435i camera was
connected to a DELL computer via USB, and the images were recorded with an Ubuntu
system using the Rosbag function of ROS; the experimental scene is illustrated in Figure 2.
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When preparing the training dataset, we used the Rosbag function to select 752 distant
view images with a resolution of 640 × 480. Additionally, we captured 350 close-up images
with a resolution of 1920 × 1080 using a Sony CX450 camera. When recording data for
strawberry plants using the Rosbag function, the recorded data are shown in Table 1.
The “/camera/aligned_depth_to_color/image_raw” topic represents the depth image,
“/camera/color/image_raw” represents the RGB image, and “/camera/imu” represents
the IMU data. The final dataset comprised 1102 images, all adjusted to a resolution of
640 × 480 for training. In the context of semantic segmentation, to simplify semantic
annotation, objects within the images were classified into three categories: fruits, leaves,
and background, the latter representing parts of the scene not occupied by strawberry
plants. The annotation process was conducted using the LabelMe 3.16.7 software [26],
which is a web-based image annotation tool developed by the Computer Science and
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Artificial Intelligence Laboratory at the Massachusetts Institute of Technology (MIT). It
enables online image annotation. Figure 3 shows an annotation example.
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Table 1. Dataset information. “/camera/aligned_depth_to_color/image_raw” represents the topic
for depth images published by the D435i camera, “/camera/color/image_raw” represents the topic
for RGB images, and “/camera/imu” represents the IMU topic. The images are captured at a
resolution of 640 × 480.

Dataset /camera/aligned_depth_to_color/image_raw (msgs) /camera/color/image_raw (msgs) /camera/imu (msgs)

Strawberry Dataset 1 3030 3034 14,986
Strawberry Dataset 2 2300 2311 15,976
Strawberry Dataset 3 4006 4013 22,860
Strawberry Dataset 4 3160 3169 16,060
Strawberry Dataset 5 2965 2972 15,448
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2.2. Method

Figure 4 illustrates the comprehensive process for conducting real-time localization
and mapping within strawberry orchards. Initially, the system collects RGB and depth
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images along with IMU data as inputs. Following this, the enhanced VINS-RGBD system
undertakes the initial step by processing these images through a visual front-end, establish-
ing the camera’s initial orientation, and forwarding keyframes to the PP-LiteSeg-T network
for detailed pixel-level semantic segmentation. The PP-LiteSeg-T network then processes
these images to extract semantic information, which is subsequently integrated back into
the VINS-RGBD system alongside the point cloud data. This integration is followed by a
back-end optimization phase to refine the camera’s positioning and enhance the seman-
tic point cloud’s accuracy. Lastly, this enriched semantic point cloud undergoes further
processing through Voxblox ROS for the generation of Voxblox maps and a radius filter to
eliminate any outliers, thus finalizing the semantic point cloud map creation.
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2.2.1. Semantic Segmentation Algorithm

In the conducted research, the PP-LiteSeg-T network emerges as an innovative and
streamlined semantic segmentation framework tailored for the detailed analysis of straw-
berry orchard imagery. This advanced model adopts an encoder–decoder configuration that
is significantly enhanced by the integration of three key components: a Flexible Lightweight
Decoder (FLD), a Unified Attention Fusion Module (UAFM), and a Simple Pyramid Pooling
Module (SPPM), as illustrated in Figure 5. We have included the visual explanations of the
three key modules in Appendix A for reference.
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The decoder, distinguished by its flexibility and lightweight nature, adeptly extracts
features across a spectrum from basic to sophisticated levels. This progression is marked
by a gradual expansion in the dimensionality of feature maps coupled with a strategic
reduction in the number of channels. Such an approach ensures a meticulous balance in
the computational load across the model’s layers, effectively curtailing redundant process-
ing efforts and thereby elevating the efficiency of the decoding process beyond that of
traditional decoder designs.

The network’s selection of a spatial attention mechanism within the UAFM serves to
significantly refine the representation of features. This is achieved by upsampling the high-
level feature map, denoted as Fhigh, to produce an upscaled version, Fup. This upscaled map,
in conjunction with the corresponding lower-level feature map from the encoder, known as
Flow, is fed into the UAFM. Here, an α weight is calculated, quantifying the spatial relevance
of each pixel. This leads to the application of an element-wise multiplication to both Fup and
Flow, guided by the α values. The resultant fused image is obtained through an element-wise
addition of these modified maps, a process succinctly described by Equation (1), where
Upsample() represents the upsampling operation, Attention() represents the attention fusion
operation, and Fout is the output of the fused image.

Fup = Upsample(Fhigh)

α = Attention(Fup, Flow) (1)

Fout = Fup · α + Flow · (1 − α)

Moreover, the PP-LiteSeg-T network facilitates effective contextual integration of
features via the SPPM. By employing a series of global pooling operations, this module
adeptly pools, convolves, and upsamples feature maps. It stands out for its streamlined
design, which involves a reduction in the number of channels both at intermediate and
output stages, the omission of shortcut connections, and the replacement of concatena-
tion operations with simpler addition operations. Such modifications not only substan-
tially reduce the computational burden but also enhance data processing speed and ef-
ficiency. These improvements ensure the network’s competency in delivering real-time
performance, marking a significant advancement in the field of semantic segmentation for
agricultural applications.

2.2.2. Improved VINS-RGBD System

The VINS-RGBD setup builds upon the foundational VINS-Mono system [27], inte-
grating depth data to address scale indeterminacy issues, thereby bolstering the system’s
overall stability. By amalgamating the VINS-RGBD architecture with the PP-LiteSeg-T
network, a comprehensive system for real-time localization and 3D semantic mapping
is established. This system is segmented into five primary components: measurement
preprocessing, system initialization, local visual–inertial odometry (VIO), semantic seg-
mentation, and loop detection with the mapping process, as delineated in Figure 6. The
solid black boxes represent the core process modules of VINS-RGBD, while the solid red
boxes represent the modules we have added.

1. Measurement Processing

Sensor-acquired data undergo a comprehensive processing phase, where they are
primarily categorized into two streams: the analysis of visual data and the interpretation of
inertial measurement unit (IMU) data. The visual data segment encompasses both RGB and
depth imagery. In the stage of feature point extraction, the strategy employs L_SuperPoint
feature points as a substitute for the traditionally utilized Shi–Tomasi feature points. The
L_SuperPoint feature points are a lightweight solution based on the SuperPoint feature
points, with feature extraction relying on a deep hierarchical convolutional network. The
specific network architecture is described in Figure A1 of Appendix A.
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Descriptors are utilized to align and monitor feature points across multiple images.
This process involves the application of the K-nearest neighbor (KNN) algorithm for the
precise matching of descriptors, while the random sample consensus (RANSAC) algo-
rithm [28] efficiently filters out those feature points that fail to match. In the feature point
extraction phase, images are methodically segmented into various regions. Within these
regions, only the feature points demonstrating the highest rate of tracking success are pre-
served. This strategic selection ensures a uniform distribution of feature points throughout
the image, which is crucial for enhancing the reliability and accuracy of tracking. The
selection of keyframes is meticulously conducted by assessing the mean parallax observed
between the current frame and the immediately preceding keyframe, coupled with an
analysis of the number of feature points actively being tracked. This approach facilitates the
identification of keyframes that are pivotal for maintaining the continuity and coherence of
the tracking process.

In the course of handling IMU data, pre-integration is applied to the measurements
from the IMUs across successive image frames. Given the higher sampling rate of the IMU
compared to the rate at which image frames are captured, synchronizing IMU readings
with corresponding image frames becomes essential.

2. Initialization

The initialization phase employs both pre-integrated IMU data and structure from
motion (SFM) techniques. Initially, SFM deduces the three-dimensional coordinates of
feature points by aligning those identified in successive RGB images and by estimating the
camera’s trajectory. Following this, the SFM outputs are utilized alongside IMU readings to
refine estimates of the gyroscopic bias. The final step involves calculating the velocity, the
direction of gravity, and the scale factor for each image frame captured by the camera.

3. Local VIO

In the VINS-RGBD system, depth information for a majority of feature points is directly
sourced from depth images, with depth accuracy being enhanced through a validation
process that filters out noise. For feature points located beyond the depth sensor’s mea-
surement capabilities, depth is deduced using a triangulation approach [29]. The system’s
back-end processes image data, feature point coordinates, and IMU data disseminated by
the front-end, employing a joint optimization strategy to minimize discrepancies. This
optimization relies on a marginalization operation based on the Schur complement [30]
and leverages the Ceres solver for nonlinear optimization challenges [31]. As a result of
this refined optimization within the sliding window framework, the system accurately
ascertains both the camera’s positional data and its velocity.

4. Semantic Segmentation

Keyframes received by the VINS-RGBD system’s front-end undergo pixel-level seman-
tic segmentation through the PP-LiteSeg-T network. This process identifies and visually
distinguishes the objects within the images by classifying and applying unique colors to
them. During the map construction phase, these semantic data are integrated into the point
cloud, facilitating the classification of the point cloud and the creation of a semantic map.

5. Loop Detection and Mapping

The challenge of trajectory deviation arises due to the gradual accumulation of compu-
tational errors and noise from camera measurements. Addressing this issue necessitates the
implementation of loop closure detection to refine the positioning of the camera. In tackling
this pivotal task, the VINS-RGBD framework integrates the functionality of DBow2 [32], a
sophisticated algorithm designed for the detection of loop closures. DBow2 commences its
operation by categorizing L_SuperPoint feature points found within keyframe images into
distinct clusters. This step facilitates the creation of a comprehensive visual vocabulary,
effectively assembling a bag of visual words. Subsequently, the algorithm conducts a
comparative analysis of the visual word bag associated with each keyframe against those
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compiled from all previous keyframes. The identification of a loop closure is triggered
when the comparative similarity of two keyframes exceeds a predetermined threshold.
This detection initiates the execution of a global pose graph optimization process that is
specifically aimed at rectifying inaccuracies in the camera’s positioning.
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2.2.3. Point Cloud Compression

1. Radius Outlier Removal Filter

Primarily due to errors in measurement and environmental obstructions such as foliage
occlusion, the VINS-RGBD system’s point cloud maps occasionally contain anomalies. The
application of a radius filter is instrumental in enhancing the fidelity of these point cloud
maps. This method effectively identifies and eliminates aberrant data points, thereby
significantly improving the overall accuracy of the point cloud map.

The radius filter determines outlier points by calculating the distance between each
point and its neighboring points. The specific working principle is as follows. First, for each
point in the point cloud, its Euclidean distance d to all other points except itself is calculated.
Then, a radius threshold r is set, any point within d<r is considered to be its neighbor, and
the number n of neighboring points for each point is counted. Finally, if the number n of
neighboring points for a point is less than a predefined minimum neighbor count k, then
this point is removed and considered an outlier. Since outliers are sparsely distributed in
dense point cloud maps, removing them does not result in significant information loss.
Therefore, processing the original point cloud with this filter results in a more accurate and
robust point cloud map.

Since the experiments in this paper use dense point cloud reconstruction for straw-
berry plants, and considering the noise effects caused by the complex data acquisition
environment, the point cloud of strawberry plants is processed by setting the neighboring
point radius threshold r to 0.03 and the minimum number of neighboring points k to 10.

2. Building a Voxblox Map

Due to the extensive storage requirements of point cloud maps generated by VINS-
RGBD, constructing large-scale maps with restricted resources is challenging. Thus, Voxblox
is employed for the representation and storage of dense point cloud maps.

The Voxblox system architecture, illustrated in Figure 7, organizes space into cubic
segments, employing voxels to depict the three-dimensional environment. Primarily,
Voxblox utilizes a truncated signed distance field (TSDF) for map construction and supports
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the real-time incremental reconstruction of Euclidean signed distance field (ESDF) voxels
and grids, leveraging the latest updates from TSDF voxels. For data storage, Voxblox
adopts the voxel hashing technique [33], offering quicker data retrieval compared to the
Octomap’s octree-based structure [34].
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In the construction of Voxblox, the TSDF is first developed through a procedure that
utilizes a combination of weighting and merging of point cloud data. This technique
ensures enhanced speed and precision in map construction, particularly with larger voxel
dimensions. The integration of point cloud data into the TSDF, and, subsequently, the
voxel creation, employs a specific weighting function, as depicted in Equation (2). Here, w
signifies the weight assigned to a newly observed point, d is the distance from this point to
the voxel’s boundary surface, x denotes the voxel’s spatial center, p is the position of the
newly observed point, and z represents the depth captured in the image frame, while δ and
ϵ, which are set at 4v and v, respectively, indicate the truncation distances, with v being
the voxel size. The incorporation of new scans into the existing voxel mesh is facilitated
through a method that groups ray casting, effectively enhancing the speed of ray casting
without compromising accuracy. Subsequently, the ESDF is derived from the TSDF.

wquad(x, p) =


1
z2 − ϵ < d
1
z2

1
δ−ϵ (d + δ) − δ < d < −ϵ

0 d < −δ

(2)

3. Results
3.1. Performance Analysis of L_SuperPoint

The higher the accuracy of feature points, the better the overall mapping effect of the
system, resulting in more accurate yield estimation for crops. In this study, the L_SuperPoint
network was trained, and its performance was assessed using a proprietary dataset within
a simulated experimental hardware setup, comprising an Intel Core i7-7800X CPU and an
NVIDIA GeForce GTX 1080 Ti GPU. The deep learning framework employed was PyTorch
1.9, running on an Ubuntu 18.04 operating system.

3.1.1. Feature Point Extraction Analysis

Table 2 presents a comparison among L_SuperPoint, SuperPoint, FAST, and Harris
feature points. Repeatability is defined as the proportion of matched feature point pairs
relative to the overall number of features, taking into account variations in lighting or
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perspective. The positioning error (PE) refers to the mean pixel distance between corre-
sponding feature points observed from identical viewpoints. Frames per second (FPS)
measures the average throughput in terms of images processed each second.

Table 2. Evaluation of feature point extraction.

Illumination Change Viewpoint Change PE FPS

L_SuperPoint 66.3% 54.7% 1.10 9.2
SuperPoint 67.8% 55.3% 1.05 2.3

FAST 60.3% 51.0% 1.93 9.5
Harris 62.5% 58.5% 1.09 1.4

The analysis results indicate that compared to the highly accurate SuperPoint,
L_SuperPoint feature points exhibit a slightly lower accuracy, of 1.5%, under changes
in lighting conditions and 1.4% under changes in viewpoints. Therefore, L_SuperPoint
feature points have similar accuracy to SuperPoint feature points. In terms of frames per
second (FPS), L_SuperPoint feature points are 6.9 FPS higher than SuperPoint feature points
and 7.8 FPS higher than Harris feature points. This suggests that L_SuperPoint feature
points have higher accuracy and speed during extraction.

3.1.2. Descriptor Matching Analysis

Table 3 lists the matching rate, which is the proportion of successfully matched feature
points through descriptors. The data show that L_SuperPoint is only 1.2% lower than Su-
perPoint, about 9% higher than the ORB algorithm, and only 0.8% lower than SIFT. When
evaluating the FPS metric, L_SuperPoint is only 0.4 lower than ORB, 7.0 higher than Super-
Point, and 8.3 higher than SIFT. Therefore, L_SuperPoint is an efficient feature extraction
network that meets the real-time operational requirements of contemporary systems.

Table 3. Descriptor matching evaluation.

Illumination Change Viewpoint Change FPS

L_SuperPoint 55.1% 51.2% 9.0
SuperPoint 56.3% 52.5% 2.0

ORB 46.7% 43.8% 9.4
SIFT 55.9% 55.7% 0.7

To assess the performance of the comprehensive 3D semantic graph reconstruction
system, practical 3D reconstruction tests were carried out on several strawberry plants
and rows of strawberry plants. The effectiveness of these reconstructions is thoroughly
examined through quantitative analysis, with in-depth discussions presented in Section 3.3.

3.2. Semantic Segmentation Performance Analysis

To assess the PP-LiteSeg-T network’s capability in semantically segmenting strawberry
plants, this research inputs a dataset of strawberry plant images into the PP-LiteSeg-T for
training, distributed in a 7:2:1 ratio as training, validation, and test sets, respectively. The
test set specifically included both close-up and distant photographs of strawberry plants
for segmentation verification, with the outcomes depicted in Figure 8. The segmentation
outcomes demonstrate the model’s proficiency in distinguishing the majority of strawberry
fruits, branches, and leaves with clarity. Nevertheless, challenges such as lighting, shadows,
and foliage occlusion result in a minority of strawberry plants and foliage being inaccu-
rately segmented. On the whole, the PP-LiteSeg-T network effectively achieves precise
segmentation of strawberry plants’ branches, leaves, and fruits.
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Figure 8. The semantic segmentation performance was evaluated. Below are examples of segmenta-
tion results for close-range and far-range images. In the segmentation results, red represents fruit,
green represents foliage, and black represents background. (a) Close-up image of a strawberry plant.
(b) Close-up segmented image. (c) Long-range image of strawberry plants. (d) Long-range segmented
image. The results indicate that the PP-LiteSeg-T network can achieve effective segmentation of
dataset images.

In an effort to thoroughly assess the performance of the PP-LiteSeg-T network, this
study employed a self-constructed strawberry dataset to conduct a comparative analysis
against several well-recognized semantic segmentation networks. The networks under
comparison were optimized through TensorRT to enhance execution efficiency, setting the
training duration at 100 epochs and establishing a learning rate of 0.01. The evaluation
criteria selected for gauging the efficacy of these networks included the mean intersection
over union (mIoU) and the FPS, with the outcomes compiled in Table 4. The mIoU metric,
which quantifies the average proportion of overlap between the predicted and actual
segments, was calculated in accordance with Equation (3), where TP indicates true positive
outcomes, FP indicates false positives, and FN indicates false negatives. Additionally,
the FPS metric, reflecting the processing speed of the semantic segmentation networks
by counting the number of frames analyzed per second, was derived following Equation
(4). Here, frameNums refers to the total count of frames evaluated, and elapsedTime refers
to the total time used for processing. For the purpose of this evaluation, frameNums was
fixed at 1500, and FPS values were determined by measuring the elapsedTime across various
semantic segmentation networks.

mIoU =
1

k + 1∑k
i=0

TP
FN + FP + TP

# (3)

FPS =
f rameNums
elapsedTime

(4)

The data in Table 4 indicate that the average mean intersection over union (mIoU) of the
PP-LiteSeg-T network is 73.2%, demonstrating good accuracy compared to other state-of-
the-art networks. In terms of frames per second (FPS), the PP-LiteSeg-T network achieves a
processing speed of 228.3, significantly surpassing other advanced networks. Therefore, the
PP-LiteSeg-T network can provide high-precision semantic segmentation while maintaining
high processing speed. It effectively meets the system’s real-time segmentation and yield
estimation requirements.
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Table 4. Performance comparison results of classical semantic segmentation networks. Compared to
other classic semantic segmentation networks, the PP-LiteSeg-T network boasts the fastest image pro-
cessing speed and relatively high segmentation accuracy, achieving a balance between segmentation
precision and processing speed.

Model Encoder mIoU (%) FPS

ENet - 51.8 63.1
ICNet PSPNet50 68.2 33.9

DFANet A Xception A 65.4 118
SwiftNet ResNet18 71.5 -

BiSeNetV1 Xception39 66.3 178
BiSeNetV1-L ResNet18 68.3 118.3
BiSeNetV2 - 73.7 124.5

BiSeNetV2-L - 72.8 33.8
STDC1-Seg STDC1 73.2 198.1
STDC2-Seg STDC2 74.1 153.9

PP-LiteSeg-T STDC1 73.2 228.3

To provide a more intuitive representation of the performance of the PP-LiteSeg-T seman-
tic segmentation network, we evaluated the network’s performance using precision–recall
curves, as shown in Figure 9. The curve exhibits a stable downward trend across the entire
threshold range, indicating a balance between recall and precision at various thresholds.
Therefore, the semantic segmentation network demonstrates good performance.
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3.3. Experimental Reconstruction of Strawberry Plants
3.3.1. Reconstruction Experiment of Several Strawberry Plants

Initially, this study focuses on reconstructing a 3D semantic map for several strawberry
plants. In the resulting semantic point cloud, the foliage and branches of the strawberry
plants are depicted in green, while the fruit is highlighted in red. The plant’s background
and other components are depicted in white to accentuate the display of the strawberry
plant. The outcomes of this experiment are documented in Figure 10.

The experimental analysis demonstrated that the majority of the point cloud data
in the reconstructed 3D model could be accurately identified. Nevertheless, due to the
intricate nature of the reconstruction environment and variations in the accuracy of feature
extraction and semantic segmentation, a segment of the point cloud data was misclassified.
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of the reconstruction results; (b) represents the semantic point cloud map of the reconstruction results.

We designed quantitative experiments to assess the yield of strawberries. Utilizing
the conditional filtering algorithm [35], this study extracted point clouds representing
strawberry fruits from the semantic map. The RANSAC algorithm in the CloudCompare
2.12.2 software [36] was employed for sphere fitting to the strawberry fruit point cloud.
CloudCompare is a software developed by Électricité de France (EDF) for processing
3D point clouds. The culmination of this process is illustrated in Figure 11, where each
sphere denotes a strawberry fruit. The precision of the 3D semantic reconstruction findings
was gauged by calculating the relative error between the actual number of fruits and the
predicted number, as outlined in Equation (5), where δ represents the relative error, Nt
denotes the actual number of fruits, and Np represents the predicted number of fruits. The
comprehensive statistical outcomes of these evaluations are presented in Table 5.

δ =

∣∣Np − Nt
∣∣

Nt
× 100% (5)
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Figure 11. Using conditional filtering to extract the strawberry fruit point cloud and applying
RANSAC spherical fitting for counting: (a) represents the extracted strawberry fruit point cloud result;
(b) represents the result of RANSAC spherical fitting, where each sphere represents a strawberry fruit.

The relative error serves as a metric for the precision of the estimated values in
comparison to the actual values, with a lower relative error signifying enhanced accuracy
of the predictions. According to the data presented in Table 5, the mean relative error
across several tests is recorded at 10.87%, reflecting a noticeable discrepancy between the
estimated and actual counts. This deviation is attributed to various factors, including
obstruction by foliage and noise within the point cloud data, which complicates the sphere
fitting process undertaken by the RANSAC algorithm, leading to inaccuracies in the fruit
count estimations.
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Table 5. Quantitative experimental test results. The experiment evaluates the accuracy of strawberry
fruit prediction using relative error. According to the table, the system can achieve relatively accurate
yield estimation.

Sample Actual Value Predicted Value Relative Error (%)

1 16 14 12.5
2 33 32 3.03
3 43 39 9.30
4 59 51 13.56
5 69 58 15.94

Mean - - 10.87

3.3.2. Reconstruction Experiment of Single-Row Strawberry Plants

1. The Original Point Cloud Map

To assess the proposed system’s capability for 3D reconstruction in extensive scenes,
this study constructed semantic maps for a single row of strawberry plants within a larger
selection of three rows. Each row in the strawberry field spans 8 m. The resulting 3D point
cloud and semantic maps are presented in Figure 12.

2. Radius Filtering Processing

In Figure 12, the detailed 3D reconstruction effectively captures the architectural com-
plexity of an entire strawberry orchard row, accurately delineating branches, foliage, and
fruits. This precision aids significantly in the estimation of fruit yields and in monitoring
for pest and disease outbreaks within the orchard. Nonetheless, challenges such as varia-
tions in illumination, sensor inaccuracies, and additional disturbances introduce noise and
discrepancies into the reconstructed point cloud visualization. To mitigate the influence of
noise, we selected the second row for radius filtering and compared the results before and
after processing. Figure 13a illustrates the effects of the point cloud map before and after
radius filtering, while Figure 13b demonstrates the effects of the semantic point cloud map
before and after radius filtering.

3. Voxblox Processing

Addressing the challenge of efficient 3D mapping and storage with constrained re-
sources, the Voxblox ROS framework is utilized to convert point cloud data into Voxblox
maps. These maps facilitate navigation and obstacle avoidance in robotic systems by effi-
ciently reducing computational load and memory usage. The construction of a Voxblox
map for the strawberry plants in the third row is illustrated in Figure 14.

In order to conduct yield estimation in large-scale environments, addressing the
issue of map storage is crucial. We employed radius filtering and Voxblox techniques to
reduce point cloud storage consumption. The experimental results regarding memory
consumption for the map of three rows of strawberry plants are presented in Table 6.

The experiments demonstrate that using the radius filter can reduce memory con-
sumption by an average of 5.59%, while employing Voxblox maps can reduce memory
consumption by an average of 96.91%. This indicates that the proposed system can ef-
ficiently perform large-scale 3D mapping tasks to support yield estimation for crops in
large environments.
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Figure 12. The experimental results of entire-row strawberry plant reconstruction; each row includes
a point cloud map and a semantic point cloud map. The following are the reconstruction results
of three rows of strawberry plants. (a) The 3D reconstruction results of the first row. (b) The 3D
reconstruction results of the second row. (c) The 3D reconstruction results of the third row. In the
semantic point cloud diagram, red represents the fruit, green represents the branches and leaves, and
white represents the background.
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Table 6. Comparison of memory consumption of different maps. Using radius filtering and Voxblox
maps can significantly reduce map storage consumption.

Dataset Semantic Map (MB) After Filtering (MB) Voxblox (MB) Memory Savings
after Filtering (%)

Voxblox Memory
Savings (%)

First row 93.6 89.3 3.3 4.59 96.47
Second row 103.3 100.2 3.4 3.01 96.71
Third row 152.8 142.5 4.2 6.74 97.25

First and second rows 203.5 189.5 6.3 6.88 96.90
Second and third rows 268.1 249.3 8.4 6.98 96.87

Three-row 354.7 335.6 9.8 5.38 97.23
mean - - - 5.59 96.91

3.4. Real-Time Detection Experiments

To guarantee that the map-building process is both rapid and effective, it is crucial to
assess the system’s real-time capabilities. Within the enhanced VINS-RGBD framework, the
necessity for real-time operations is divided across its components: the front-end module,
tasked with feature extraction and tracking, alongside the semantic segmentation module,
must operate in real time. In contrast, the back-end module, responsible for optimization
and loop closure detection, does not share this requirement. Consequently, the overall real-
time performance hinges on the collective processing velocity of the modules mandated to
function in real time. Evaluations of these critical real-time modules were conducted on a
hardware setup equipped with an Intel Core i7-7800X CPU and an NVIDIA GeForce GTX
1080 Ti GPU.

Table 7 delineates the performance metrics, revealing that the feature extraction and
tracking component processes each video frame in an average of 13.61 ms. Concurrently,
the semantic segmentation component exhibits an even more efficient average processing
time of 8.67 ms per frame. Considering the operational frame rate of 30 frames per second
for video data captured by the D435i camera, these processing durations affirm that the
system successfully adheres to the requisites for real-time performance.

Table 7. Real-time processing results per frame.

Module Thread Time (ms)

VINS-RGBD Feature detection and tracking 13.61
PP-LiteSeg-T Semantic segmentation 8.67



Agriculture 2024, 14, 784 18 of 25

3.5. Localization Accuracy Evaluation Experiments

Localization accuracy is a crucial metric for assessing the stability of SLAM systems,
as it directly impacts the quality of the final map. More accurate yield estimation relies on
high-quality maps. Therefore, the localization accuracy of the proposed system is evaluated.

The focus of this study was to assess the robustness of the VINS-RGBD system’s
utilization of L_SuperPoint feature points, in comparison to the conventional Shi–Tomasi
corner detection approach, through a methodical evaluation using two distinct datasets.
The inaugural dataset was acquired via a hand-held device during the Tsukuba Challenge
2022, and the subsequent dataset was similarly obtained at the Ikuta Campus of Meiji
University, employing the same data collection methodology. Illustrative of the datasets’
reference trajectories, Figure 15 provides GPS-based trajectory mappings. To quantitatively
measure the system’s performance, this study employed RPE and absolute trajectory error
(ATE) as the principal evaluation metrics. While ATE offers an overarching view of the
trajectory deviations, RPE zeroes in on pose changes, making it particularly useful for
assessing the extent of trajectory drift.
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Relative pose error (RPE) quantifies the divergence between the estimated positions by
the system and the actual positions across two frames within a predetermined time span, ∆.
This evaluation assumes the system’s estimated trajectory, denoted as P1, . . . , Pn ∈ SE(3),
and the actual trajectory, represented as Q1, . . . , Qn ∈ SE(3), with each subscript marking
the timestamp. RPE is calculated as per Equation (6), where Ei signifies the relative
positional error at the ith timestamp, trans(X) is the translational component of any element
X ∈ SE(3), and n symbolizes the total count of frames evaluated:

RPE(i) =

√
1
n
∥trans(Ei)∥

Ei = (Q−1Qi+∆)
−1(P−1

i Pi+∆) (6)

ATE measures the overall discrepancy between the system’s estimated trajectory and
the actual path. As delineated in Equation (7), Fi represents the magnitude of trajectory
deviation at each timestep, with S embodying the transformation matrix that aligns the
estimated trajectory Si to the actual trajectory Qi.
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ATE(i) =

√
1
n
∥trans(Fi)∥

Fi = Q−1
i SPi (7)

Table 8 provides the ATE and RPE metrics in meters for the VINS-RGBD system,
comparing the performance of Shi–Tomasi corner points against L_SuperPoint feature
points. To ensure uniformity across both datasets, scale adjustments were applied using
the Umeyama method, with calculations performed through evo.

Table 8. Localization accuracy analysis of different feature points of VINS-RGBD. L_SuperPoint
feature points achieved lower ATE and RPE, resulting in higher localization accuracy.

Method No. 1 Dataset No. 2 Dataset Mean

ATE RPE ATE RPE ATE RPE

Shi–Tomasi 5.164 0.267 4.456 0.204 4.810 0.236
L_SuperPoint 3.512 0.241 2.241 0.146 2.877 0.194

Table 8 demonstrates that the average ATE of L_SuperPoint feature points on both
datasets is 1.933 lower than that of Shi–Tomasi, and the average RPE is lower by 0.042. This
indicates that using L_SuperPoint feature points within the VINS-RGBD framework leads
to improved localization accuracy.

Figure 16 shows the results of comparing the experimental trajectories of the VINS-
RGBD system when using the two feature points.

Agriculture 2024, 14, 784 20 of 26 
 

 

   𝐹 = 𝑄 𝑆𝑃  (7)

Table 8 provides the ATE and RPE metrics in meters for the VINS-RGBD system, 
comparing the performance of Shi–Tomasi corner points against L_SuperPoint feature 
points. To ensure uniformity across both datasets, scale adjustments were applied using 
the Umeyama method, with calculations performed through evo. 

Table 8. Localization accuracy analysis of different feature points of VINS-RGBD. L_SuperPoint fea-
ture points achieved lower ATE and RPE, resulting in higher localization accuracy. 

Method No. 1 Dataset No. 2 Dataset Mean 
 ATE RPE ATE RPE ATE RPE 

Shi–Tomasi 5.164 0.267 4.456 0.204 4.810 0.236 
L_SuperPoint 3.512 0.241 2.241 0.146 2.877 0.194 

Table 8 demonstrates that the average ATE of L_SuperPoint feature points on both 
datasets is 1.933 lower than that of Shi–Tomasi, and the average RPE is lower by 0.042. 
This indicates that using L_SuperPoint feature points within the VINS-RGBD framework 
leads to improved localization accuracy. 

Figure 16 shows the results of comparing the experimental trajectories of the VINS-
RGBD system when using the two feature points. 

  
(a) (b) 

Figure 16. Localization accuracy experiment results, where green represents the ground truth tra-
jectory, orange represents the trajectory when the system uses Shi–Tomasi feature points, and pur-
ple represents the trajectory when the system uses L_SuperPoint feature points. (a) represents the 
experimental results on the Tsukuba Challenge 2022 dataset. (b) represents the experimental results 
on the Meiji University Ikuta Campus dataset. 

Figure 16. Localization accuracy experiment results, where green represents the ground truth
trajectory, orange represents the trajectory when the system uses Shi–Tomasi feature points, and
purple represents the trajectory when the system uses L_SuperPoint feature points. (a) represents the
experimental results on the Tsukuba Challenge 2022 dataset. (b) represents the experimental results
on the Meiji University Ikuta Campus dataset.
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4. Discussion

Performing real-time 3D semantic reconstruction and yield estimation of strawberry plants
is an exploratory endeavor, which comes with certain limitations during experimentation.

1. Position accuracy is a key metric for evaluating SLAM performance. In Section 3.5,
we evaluated the positioning accuracy of our proposed system using two publicly
available datasets. Public datasets typically utilize high-precision equipment or motion
capture devices to obtain ground truth, which can be costly. Due to limitations in our
experimental setup, we were unable to acquire accurate ground truth; hence, we opted
to validate it using publicly available datasets. From Table 8, it can be observed that
although the proposed system utilizes higher-precision feature points, the estimated
trajectory still exhibits a certain drift compared to the actual trajectory. Apart from the
influence of the algorithm itself, the positioning accuracy of SLAM is also affected by
factors such as environmental complexity and camera resolution. Therefore, in future
work, complementary high-precision devices, such as LiDAR sensors, RTK, GPS, etc.,
can be integrated to provide more accurate information to the SLAM system, thereby
compensating for the inaccuracies in single-sensor state estimation.

2. The accuracy of semantic segmentation has a significant impact on establishing a three-
dimensional semantic point cloud map. In this system, the PP-LiteSeg-T semantic
segmentation network achieved an mIoU of 73.2% and an FPS of 228.3. Compared to
other semantic segmentation networks, it demonstrates strong superiority in balancing
segmentation accuracy and processing speed. Despite the PP-LiteSeg-T network’s
superior performance in terms of speed and accuracy over conventional semantic
segmentation frameworks, it encounters certain limitations. As evidenced in Figure 17,
challenges such as mislabeling, obstruction by leaves, fluctuating light conditions, and
sensor inaccuracies impede the network’s capability to precisely interpret semantic
details. These issues contribute to inaccuracies in semantic segmentation, resulting in
misclassified segments. To advance the efficacy of the system, future initiatives could
include curating datasets with more pronounced features, enhancing the semantic seg-
mentation algorithm, and integrating sensors with enhanced accuracy. Implementing
these refinements is expected to significantly improve the quality of semantic segmen-
tation results. Although PP-LiteSeg-T demonstrated excellent semantic segmentation
performance on our self-constructed dataset, overfitting still occurs when deploying
our model to perform segmentation tasks on other similar datasets. This is mainly due
to factors such as time constraints and device conditions, which limited the amount of
strawberry image data used for training the PP-LiteSeg-T network. Consequently, the
model’s learning of image characteristics was not comprehensive enough, leading to
overfitting. To mitigate the impact of overfitting, it is necessary to increase the number
of samples in the dataset.

3. This study’s main findings were as follows. (1) Feature point performance analysis:
Experiments were conducted on substituted feature points aiming to enhance the
accuracy of image matching using higher-precision feature points. The results indicate
that, compared to other traditional feature points, L_SuperPoint feature points exhibit
higher accuracy and faster extraction speed. (2) Semantic segmentation performance:
Performance analysis of the PP-LiteSeg-T semantic segmentation network was carried
out. It demonstrated higher segmentation accuracy and faster segmentation speed
compared to other traditional semantic segmentation networks. (3) Yield estimation
capability: Experiments on three-dimensional semantic reconstruction of strawberries
were designed. The experiments involved extracting strawberry fruits and estimat-
ing their yield. The average relative error in predicting fruit quantity compared to
actual fruit quantity was only 10.87%. Additionally, modeling of multiple rows of
strawberries was conducted to assess the effectiveness of Voxblox map storage. The
experiments showed that using Voxblox could reduce memory consumption by an
average of 96.61%, meeting the demand for outdoor crop modeling and yield es-
timation. (4) Real-time performance and localization accuracy: Evaluation of the
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real-time performance and localization accuracy of the overall system was conducted.
The experiments demonstrated that the system could operate in real time with good
localization accuracy. The research experiments mentioned above indicate that the
proposed system can achieve the goal of real-time yield estimation for outdoor crops.
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5. Conclusions

This study proposes an enhanced VINS-RGBD system that integrates a semantic seg-
mentation module to achieve the three-dimensional semantic reconstruction of strawberry
plants and estimates the yield of strawberry fruits.

The system utilizes lightweight semantic segmentation networks for the real-time
segmentation of image frames and effectively addresses the challenge of constructing real-
time three-dimensional semantic point cloud maps by mapping semantic information onto
point clouds. This facilitates real-time yield estimation. The system employs radius filtering
and Voxblox technology to compress and store point cloud data, addressing the challenge
of large-scale mapping in SLAM systems. This facilitates large-scale map construction and
yield estimation in orchards.

The experimental findings indicate that the enhanced system achieves a semantic
segmentation accuracy (mIoU) of 73.2%, a relative error in strawberry fruit quantity pre-
diction of 10.87%, and a significant reduction in memory usage (by an average of 96.61%)
through the utilization of Voxblox for point cloud storage and representation. The system’s
front-end feature detection and tracking exhibit an average processing time of 13.61 ms per
image frame, and the semantic segmentation network processes at an average of 8.67 ms
per image frame, demonstrating the system’s robust real-time performance.

Currently, the main challenge in constructing real-time three-dimensional semantic
maps is how to improve semantic segmentation accuracy and localization accuracy in
complex environments while balancing system accuracy and real-time performance. In
the future, this can be achieved through methods such as sensor fusion [37,38], optimizing
poses using NERF [39,40], and using devices with higher accuracy to improve the quality
of constructing three-dimensional semantic maps, ultimately aiming for more accurate
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yield estimation. The project also plans to deploy devices on unmanned vehicles to achieve
autonomous navigation, mapping, and yield estimation.
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Appendix A

1. The three key modules of the PP-LiteSeg-T network

Figure A1 illustrates the Flexible Lightweight Decoder (FLD) module, Figure A2
depicts the Unified Attention Fusion Module (UAFM), and Figure A3 showcases the Simple
Pyramid Pooling Module (SPPM). Detailed descriptions of these modules can be found in
Section 2.2.1.
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2. The L_SuperPoint network architecture

The L_SuperPoint feature point represents a streamlined adaptation of the SuperPoint
feature point, leveraging a depth-wise hierarchical convolutional network for feature ex-
traction. This network is architecturally partitioned into five distinct layers. The initial
layer employs a conventional convolutional network to comprehensively extract features
from the raw image. Subsequently, the remaining four layers utilize a depth-wise separa-
ble convolutional network aiming to simultaneously extract pertinent information while
minimizing computational demands. The detailed architecture of this network is depicted
in Figure A4. Within the depth-wise separable convolutional layers, to mitigate the sub-
stantial information loss associated with downsampling, the activation function in the
depth-wise convolutional layer is modified from the standard ReLU to the ReLU6 function.
Meanwhile, in the point-wise convolutional layer, the ReLU function is substituted with a
linear function to preserve more detail.
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