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Abstract: For the significant distortion problem caused by the special projection method of equi-
rectangular projection (ERP) images, this paper proposes an omnidirectional image super-resolution
algorithm model based on position information transformation, taking SwinIR as the base. By
introducing a space position transformation module that supports deformable convolution, the image
preprocessing process is optimized to reduce the distortion effects in the polar regions of the ERP
image. Meanwhile, by introducing deformable convolution in the deep feature extraction process, the
model’s adaptability to local deformations of images is enhanced. Experimental results on publicly
available datasets have shown that our method outperforms SwinIR, with an average improvement
of over 0.2 dB in WS-PSNR and over 0.030 in WS-SSIM for ×4 pixel upscaling.

Keywords: omnidirectional image; image super-resolution; equi-rectangular projection; SwinIR; shift
windows; deep learning

1. Introduction

With the breakthrough growth of augmented reality (AR) and virtual reality (VR)
applications, omnidirectional image processing has gradually received attention from
scientific research, and omnidirectional image super-resolution technology has also seen
development. Compared to single-frame images, omnidirectional images have larger di-
mensions. In practical applications, to conserve memory and bandwidth, lower-resolution
equi-rectangular projection (ERP) images are often stored and transmitted. However, the
resolution of omnidirectional images is closely related to users’ immersion and visual
experience. Therefore, it is necessary to find a method to reconstruct high-definition images
from low-resolution omnidirectional images.

Initially, people used regularization methods, algorithms based on neighborhood
embedding, and a strategy to reconstruct high-resolution images by exploiting redundant
similar blocks within low-resolution images [1–3]. However, such traditional algorithms
often perform poorly when dealing with large-scale upscaled images, making it difficult to
achieve the desired task goals. Recently, methods based on deep learning have developed
rapidly and made significant contributions to the single-image super-resolution (SISR)
field. After convolutional neural network (CNN)-based super-resolution methods [4–10]
were first applied, algorithms based on generative adversarial networks (GAN) [11–18],
visual transformers (ViTs) [19–23], and diffusion models [24,25] further advanced this
technology. It is worth noting that SwinIR [26], as a Swin Transformer-based image super-
resolution method, utilizes the hierarchical structure and local attention mechanism of the
Swin Transformer to effectively handle the long-range dependency problem of images,
demonstrating excellent performance in single-image super-resolution tasks. However, due
to uneven pixel density and texture complexity across dimensions, these methods cannot
be directly applied to ERP images.
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Research on image super-resolution initially focused on stitching and processing
multiple low-resolution omnidirectional images, but such methods were inefficient and
produced subpar results. Subsequently, the LAU-NET [27] method segmented ERP im-
ages into multiple strips based on different latitudes and treated distortion within each
latitude range separately, yet this approach overlooked the connection between adjacent
patches. SphereSR [28] addressed the distortion issues caused by complex projections from
a projection perspective, but the computational cost involved was too high, making it
impractical for real-world applications. Recently, OSRT [29] proposed that downsampling
from fisheye images better reveals the geometric properties of ERP images but lacks explicit
positional information.

To address the above issues, this paper builds upon SwinIR [26] and proposes an omni-
directional image super-resolution method based on positional information transformation.
By introducing a Positional Information Transformation module supporting deformable
convolution, the preprocessing process of images is optimized, reducing the distortion
effect of ERP images in polar regions. Meanwhile, by introducing deformable convolu-
tion during deep feature extraction, the model’s adaptability to local image deformations
is enhanced.

2. Related Work
2.1. Single-Image Super-Resolution (SISR)

Since SRCNN [4] introduced deep learning into single-image super-resolution tasks,
various CNN architectures have been widely studied to further improve the performance of
image super-resolution algorithms. For example, DRCN [5] adopts an innovative approach
by implementing weight sharing between convolutional layers within recursive blocks
to reduce the complexity of the model. DenseNet [6] proposes the first dense structure,
where the output of each convolutional layer is connected to the outputs of all subsequent
convolutional layers, ensuring direct connections between every layer and all subsequent
layers. EDSR [7] initially uses residual blocks without batch normalization as the basic
building blocks, forming deeper super-resolution networks.

SwinIR [26] is an image super-resolution model based on the Swin Transformer ar-
chitecture, which incorporates a shift-window mechanism in its design. This mechanism
helps simulate long-range dependencies, enhancing the model’s understanding of distant
image information. Compared to traditional methods, SwinIR achieves performance en-
hancement with fewer parameters, implying that it can handle larger-scale image data
and produce clearer, higher fidelity results with similar computational resources. Addi-
tionally, by leveraging the advantages of the Swin Transformer architecture, SwinIR can
simultaneously capture both local and global information, leading to superior performance
in super-resolution tasks.

2.2. Omnidirectional Image Super-Resolution (ODISR)

In order to qualitatively assess the generation quality of omnidirectional image super-
resolution, researchers proposed a method called weighted spherical-to-spherical peak
signal-to-noise ratio (WS-PSNR) [30], which aims to evenly distribute pixel points on
a sphere and assign different weights to pixels in different regions to comprehensively
evaluate and reflect the generation quality of omnidirectional image super-resolution. Sub-
sequently, attempts were made to apply GAN to omnidirectional image super-resolution.
Due to the maturity of single-frame image super-resolution methods, researchers tried
to adapt single-frame image super-resolution methods to ERP images and adjusted ex-
isting models using loss functions such as L1 to adapt to the special characteristics of
omnidirectional images. Considering the importance of different regions in the image,
researchers introduced the weighted structural similarity index (WS-SSIM) [31] to evaluate
model performance.

LAU-NET [27] addressed the issue of uneven pixel density caused by distortion at
different latitudes in ERP images by segmenting ERP images into multiple strips based on
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different latitudes and handling distortion within each latitude range separately through
separate learning. Subsequent optimizations of this model considered the issue of area
stretching ratio, using it as an additional condition input to help the network better under-
stand the distortion of the image and achieve more precise correction, yielding good results.
SphereSR [28] addressed the problem of distortion in planar projection images caused by
complex projections. This method introduced a feature extraction module capable of ex-
tracting features from different types of projections (such as central projection, equidistant
cylindrical projection, etc.) on the sphere. These extracted spherical features were used as
parameters that were input into the spherical local implicit image function (SLIIF) to predict
the RGB values corresponding to the spherical coordinates, thus achieving high-resolution
reconstruction results for arbitrary projection types. Although this method achieved good
results, the computational cost involved was too high, making it impractical for real-world
applications. Currently, the mainstream approach is still to process ERP images because
ERP projection calculation is simple, easy to implement, and has higher efficiency and
reliability in practical applications. The OSRT [29] method approached the problem from
the perspective of image sampling, suggesting that downsampling from fisheye images
better captures the geometric properties of ERP images and is more consistent with the real
imaging process. OSRT also designed an image distortion-aware transformer, which can
adjust the distortion of images in real-time based on the distortion of ERP images, without
the need for manual intervention or complex preprocessing steps.

3. Architectural Details

In this section, we first describe the network structure of the proposed omnidirectional
image super-resolution model based on SwinIR [26] and then provide detailed introductions
to each module.

3.1. The Entire Network Architecture

The entire network architecture is based on improvements made to SwinIR, as il-
lustrated in Figure 1, and mainly consists of the following key components: firstly, the
location transformation module preprocesses ERP images to reduce distortion in polar re-
gions, providing optimized input for super-resolution reconstruction. Next is the enhanced
SwinIR framework, which effectively handles long-distance dependencies by leveraging
the hierarchical structure and local attention mechanism of the Swin Transformer to en-
hance super-resolution reconstruction performance. Deformable convolutional layers are
introduced into the model, replacing standard convolutional layers to better adapt to
local deformations in the images, particularly achieving better results in handling distor-
tion in ERP images. The entire model’s operation proceeds as follows: firstly, the input
low-resolution ERP images undergo preprocessing and distortion correction through the
location transformation module, then through the improved SwinIR framework, shallow
feature extraction, deep feature extraction, and, finally, image reconstruction for super-
resolution is sequentially performed, ultimately outputting high-quality high-resolution
ERP images.

Information 2024, 15, x FOR PEER REVIEW 3 of 22 
 

 

LAU-NET [27] addressed the issue of uneven pixel density caused by distortion at dif-
ferent latitudes in ERP images by segmenting ERP images into multiple strips based on dif-
ferent latitudes and handling distortion within each latitude range separately through sepa-
rate learning. Subsequent optimizations of this model considered the issue of area stretching 
ratio, using it as an additional condition input to help the network better understand the dis-
tortion of the image and achieve more precise correction, yielding good results. SphereSR [28] 
addressed the problem of distortion in planar projection images caused by complex projec-
tions. This method introduced a feature extraction module capable of extracting features from 
different types of projections (such as central projection, equidistant cylindrical projection, etc.) 
on the sphere. These extracted spherical features were used as parameters that were input into 
the spherical local implicit image function (SLIIF) to predict the RGB values corresponding to 
the spherical coordinates, thus achieving high-resolution reconstruction results for arbitrary 
projection types. Although this method achieved good results, the computational cost in-
volved was too high, making it impractical for real-world applications. Currently, the main-
stream approach is still to process ERP images because ERP projection calculation is simple, 
easy to implement, and has higher efficiency and reliability in practical applications. The 
OSRT [29] method approached the problem from the perspective of image sampling, suggest-
ing that downsampling from fisheye images better captures the geometric properties of ERP 
images and is more consistent with the real imaging process. OSRT also designed an image 
distortion-aware transformer, which can adjust the distortion of images in real-time based on 
the distortion of ERP images, without the need for manual intervention or complex prepro-
cessing steps. 

3. Architectural Details 
In this section, we first describe the network structure of the proposed omnidirec-

tional image super-resolution model based on SwinIR [26] and then provide detailed in-
troductions to each module. 

3.1. The Entire Network Architecture 
The entire network architecture is based on improvements made to SwinIR, as illustrated 

in Figure 1, and mainly consists of the following key components: firstly, the location trans-
formation module preprocesses ERP images to reduce distortion in polar regions, providing 
optimized input for super-resolution reconstruction. Next is the enhanced SwinIR framework, 
which effectively handles long-distance dependencies by leveraging the hierarchical structure 
and local attention mechanism of the Swin Transformer to enhance super-resolution recon-
struction performance. Deformable convolutional layers are introduced into the model, re-
placing standard convolutional layers to better adapt to local deformations in the images, par-
ticularly achieving better results in handling distortion in ERP images. The entire model’s op-
eration proceeds as follows: firstly, the input low-resolution ERP images undergo prepro-
cessing and distortion correction through the location transformation module, then through 
the improved SwinIR framework, shallow feature extraction, deep feature extraction, and, fi-
nally, image reconstruction for super-resolution is sequentially performed, ultimately output-
ting high-quality high-resolution ERP images. 

Positioning
Network

Grid 
Generator

Sampler

Location Transformation Module(LTM)

Shallow 
Feature 
Extraction

Deep Feature Extraction

R
ST

B

R
ST

B

R
ST

B

R
ST

B

D
Co

nv Image
Reconstruction

LR
HR

R
ST

B

 
Figure 1. The Network Architecture of Our Proposed Model (This model aims to convert low reso-
lution (LR) images into high resolution (HR) images). 

Figure 1. The Network Architecture of Our Proposed Model (This model aims to convert low
resolution (LR) images into high resolution (HR) images).



Information 2024, 15, 248 4 of 16

3.2. The Location Transformation Module

ERP images exhibit significant distortion in the polar regions due to their unique
projection method, posing a considerable challenge for super-resolution reconstruction
algorithms. To overcome this challenge, this paper introduces a location transformation
module (LTM) with support for deformable convolutions. The LTM aims to optimize the
preprocessing of images, reduce distortion in the polar regions of ERP images, and enhance
the network’s ability to perform spatial transformations [32]. The LTM enables the network
to learn how to adaptively adjust images for different spatial transformation tasks, thereby
improving subsequent processing.

As shown in Figure 2, the LTM applies spatial transformations to feature maps during
a single forward pass. This transformation depends on the specific input, generating
a single output feature map. It allows the neural network to dynamically modify the
spatial layout of its input feature maps, enabling the network to automatically perform
spatial transformations on images without any additional supervision. This enhances
the model’s adaptability and robustness to geometric deformations in the input data.
When dealing with ERP images, the spatial transformation module can be particularly
effective as ERP images often exhibit significant distortion at the poles, which can result
in poor image quality during super-resolution tasks. By introducing the LTM, the spatial
content of images can be dynamically adjusted during the network’s forward pass, thereby
preprocessing ERP images and improving the performance of subsequent tasks. The LTM
can automatically learn spatial transformations to correct distortions or perspective biases
in images, providing SwinIR with more standardized inputs. Detailed descriptions of each
module will be provided below.
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3.2.1. Positioning Network

The positioning network is the first part of the location information module, responsi-
ble for learning the spatial transformation parameters of the input feature map. The core
function of this network is to automatically determine the optimal adjustment of the spatial
layout of the input data, facilitating the subsequent super-resolution tasks.

The positioning network receives an input feature map U ∈ RH×W×C, where W is
the width, H is the height, and C is the number of channels. Its task is to output a set
of transformation parameters, θ, which define the spatial transformation, Tθ , applied to
the feature map. The size of the transformation parameters, θ, depends on the type of
transformation being parameterized. For example, for affine transformations, θ is six-
dimensional, as affine transformations can be fully defined by six parameters (translation,
scaling, rotation, and skew), as illustrated in Figure 3.

The function, floc(U), of the positioning network can take any form, such as a fully
connected network or a convolutional network, but the key is that it should include a final
regression layer to generate the transformation parameters, θ. This means that regardless
of the internal structure of the network, its output is a set of numerical values that can be
directly used to define spatial transformations. The positioning network enables the LTM to
adaptively perform spatial preprocessing based on the specific content of the input feature
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map. This means that the network can automatically perform operations such as cropping,
rotating, and scaling, which are necessary for optimizing subsequent task performance.

Information 2024, 15, x FOR PEER REVIEW 5 of 22 
 

 

feature map. This means that the network can automatically perform operations such as 
cropping, rotating, and scaling, which are necessary for optimizing subsequent task per-
formance. 

 
Figure 3. Affine Transformation Diagram. 

3.2.2. Grid Generator 
The grid generator is the second key component of the LTM, following the position-

ing network. Its main responsibility is to create a sampling grid based on the transfor-
mation parameters, 𝜃, output by the positioning network. This grid determines how to 
sample from the input feature map to generate the transformed output feature map. This 
process is a direct means of implementing spatial positional transformations, allowing the 
model to dynamically adjust the spatial layout of its input. 

The grid generator computes the corresponding input pixel positions for each output 
pixel position based on the transformation parameters, 𝜃. This means that for each pixel 
position in the output feature map, the grid generator specifies a sampling point location 
from the input feature map. This process can be described by the following formula 1, 
taking affine transformation as an example: 𝑇 𝑥, 𝑦 = 𝜃 𝜃 𝜃𝜃 𝜃 𝜃 𝑥𝑦1 = 𝜃 𝑥 + 𝜃 𝑦 + 𝜃𝜃 𝑥 + 𝜃 𝑦 + 𝜃   (1)

where 𝑥, 𝑦  represents the pixel position in the output feature map and 𝜃 represents 
the affine transformation parameters learned by the positioning network. In this way, each 
output position is mapped back to a specific position on the input feature map. The coor-
dinates of each point obtained by the transformation formula constitute the sampling grid. 
This grid directly guides the sampling positions in the subsequent sampling steps, deter-
mining from which positions in the input feature map to extract pixel values to construct 
the transformed output feature map. 

3.2.3. Sampler 
The sampler is the third and final major component of the LTM. Its function is to 

sample pixel values from the input feature map according to the sampling grid provided 
by the grid generator in order to generate the transformed output feature map. This step 
is the actual execution stage of spatial transformation, ensuring that the model can dy-
namically adjust the spatial layout of its input data as needed. 

The sampler first receives the transformation parameters, 𝜃, output by the position-
ing network, which define how the spatial transformation from the input feature map, 𝑈, 
to the output feature map,  𝑈 , is performed. Based on these parameters, the sampler 

Figure 3. Affine Transformation Diagram.

3.2.2. Grid Generator

The grid generator is the second key component of the LTM, following the positioning
network. Its main responsibility is to create a sampling grid based on the transformation
parameters, θ, output by the positioning network. This grid determines how to sample
from the input feature map to generate the transformed output feature map. This process
is a direct means of implementing spatial positional transformations, allowing the model
to dynamically adjust the spatial layout of its input.

The grid generator computes the corresponding input pixel positions for each output
pixel position based on the transformation parameters, θ. This means that for each pixel
position in the output feature map, the grid generator specifies a sampling point location
from the input feature map. This process can be described by the following Formula (1),
taking affine transformation as an example:

Tθ(x, y) =
[

θ11 θ12 θ13
θ21 θ22 θ23

]x
y
1

 =

[
θ11x + θ12y + θ13
θ21x + θ22y + θ23

]
(1)

where (x, y) represents the pixel position in the output feature map and θ represents the
affine transformation parameters learned by the positioning network. In this way, each
output position is mapped back to a specific position on the input feature map. The
coordinates of each point obtained by the transformation formula constitute the sampling
grid. This grid directly guides the sampling positions in the subsequent sampling steps,
determining from which positions in the input feature map to extract pixel values to
construct the transformed output feature map.

3.2.3. Sampler

The sampler is the third and final major component of the LTM. Its function is to
sample pixel values from the input feature map according to the sampling grid provided by
the grid generator in order to generate the transformed output feature map. This step is the
actual execution stage of spatial transformation, ensuring that the model can dynamically
adjust the spatial layout of its input data as needed.

The sampler first receives the transformation parameters, θ, output by the positioning
network, which define how the spatial transformation from the input feature map, U, to the
output feature map, U, is performed. Based on these parameters, the sampler computes
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a set of sampling points, Tθ(G), which represents the continuous spatial positions that
need to be sampled in the input feature map, U. Each sampling point, (xs, ys), defines a
continuous spatial position in the input feature map, U, and the sampler applies a sampling
kernel, k

(
·, Φx, Φy

)
, at these positions to compute the values of the corresponding pixels in

the output feature map, V. The sampling kernel determines how discrete output values are
interpolated from the continuous spatial positions of the input feature map. The sampling
process can be mathematically represented by the following Formula (2):

Vi
c =

H

∑
n=1

W

∑
m=1

Unm
c k

(
xi

s − m; Φx

)
k
(

yi
s − n; Φy

)
(2)

where Unm
c is the value at channel c and position (n, m) in the input feature map. Vi

c is the
sampled value at channel c and position

(
xi

t, yi
t
)

in the output feature map. k(·; Φx) and
k
(
·; Φy

)
are the sampling kernel functions in the x and y directions, respectively.

3.3. SwinIR with Deformable Convolution

SwinIR [26] is an image restoration model based on the Swin Transformer, which
achieves high-quality image reconstruction through three key modules: shallow feature
extraction, deep feature extraction, and high-quality (HQ) image reconstruction. These
modules work together to process low-quality (LQ) image inputs and produce high-quality
output images. This part of this project used the code (online available at https://github.
com/JingyunLiang/SwinIR (accessed on 26 August 2021)) from Liang et al. [26].

First, the model transforms the input low-quality image into shallow features using
a 3 × 3 convolutional layer, preparing for subsequent deep feature extraction. Then, in
the deep feature extraction stage, the model utilizes a module consisting of K residual
Swin Transformer [33] blocks and a 3 × 3 convolutional layer to extract deep features
from the shallow features, capturing richer image information. Finally, by aggregating
shallow and deep features, the model reconstructs the high-quality image. Shallow features
primarily contain low-frequency information, while deep features focus on recovering
lost high-frequency information. Through long skip connections, the model effectively
transmits low-frequency information and helps the deep feature extraction module focus
on recovering high-frequency information, thereby improving the training stability and
image reconstruction quality. The final image reconstruction module typically employs
sub-pixel convolutional layers for upsampling and utilizes residual learning to recover
the residual between low-quality and high-quality images, thus achieving high-quality
image reconstruction.

To enhance the performance of super-resolution (SR) on ERP images, we replaced the
standard convolutional layers in SwinIR with deformable convolutions [34]. This substitu-
tion allows for the dynamic adjustment of the shape of the convolutional kernel to adapt to
specific geometric variations in the input data, thereby improving the model’s adaptability
to changes in image shape and the flexibility of its receptive field. As illustrated in Figure 4,
deformable convolutions introduce additional learnable parameters (i.e., offsets) during
the convolution process, dynamically adjusting the sampling points of the convolutional
kernel to accommodate local deformations in the image content. These offsets, learned
by the network, enable the convolutional kernel to adaptively align with key features in
the image rather than sampling solely at fixed, regular grid points. The entire process is
expressed as Formula (3), as follows:

y(p0) = ∑ pn∈R w(pn) · x(p0 + pn + ∆pn) (3)

A regular grid, R, is used to sample on the input feature map, x. Then, the sampled
values are multiplied by the weights, w, and summed. p0 represents the position on the
output feature map, y, pn is the relative position within the grid R, and ∆pn is the offset

https://github.com/JingyunLiang/SwinIR
https://github.com/JingyunLiang/SwinIR
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corresponding to the position pn, allowing the sampling position p0 + pn to be appropriately
adįusted according to the content of the input feature map.
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4. Experiments
4.1. Datasets

ODI-SR [8]. The dataset is specifically designed for research on omnidirectional image
super-resolution. “ODI” stands for omnidirectional image, representing a 360-degree field
of view using ERP images. The ODI-SR dataset comprises a series of high-resolution
omnidirectional images along with their corresponding low-resolution versions, covering
diverse scenes such as indoor, urban landscapes, and natural environments. It aims to pro-
vide a comprehensive benchmark platform for evaluating and comparing the performance
of various omnidirectional image super-resolution techniques.

SUN360 [35]. This is a large-scale omnidirectional image dataset, part of the SUN
(Scene Understanding) project aimed at creating a comprehensive benchmark dataset for
visual scene understanding. The SUN360 dataset contains tens of thousands of omnidirec-
tional images covering various indoor and outdoor environments. Each omnidirectional
image provides a 360-degree field of view represented in ERP format.

4.2. Implementation Detail

The GPU used in this experiment is A800*4. During the training phase, we followed
the data partitioning settings of the ODI-SR dataset, conducting model training on the
ODI-SR training set. The resolution of ERP HR images is set to 1024 × 2048, with upscaling
factors of ×2 and ×4. Predefined downsampling kernels are directly applied to the ERP
images for downsampling. The loss function used is L1, and optimization is performed
using the Adam optimizer with an initial learning rate of 2 × 10−4. The total batch size is
set to 32, and the input patch size is 64. The model is trained for 300 k iterations, with the
learning rate halved at 150 k, 240 k, and 270 k iterations. During the evaluation phase, the
model is tested on the ODI-SR test set and the SUN360 dataset. PSNR, SSIM, LPIPS as well
as their WS-PSNR and WS-SSIM are used as evaluation metrics to assess performance.

4.3. Quantitative Results

During the experimental process, we trained and compared the performance of main-
stream super-resolution methods including Bicubic, SRCNN [4], EDSR [7], VDSR [8],
ESRGAN [12], RCAN [13], BSRGAN [14], Real-ESRGAN [15] and SwinIR [26]. The experi-
mental results are shown in Tables 1–4. The best results are represented in red colors.
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Table 1. Experimental Results for ×2 Upscaling Comparison.

Scale ×2

Method
ODI-SR SUN 360 Panorama

PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 28.26 0.8216 0.353 28.54 0.8279 0.398

SRCNN [4] 29.03 0.8452 0.342 29.26 0.8426 0.364

VDSR [8] 30.12 0.8703 0.265 30.11 0.8733 0.302

RCAN [13] 30.15 0.8725 0.226 30.52 0.8745 0.264

EDSR [7] 30.32 0.8711 0.269 30.65 0.8720 0.279

ESRGAN [12] 30.36 0.8769 0.205 30.85 0.8812 0.198

BSRGAN [14] 30.32 0.8795 0.187 30.98 0.8839 0.175

Real-ESRGAN [15] 30.59 0.8819 0.155 31.19 0.8825 0.196

SwinIR [26] 30.54 0.8825 0.115 31.25 0.8846 0.132

LTM-SwinIR (ours) 30.67 0.8836 0.102 31.39 0.8857 0.118

Table 2. Experimental Results for ×2 Upscaling Comparison.

Scale ×2

Method
ODI-SR SUN 360 Panorama

WS-PSNR WS-SSIM WS-PSNR WS-SSIM

Bicubic 27.32 0.8059 28.50 0.8356

SRCNN [4] 28.20 0.8312 28.96 0.8402

VDSR [8] 29.56 0.8716 29.65 0.8736

RCAN [13] 29.63 0.8669 29.41 0.8749

EDSR [7] 29.65 0.8772 29.66 0.8768

ESRGAN [12] 29.86 0.8769 29.79 0.8775

BSRGAN [14] 30.25 0.8698 30.25 0.8799

Real-ESRGAN [15] 30.36 0.8716 30.19 0.8859

SwinIR [26] 30.32 0.8720 30.39 0.8886

LTM-SwinIR (ours) 30.54 0.8799 30.62 0.8870

From the experimental results, it can be observed that the LTM demonstrates strong
potential performance compared to many mainstream single-image super-resolution meth-
ods. The presence of the sliding window mechanism enables SwinIR and our proposed
LTM-SwinIR to excel in capturing long-range dependencies (i.e., global information). Con-
sequently, they generally outperform traditional SR methods relying on convolutional
dependencies, such as RCAN and ESRGAN, in terms of recovering image details. Al-
though RCAN and ESRGAN introduce attention mechanisms and residual learning to
enhance feature extraction capabilities, the experimental results indicate that they are less
efficient in multi-scale feature fusion and utilization compared to LTM-SwinIR. In com-
parison to SwinIR, LTM-SwinIR demonstrates a more noticeable advantage in distortion
perception. The application of the LTM module and the deformable convolution blocks
offers significant superiority in handling ERP image processing.
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Table 3. Experimental Results for ×4 Upscaling Comparison.

Scale ×4

Method
ODI-SR SUN 360 Panorama

PSNR SSIM LPIPS PSNR SSIM LPIPS

Bicubic 25.39 0.7089 0.574 25.29 0.7069 0.608

SRCNN [4] 25.69 0.7319 0.428 26.16 0.7365 0.526

VDSR [8] 26.75 0.7622 0.399 27.13 0.7639 0.422

RCAN [13] 26.89 0.7599 0.352 27.22 0.7659 0.395

EDSR [7] 27.08 0.7624 0.403 27.35 0.7709 0.355

ESRGAN [12] 26.99 0.7689 0.326 27.39 0.7738 0.386

BSRGAN [14] 27.26 0.7695 0.295 27.29 0.7729 0.308

Real-ESRGAN [15] 27.32 0.7702 0.302 27.50 0.7755 0.226

SwinIR [26] 27.36 0.7708 0.282 27.56 0.7795 0.256

LTM-SwinIR (ours) 27.41 0.7726 0.203 27.99 0.7820 0.199

Table 4. Experimental Results for ×4 Upscaling Comparison.

Scale ×4

Method
ODI-SR SUN 360 Panorama

WS-PSNR WS-SSIM WS-PSNR WS-SSIM

Bicubic 24.96 0.6985 25.38 0.7059

SRCNN [4] 25.13 0.7256 26.02 0.7423

VDSR [8] 26.16 0.7459 26.98 0.7812

RCAN [13] 26.23 0.7449 27.12 0.7859

EDSR [7] 26.44 0.7478 27.30 0.7860

ESRGAN [12] 26.39 0.7502 27.35 0.7895

BSRGAN [14] 26.41 0.7519 27.46 0.7899

Real-ESRGAN [15] 26.49 0.7522 27.52 0.7906

SwinIR [26] 26.61 0.7546 27.60 0.7915

LTM-SwinIR (ours) 26.69 0.7553 27.82 0.7966

4.4. Ablation Study

To demonstrate the effectiveness of the LTM module and the deformable convolution
layers in feature extraction of LTM-SwinIR, ablation experiments were conducted in this
section. The experimental parameters were consistent with those described earlier, and
testing was performed at a scale factor of ×4 on the dataset. The results are presented in
Table 5. The best results are represented in red colors.

4.5. Qualitative Results

In this section, a comparative analysis was conducted between several mainstream
methods and LTM-SwinIR. The proposed method in this chapter demonstrates relatively
superior results in both quantitative comparative experiments and qualitative presenta-
tions. This is particularly notable for addressing images like ERP that exhibit distortion at
specific locations. The experimental results are shown in Figures 5–13. The best results are
represented in red colors.
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Table 5. Experimental Results for ×4 Upscaling Ablation Study.

Scale Component ×4

Model D-Conv LTM
ODI-SR SUN 360 Panorama

WS-PSNR WS-SSIM WS-PSNR WS-SSIM

1 x x 26.49 0.7509 27.09 0.7895

2 x
√

26.68 0.7544 27.32 0.7933

3
√ √

26.76 0.7558 27.40 0.7956
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4.6. Training and Validation Results

The ODI-SR dataset was used for training at a ×4 pixel scale, with experimental
settings as described in Section 4.2. It iterated for a total of 250 epochs. The changes
in evaluation metrics WS-PSNR and loss function are shown in Figures 14 and 15. The
experiments generally met the expectations, validating the rigor of the approach.
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5. Conclusions

This paper proposes an omnidirectional image super-resolution method based on
enhanced SwinIR, leveraging the spatial transformation capability of the location trans-
formation module (LTM) and deformable convolution layers in feature extraction to en-
hance SwinIR’s ability to handle spatial deformations and different perspectives in im-
ages. This fusion significantly enhances the model’s capability to handle complex spatial
relationships and details in omnidirectional images, thereby achieving higher-quality
super-resolution reconstruction.

The LTM supports deformable convolution, enabling spatial transformations of feature
maps in a single forward pass. This transformation depends on specific inputs, generating
a single output feature map. It allows neural networks to dynamically modify the spatial
layout of their input feature maps, enabling automatic spatial transformations without re-
quiring any additional supervision. This enhances the model’s adaptability and robustness
to geometric deformations in the input data. When dealing with ERP images, the LTM
can be particularly effective in addressing distortions present at the poles. By introducing
the LTM, the spatial content of images can be dynamically adjusted during the forward
propagation of the network, thereby preprocessing ERP images to improve the performance
of subsequent tasks. The replacement of standard convolutional layers with deformable
convolutional layers in the feature extraction layer of SwinIR is primarily motivated by
the need to enhance the adaptability and flexibility of convolutional neural networks to
geometric deformations in images. This replacement strengthens the network’s ability
to handle non-rigid deformations in images, particularly for omnidirectional images and
other applications requiring high geometric flexibility.

In the future, research should focus on developing more efficient model architectures
and algorithms to optimize and lightweight the models, reducing the demand for com-
putational resources, enhancing the processing speed, and achieving real-time or near
real-time omnidirectional image super-resolution processing. Additionally, future efforts
can explore the introduction of more diverse training data, advanced data augmentation
techniques, and new training strategies to further improve the model’s generalization and
robustness across different scenarios and conditions. Currently, the application scope of
omnidirectional image super-resolution methods is limited. In the future, integrating image
super-resolution technology with the latest research findings from other disciplines can
broaden its applicability.
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