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Abstract: This research develops an innovative framework for accelerating Conjugate Heat Transfer
(CHT) simulations within squared heated cavities through the application of Graphics Processing
Units (GPUs). Although leveraging GPUs for computational speed improvements is well recognized,
this study distinguishes itself by formulating a tailored optimization strategy utilizing the CUDA-C
programming language. This approach is specifically designed to tackle the inherent challenges of
modeling squared cavity configurations in thermal simulations. Comparative performance evalua-
tions reveal that our GPU-accelerated framework reduces computation times by up to 99.7% relative
to traditional mono-core CPU processing. More importantly, it demonstrates an increase in accuracy
in heat transfer predictions compared to existing CPU-based models. These results highlight not only
the technical feasibility but also the substantial enhancements in simulation efficiency and accuracy,
which are crucial for critical engineering applications such as aerospace component design, electronic
device cooling, and energy system optimization. By advancing GPU computational techniques, this
work contributes significantly to the field of thermal management, offering a potential for broader
application and paving the way for more efficient, sustainable engineering solutions.

Keywords: CUDA; Conjugate Heat Transfer; GPU; CUDA-C; computational time reduction

1. Introduction

The early exploration into Conjugate Heat Transfer (CHT) problems by Perelman [1]
highlighted the complexity of solving heat conduction equations for solid bodies and their
surrounding fluids simultaneously. Further advancements were made by Luikov et al. [2],
who developed analytical methods to address convective heat transfer issues, acknowl-
edging the crucial role of heat propagation in solids in contact with moving fluids. In the
mid-1970s, Chida and Katto [3] utilized vectorial dimensional analysis to propose new
dimensionless groups that encapsulate the conjugate nature of heat transfer. The impact of
porous media within cavities on heat transfer was experimentally explored by Seki et al. [4].
Inaba and Fukuda [5] conducted a groundbreaking study on the effects of water’s density
inversion near 4 ◦C within inclined square cavities, revealing unique natural convection
patterns that deviate significantly from those observed in traditional Boussinesq fluids. The
late 1980s saw Ho and Yih [6] numerically investigate the attenuated heat transfer rates in
air-filled rectangular cavities with partitions. Frederick and Valencio [7] studied natural
convection in square cavities with conducting partitions, demonstrating the significant
impact of partition. These pioneering studies collectively provide a comprehensive foun-
dation for the ongoing exploration of conjugated heat transfer phenomena, particularly
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in configurations involving square cavities and conducting solids, including the effect of
geometry and thermal properties on convective heat transfer mechanisms.

The exploration of CHT within square cavities has seen notable advancements over
the last decade, characterized by innovative methodologies and diverse applications. For
instance, Alkhalid et al. [8] studied buoyancy-driven rarefied gas dynamics within con-
jugate cavities, examining the effects of cavity aspect ratios, conductivity ratios, and tilt
angles. Alsabery et al. [9] demonstrated the potential of nanofluids to significantly enhance
thermal management through heatline visualization. Khatamifar et al. [10] optimized
partitioned square cavities for improved thermal management. Gijon-Rivera et al. [11]
simulated CHT in rooms with glazed windows, modeled as square cavities. Chen et al. [12]
introduced a novel lattice Boltzmann approach, tackling the modeling complexities as-
sociated with fluid-porous interfaces. Alvarado-Juarez et al. [13] characterized thermal
mechanisms in solar receivers, showcasing the crucial role of radiatively participating
media in thermal analysis.

The acceleration of CHT problem resolutions through the use of GPUs has been a
significant area of research over the last decade. Klimeš and Stetina [14] presented a fully
three-dimensional GPU-based heat transfer and solidification model for the continuous
casting of steel, highlighting the necessity for rapid computation in real-time applications
like casting control and optimization. Zhang et al. [15] presented a GPU-assisted finite
element methodology for the modeling and analysis of bio-heat transfer processes in
thermal ablation treatment, demonstrating computational performance improvements of
up to 55.3 times with GPU acceleration. Narang et al. [16] explored the use of GPUs for
accelerating the numerical solution of heat and mass transfer equations, demonstrated
drastic performance enhancements, and highlighted the potential of GPUs in speeding up
complex simulations. Silvestri and Pecnik [17] implemented a fast Monte Carlo algorithm
on GPUs for radiative heat transfer in turbulent flows; the study achieved significant
speed-ups, enabling accurate solutions for radiative heat transfer that can be coupled to
direct numerical simulations of turbulent flows. Dugast et al. [18] demonstrated an efficient
GPU-based thermal process simulator for laser powder bed fusion additive manufacturing;
the paper proposed a matrix-free preconditioned conjugate gradient algorithm, resulting
in significant computational speedups. Luo et al. [19] focused on the heat transfer in a
porous brick roof filled with phase change materials; the numerical study employed a
GPU-accelerated multiple-relaxation-time Lattice Boltzmann Method to investigate ther-
mal buffering capacity, demonstrating the efficiency of GPU acceleration in simulating
complex thermal phenomena. Gou and Shen [20] introduced a new GPU-based CFD-
DEM model designed to simulate gas–solid flow involving large numbers of particles
and complex geometries. They developed an innovative coupling strategy between the
CFD and DEM GPU-based solvers, which enhanced both the efficiency and stability of
simulations, reaching 95.6% simulation time reduction. Wang et al. [21] utilized the Lattice
Boltzmann Method to simulate thermal convective flows, demonstrating its effectiveness
in handling complex boundary conditions and providing a comparative benchmark for our
GPU-accelerated approach.

GPU computing has become increasingly pivotal in CFD due to its ability to signifi-
cantly accelerate complex simulations. GPUs are being leveraged for their superior parallel
processing capabilities, allowing for faster computation of large-scale simulations. Narang
et al. [16] exemplify this; in their study, GPUs facilitated the efficient acceleration of heat
and mass transfer equations, showcasing the potential for rapid processing in real-time
applications. In terms of integration with traditional methods, there is a growing trend of
integrating GPU computing with traditional computational methods like the FVM to en-
hance computational efficiency while maintaining accuracy. This integration is highlighted
in studies such as those by Moukalled et al. [22], which discuss the adaptation of FVM for
GPU implementation. Furthermore, researchers are focusing on developing and optimizing
solvers that are specifically designed for GPU architectures. For instance, Silvestri and
Pecnik [17] implemented a fast GPU Monte Carlo algorithm for radiative heat transfer,
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which showed significant computational speed-ups. This method serves as another vali-
dation point for the efficiency of GPU utilization in complex simulations. These studies
exemplify the potent combination of GPU acceleration and CHT analysis, demonstrating
the significant computational advantages and broad application potential of this approach
in engineering and scientific research. With the advancement in GPU technologies, there
is an increased focus on conducting real-time simulations and visualizations of complex
fluid dynamics scenarios. This application is crucial for industries where real-time data and
feedback are essential for operational success and safety. As computational demands grow,
there is also a concurrent focus on making GPU computing more sustainable and energy
efficient. This involves developing algorithms that not only run faster but also consume
less power, aligning with global sustainability goals.

This work investigates the application of GPU technologies to accelerate CHT simula-
tions within squared heated cavities, focusing on increased parallel computing capabilities
to reduce the computational time. The goal is to formulate a comprehensive methodology
that not only addresses the specifics of GPU computing but also the unique challenges
presented by square heated cavity configurations. In summary, this paper aims to bridge
the gap between the computational demands of high-fidelity CHT simulations and the
capabilities of contemporary computing hardware by leveraging GPU acceleration. Given
the importance of accurate and efficient thermal management in various engineering ap-
plications, the development of optimized computational strategies is imperative. This
work presents a novel approach that combines the parallel processing power of GPUs
with advanced numerical methods to significantly enhance the speed of CHT simulations
without compromising accuracy. By showcasing the application of this technology in
squared heated cavity configurations, the work highlights the potential for widespread
adoption and further innovation in the simulation of complex thermal phenomena.

The GPU simulations were conducted using an inhouse code developed in CUDA-C
and operated on a MSI Nvidia™ GeForce® RTX™ 4090 graphic card (made in Hsinchu,
Taiwan), equipped with 24 GB of video memory. Additionally, this CUDA® code was run
on a desktop PC powered by an Intel® Core™ i9 12900KF processor (made in Hillsboro,
Oregon, United States of America). Figure 1 presents the general numerical fluid solution
developed utilizing both CPU and GPU capabilities.
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Figure 1. Flowchart of the developed CUDA-C language code.

2. Materials and Methods
2.1. Mathematical Model

Computational Fluid Dynamics (CFD) problems typically involve solving sets of
partial differential equations (PDEs) that describe the behavior of fluid flow. The governing



Computation 2024, 12, 106 4 of 18

equations for CHT, for instance, include the simultaneous solution of the Navier–Stokes
equations and the Energy-Transport Balance equation [22].

The conservation of mass, known as the continuity equation, considering that the flow
is incompressible, is expressed as

∇ · v = 0 (1)

where v is the velocity vector.
The linear momentum conservation, in turn, considering Equation (1) and the fluid

viscosity being constant, can be written as

∂

∂t
[ρ f v] +∇ ·

{
ρ f vv

}
= −∇p + µ∇2v + fb (2)

where ρ f is the fluid density, t is the time, p is the fluid pressure, µ is the fluid viscosity
coefficient, and fb is the body forces vector.

Finally, the energy-transport balance, in terms of temperature, is given by

∂

∂t

(
ρ f cT

)
+∇ ·

[
ρ f cvT

]
= ∇ · [k∇T] + QT (3)

where c is the specific heat, T is the temperature, k is the thermal conductivity, and QT is
the source term.

Considering the Boussinesq approximation, the equation for density becomes

ρ f = ρ f ,∞[1 − β(T − T∞)] (4)

where T∞ is the environment temperature, ρ f ,∞ is the fluid density at T∞, and β is the
volume expansion coefficient.

2.2. Boundary and Initial Conditions
2.2.1. Lid-Driven Cavity

Figure 2 shows the scheme for a classical problem, the Lid-Driven Cavity. It involves a
square cavity filled with an ideal gas, with the top lid moving at a constant speed while the
other walls remain stationary. This movement creates complex flow patterns within the
cavity due to the shear forces at the moving boundary. The primary interest in this problem
lies in understanding how the fluid moves, how vortices develop within the cavity, and how
these vortices evolve with changes in the speed of the lid and the viscosity of the fluid. This
configuration is particularly relevant for applications involving lubrication technologies
and microfluidic devices, where fluid shear and boundary layer interactions are critical.
The specific conditions were chosen to simulate typical microscale flow environments,
enabling the study of shear-driven flow patterns, which is essential for optimizing device
performance. For this case, Table 1 presents all boundary and initial conditions used in this
simulation case.

Table 1. Boundary and initial conditions for Lid-Driven Cavity.

Boundary/Initial Conditions Description

u = 1.0 m/s horizontal velocity at top lid
u = 0 m/s horizontal velocity at bottom, left. and right faces
v = 0 m/s vertical velocities for all faces

∂p/∂x = 0 N/m3 pressure gradient for vertical faces
∂p/∂y = 0 N/m3 pressure gradient for horizontal faces
gy = 9.81 m/s2 vertical gravitational acceleration

p (t = 0) = p0 [N/m2] initial pressure condition
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Figure 2. Scheme and boundary conditions for the simulations of Lid-Driven Cavity.

2.2.2. Natural Convection in a Square Cavity

Figure 3 presents the scheme for a square cavity subject to natural convection inside.
In this scenario, a fluid-filled square cavity typically has vertical walls at different tem-
peratures, causing the fluid near the hot wall to heat up, decrease in density, and rise,
while the fluid near the cold wall cools down, increases in density, and sinks. This creates
a circulating motion of the fluid within the cavity, known as a convection current. The
simplicity of the square cavity model makes it ideal for studying fundamental aspects
of convection without the complexities of external influences. The prescribed boundary
and initial conditions mimic real-world conditions, where convection is crucial for heat
dissipation, thereby aiding in the design of efficient heat exchangers and cooling systems.
Table 2 presents all boundary and initial conditions used in this simulation case.

Computation 2024, 12, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Square cavity subject to natural convection. 

In this case, the authors considered an ideal gas as a fluid inside the cavity. 

2.2.3. Conjugate Heat Transfer 
Figure 4 presents the scheme for a square cavity with a solid block inside, where U 

and V are the zero horizontal and vertical dimensionless velocities; dimless / 0T y∂ ∂ =  is the 
horizontal face insulation; dimless dimless/ 0 and / 0p x p y∂ ∂ = ∂ ∂ =  are the zero dimensionless 
pressure gradients at the vertical and horizontal faces, respectively; TH,dimless and TC,dimless 
are prescript dimensionless temperatures; and Tdimless (T = 0) = 0.5 is the initial dimension-
less temperature. The boundary conditions for the CHT simulations, involving a square 
cavity with a solid block inside, are crucial for understanding the thermal interactions in 
industrial applications such as electronic component cooling and reactor safety assess-
ments. The chosen conditions aim to closely represent the thermal behavior observed in 
systems where solid-structure and fluid interactions determine the overall thermal man-
agement efficiency. This is essential for evaluating the effectiveness of various material 
properties and configurations in real-life engineering applications. 

In this case, the authors considered that the fluid inside of cavity is an ideal gas. Fur-
thermore, the governing equations are made dimensionless according to [23]. Then, 

( , )( , ) x yX Y
L

=  (5)

where x and y are Cartesian coordinates, X and Y are dimensionless Cartesian coordinates, 
and L is the square cavity dimension. 

( , )( , )
/

u vU V
Lα

=  (6)

where u and v are the horizontal and vertical velocities, respectively; U and V are the hor-
izontal and vertical dimensionless velocities, respectively; and α is the thermal diffusivity. 

( )dimless 2

( )

/
yp g y

p
L

ρ

α

+
=  (7)

where dimlessp  is the dimensionless pressure, and gy is the gravity acceleration. 

Figure 3. Square cavity subject to natural convection.
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Table 2. Boundary and initial conditions for Natural Convection in a Square Cavity.

Boundary/Initial Conditions Description

u = 0 m/s horizontal velocity for all faces
v = 0 m/s vertical velocity for all faces

∂T/∂y = 0 K/m insulation at top and bottom faces
∂p/∂x = 0 N/m3 pressure gradient for vertical faces
∂p/∂y = 0 N/m3 pressure gradient for horizontal faces
TH and TC [K] prescript temperature (TH > TC)

T (t = 0) = T0 [K] initial condition

In this case, the authors considered an ideal gas as a fluid inside the cavity.

2.2.3. Conjugate Heat Transfer

Figure 4 presents the scheme for a square cavity with a solid block inside, where U
and V are the zero horizontal and vertical dimensionless velocities; ∂Tdimless/∂y = 0 is
the horizontal face insulation; ∂pdimless/∂x = 0 and ∂pdimless/∂y = 0 are the zero dimen-
sionless pressure gradients at the vertical and horizontal faces, respectively; TH,dimless and
TC,dimless are prescript dimensionless temperatures; and Tdimless (T = 0) = 0.5 is the initial
dimensionless temperature. The boundary conditions for the CHT simulations, involv-
ing a square cavity with a solid block inside, are crucial for understanding the thermal
interactions in industrial applications such as electronic component cooling and reactor
safety assessments. The chosen conditions aim to closely represent the thermal behavior
observed in systems where solid-structure and fluid interactions determine the overall
thermal management efficiency. This is essential for evaluating the effectiveness of various
material properties and configurations in real-life engineering applications.
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In this case, the authors considered that the fluid inside of cavity is an ideal gas.
Furthermore, the governing equations are made dimensionless according to [23]. Then,

(X, Y) =
(x, y)

L
(5)
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where x and y are Cartesian coordinates, X and Y are dimensionless Cartesian coordinates,
and L is the square cavity dimension.

(U, V) =
(u, v)
α/L

(6)

where u and v are the horizontal and vertical velocities, respectively; U and V are the hori-
zontal and vertical dimensionless velocities, respectively; and α is the thermal diffusivity.

pdimless =
(p + ρgyy)

(α/L)2 (7)

where pdimless is the dimensionless pressure, and gy is the gravity acceleration.

Tdimless =
T − TC

TH − TC
(8)

where Tdimless is the dimensionless temperature, and TH and TC are the temperatures of the
heated and cooled faces, respectively.

2.3. Numerical Model

In this section, the authors detail the numerical methodologies employed to solve the
governing equations. The Fractional Step Method (FSM) was selected due to its robustness
in handling the coupling between velocity and pressure fields in fluid dynamics simulations.
FSM effectively splits the Navier–Stokes equations into simpler sub-steps, allowing for
more stable and accurate solutions by treating the momentum and continuity equations
separately. This method is particularly advantageous in complex flow simulations, where
precision in pressure-velocity coupling is crucial.

Additionally, the Finite Volume Method (FVM) was applied due to its high fidelity in
discretizing the governing equations on structured meshes. FVM conserves fluxes across
control volume boundaries, ensuring conservation of mass, momentum, and energy, which
is essential for accurately capturing the nuanced behaviors of thermal and flow fields
in natural convection scenarios. By using FVM, it is possible to achieve detailed spatial
discretization and gain precise control over the numerical diffusion, which is particularly
important in the study of thermal transport in fluid systems.

The displaced mesh approach complements these methods by addressing the stag-
gered arrangement of velocity components, which helps in reducing numerical errors
associated with grid alignment. The co-located arrangement of pressure and temperature
fields on the same mesh, alongside the staggered velocity fields, enhances the stability and
accuracy of our simulation framework, particularly in handling the complex boundary
layers and thermal gradients observed in natural convection within square cavities.

Figure 5a illustrates the mesh within a rectangular domain, segmented into volumes
known as finite volumes, with each featuring its respective nodes positioned at the domain’s
center. This mesh configuration specifically accounts for the nodes associated with pressure
and temperature. Given the presence of boundary conditions, the introduction of ghost
cells is deemed necessary. As depicted in Figure 5b, the mesh representing the vertical
component of the velocity field is displaced upwards, while the mesh for the horizontal
component is shifted to the right.

The numerical solution consists of use the SIMPLE (Semi-Implicit Method for Pres-
sure Linked Equations) Algorithm in three stages to solve Navier–Stokes equations. If
the problem involves a temperature field, it is necessary to solve the Energy-Transport
Balance Equation. The process begins by calculating the initial conditions for velocity and
pressure to estimate the velocity field. Then, the linear system is solved using the Suc-
cessive Over-Relaxation (SOR) method, aimed at determining pressure correction values.
If a temperature field is present, the Energy-Transport Balance Equation must be solved
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explicitly. This iterative process continues until the convergence criterion is met, based on
the residue value representing mass conservation in the discretized volumes.
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Equation (9) represents the linear system to solve the estimated velocity field and the
pressure correction.

aPP
′
P = aEP

′
E + aW P

′
W + aN P

′
N + aSP

′
S + S (9)

where the subscript P is the center of the control volume (CV); the subscripts E (east), W
(west), N (north), and S (south) are the CV neighbors of P; and S is the source term.

The SOR method, in turn, can be written as

aEP
′
E + aW P

′
W + aN P

′
N + aSP

′
S + S = R (10)

Substituting Equation (10) in Equation (9), we obtain

aPP
′
P = R (11)

The value of pressure correction of the central node can be obtained using Equation (11),
and its value of the next iteration can be calculated using Equation (12).

P
′e+1
P = P

′e
P + κWP (12)

where the superscript e is the index of the pressure iteration, and WP is the correction.
Hence, the iterative solution of the linear system can be written as

aP

(
P

′e+1
P + κWP

)
= R (13)

WP =
R
aP

− P
′e+1
P (14)



Computation 2024, 12, 106 9 of 18

Finally, the solution for the pressure correction can be written as

P
′e+1
P =

P
′e
P + κ R

aP

1 + κ
(15)

With the estimated velocity field and the pressure correction, the update for these can
be written as

P = P′ + P0 (16)

u = u′ + u0 (17)

v = v′ + v0 (18)

where P is the pressure correction, and u and v are horizontal and vertical velocity
fields updates.

In scenarios involving CHT problems, there are two distinct domains: a solid and a
fluid. The numerical solution for each domain is computed independently. However, these
domains exchange information at the interface, such as heat flux or temperature, ensuring
a cohesive solution across the boundary between the solid and fluid regions.

Figure 6 illustrates the partitioned domain model utilizing the CHT problem approach.
Within this model, I1 and I2 represent the information exchanged between the solid and
fluid domains. I1 corresponds to the heat flux at the interface between the fluid and solid,
derived from the calculations performed in the solid domain. Conversely, I2 represents
the temperature at the same location, determined based on the fluid domain’s results and
then transferred to the solid domain. This bidirectional exchange—where one domain con-
tributes heat flux and the other temperature—is crucial for achieving stable and convergent
numerical model results.
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Equations (19) and (20) represent the information I1 and I2, respectively.

qi
fw = βqqi−1

fw +
(
1 − βq

)
qi

sw (19)

Ti+1
sw = βTTi

sw + (1 − βT)Ti
fw (20)

The parameters βq and βT in Equations (19) and (20) are sub-relaxation parameters,
and the stability of the numerical model depends of the choice of these.

3. Results and Discussion

This section presents findings for three distinct scenarios: the Lid-Driven Cavity,
Natural Convection in a Square Cavity, and the CHT Problem. For each case, the validation
of the GPU computational approach was conducted against the existing literature, which
utilized alternative methodologies. Additionally, this section will highlight the mesh
convergence observed in the numerical model when processed via GPU, particularly
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exemplifying this through the Lid-Driven Cavity case with a Reynolds number of 1000.
Finally, an analysis of the CPU’s performance in simulating the problem addressed in this
paper will be provided.

3.1. Lid-Driven Cavity

In this CFD study, the numerical solutions were obtained for four distinct scenarios. In
each scenario, the cavity’s upper boundary is subjected to a velocity of 1.0 m/s, while the
remaining boundaries of the square geometry, measuring 1 m × 1 m, maintain consistent
boundary conditions according Figure 2. The variable parameter in this investigation is the
Reynolds number, which is set to 100, 400, 1000, and 3200 for each case. Figure 7 presents
the streamlines of the velocity field in Lid-Driven Cavity simulations across a range of
Reynolds numbers. The mesh configuration for all cases is 150 × 150.
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A significant observation from the results of the first three cases is the presence of
three recirculation zones within the cavity. There is a large recirculation region dominating
the space, accompanied by two smaller recirculation areas in the bottom corners. As the
Reynolds number increases, as seen in Figure 7a–c, the intensity of the recirculation in these
corner regions becomes more pronounced. Furthermore, Figure 7d reveals an additional
recirculation zone emerging in the upper left corner of the cavity, in addition to the similar
recirculation regions observed in each case. Figures 8 and 9 present the comparison results
among this work and Guia et al. [24]. In this comparison, the authors present the vertical
velocity at x = 0.5 m and the horizontal velocity at y = 0.5 m across a range of Reynolds
numbers, Re = {100, 400, 1000, 3200}.

The results for each scenario, corresponding to their respective Reynolds numbers,
closely align with those reported by Ghia [24]. This similarity underscores the accuracy of
the methodology employed in this study.

3.2. Natural Convection in a Square Cavity

The second scenario involves Natural Convection in a Square Cavity, with the dimen-
sions being 1.0 m × 1.0 m. Here, the Rayleigh number serves as the variable parameter
across four cases, set to 103, 104, 105, and 106. The gravitational acceleration, consistent in
all cases and directed along the y-axis, is 9.81 m/s2. Parameters such as dynamic viscosity,
specific mass, specific heat, dissipation constant, and the adjustable boundary conditions
on the cavity’s vertical walls are fine-tuned to yield the Rayleigh number. For the horizontal
walls, the boundary conditions remain consistent across all cases, characterized by a heat
flux equal to zero, according Figure 3. Furthermore, the authors considered the fluid as
an ideal gas, and β = 1/T0, where T0 is the reference temperature. Figure 10 presents
the isothermal lines results of Natural Convection in a Square Cavity across a range of
Rayleigh numbers.

It is clear that with a low Rayleigh number, the isothermal lines tend to be vertical, with
little detour in the horizontal direction. With the increase of this dimensionless parameter,
the isothermal lines, when near the vertical walls, show a large inclination in relation to the
horizontal direction; when distant from the vertical walls, they clearly show a horizontal
direction. This means that with a low Rayleigh number, the heat flux does not have zero
relation to the horizontal direction, and with the increase of the Rayleigh number, the heat
flux in the horizontal direction can be null, with the exception of near the vertical walls.
Table 3 presents the comparison of the present work and other works [21,25,26] for the
Nusselt number at the vertical wall across a range of Rayleigh numbers.

Table 3. Comparison results for the Nusselt number at the vertical wall across a range of
Rayleigh numbers.

Rayleigh Number 103 104 105 106

Santos [26] 1.1180 2.2460 4.5270 8.8600

Duarte [25] 1.0720 2.0900 4.3900 8.9010

Wang et al. [21] 1.1180 2.2450 4.5220 8.8270

Present study 1.0755 2.1447 4.3506 8.3725
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Reviewing Table 3 in the context of this study compared to others, it is evident that the
numerical model achieves a close approximation to previous works, albeit with a slight de-
viation in the case of a Rayleigh number equal to 106. While the initial hypothesis attributed
the discrepancy primarily to the application of a single iteration of the SIMPLE algorithm,
several other aspects could also influence the outcome. In terms of numerical stability and
convergence, the use of a single iteration of the SIMPLE algorithm might not sufficiently
capture the complex interactions between buoyancy forces and thermal gradients at such
a high Rayleigh number. This high value intensifies the non-linearities due to increased
convective heat transfer, possibly requiring multiple iterations for the algorithm to achieve
a stable and accurate solution. On the other hand, the chosen mesh resolution might not be
adequate for capturing the finer details of the flow and temperature fields at high Rayleigh
numbers. A grid independence study could reveal whether a denser mesh could help in
reducing the observed discrepancy by providing a more refined spatial discretization. In
terms of physical modeling assumptions such as the Boussinesq approximation, which
simplifies the density variations to be solely a function of temperature, these might not hold
perfectly at higher temperature differentials. Deviations could also arise from boundary
layer approximations or simplifications in the properties of the fluid used in the simulations.
Finally, the SIMPLE algorithm itself, while robust for a wide range of applications, has
limitations in handling the highly dynamic and complex flow patterns that emerge at very
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high Rayleigh numbers. Exploring alternative algorithms or more advanced iterations
within the SIMPLE framework could provide insights into the sensitivity of the results to
the numerical method employed.

3.3. Conjugate Heat Transfer

The final analysis discussed in this paper necessitates the nondimensionalization of
the equations governing both the fluid and solid domains, with the approach for the solid
domain detailed by [26]. This study focuses on a square cavity of dimensions L × L,
containing a concentric solid body with dimensions 0.5 L × 0.5 L. Within the fluid domain,
the assumption is that the fluid behaves as an ideal gas. Two scenarios were simulated:
the first with a dimensionless thermal conductivity ratio k* set to 0.2, representing the
ratio of the solid’s dimensionless thermal conductivity to that of the fluid, and the second
with k* = 5.0. The mesh resolution for the entire system, encompassing both the solid and
fluid, was set to 201 × 201. Figure 11 presents the isothermal lines of CHT simulations.
Furthermore, Table 4 presents a comparison of the present work and other works [26,27]
for the Nusselt number at the vertical wall for the CHT problem.
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Table 4. Comparison results for the Nusselt number at the vertical wall for the CHT problem.

Thermal Conductivity Ratio (k*) 0.2 5.0

Present study 4.6167 4.3112

Santos [26] 4.6000 4.3320

House et al. [27] 4.6260 4.3220

For k* = 0.2 (Figure 11a), the isotherms bend around the square, indicating that it has
a lower thermal conductivity compared to the surrounding medium, acting as a thermal
resistance. This results in a noticeable ‘shadowing’ effect downstream of the square, which
creates regions of lower temperature gradients. For k* = 5.0 (Figure 11b), although the
square still influences the temperature field, the isotherms are less disturbed by its presence.
This could imply that the square’s thermal conductivity is closer to that of the surrounding
medium or that the overall system has a higher thermal diffusivity, allowing for a more
uniform temperature distribution despite the presence of the square. The curvature of the
isotherms near the boundaries and the square’s edges in both cases suggests a complex
interaction between conductive and convective heat transfer mechanisms. The nature of
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this interaction is likely to depend on the thermal properties of the materials involved as
well as the boundary conditions of the system.

The data presented in Table 4 illustrate the high accuracy of the simulation outcomes
achieved using GPU processing. This demonstrates that, in addition to its efficiency in
terms of processing time, GPU-based simulation also delivers precise results. The findings
from GPU-accelerated CHT simulations are significant not only in terms of computational
efficiency but also for their potential applications in real-world engineering problems, such
as enhanced thermal management in aerospace and automotive industries, energy systems
optimization, and electronic cooling systems.

3.4. Mesh Convergence

The analysis presents mesh convergence in the Lid-Driven Cavity problem at a
Reynolds umber of 1000, employing simulations across mesh resolutions of 25 × 25,
50 × 50, 100 × 100, and 200 × 200. The L2 norm was calculated to compare the 50 × 50
mesh against the 25 × 25, the 100 × 100 against the 50 × 50, and finally, the 200 × 200
mesh compared to the 100 × 100. Figure 12a,b compares the results from all four mesh
configurations with those reported by Ghia [24]. On the other hand, Figure 12c shows the
L2 norm as a function of the number of cells.
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3.5. Simulation Performance

To evaluate the computational performance of GPU processing, three simulations
were conducted, each incorporating variations of a specific dimensionless parameter. These
simulations achieved results closely matching those found in the literature, which were
obtained using conventional CPU-based methodologies. Notably, the use of GPU process-
ing in this study resulted in a substantial reduction in simulation time, achieving a 99.7%
decrease compared to mono-core CPU processing.

In the case of the Lid-Driven Cavity problem, which involves complex flow structures
and high Reynolds numbers (notably at 1000 and 3200), GPU processing provided results
that closely approximated those reported by Ghia [24]. This underscores the significant
time-saving benefits of utilizing GPUs for such simulations.
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The study also explored Natural Convection in a Square Cavity, a scenario that intro-
duces an additional equation for heat transport and involves varying Rayleigh numbers.
Here too, GPU-accelerated algorithms delivered results that aligned well with findings
from other research, demonstrating the GPU’s effectiveness in handling complex problems.

Furthermore, the final simulation addressed a more intricate issue of solid–fluid
interaction, where the heat flux varies across the physical domain. The outcomes from
this simulation, consistent with established physics, underscore the potential of GPU
technology. With appropriate application, GPUs can offer a cost-effective means to solve
complex problems with greater fidelity to real-world phenomena. Despite achieving
significant computational time reductions (up to 99.7% compared to mono-core CPU
processing) and maintaining high fidelity, the research acknowledges potential limitations
such as model assumptions, boundary condition dependencies, and hardware-specific
performance. These factors could affect the generalizability and scalability of the findings.
Addressing these uncertainties through expanded validation, sensitivity analysis, and
testing across different hardware setups is suggested for future research to further establish
the robustness and applicability of GPU-accelerated thermal simulations in engineering.

4. Conclusions

This research elucidates the substantial computational advantages and precision
achievable through GPU acceleration in simulating CHT within squared heated cavities.
By leveraging the parallel processing capabilities of GPUs and employing the CUDA-
C programming language, the study found an up to 99.7% reduction in computation
time compared to traditional mono-core CPU processing, without compromising accuracy.
This work provides a novel and optimized framework for conducting high-fidelity CHT
simulations, addressing both the computational demands and the specific challenges
posed by squared heated cavity configurations. The findings underscore the potential
of GPU acceleration to significantly enhance simulation speeds while maintaining high
levels of accuracy, offering a valuable resource for future research and application in
thermal simulations across various engineering domains. The effective utilization of GPU
technology, as demonstrated in this study, marks a significant step forward in the efficient
and accurate modeling of complex thermal phenomena, contributing to the advancement
of thermal management strategies in engineering applications.
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Abbreviations
Table of Acronyms

CFD Computational Fluid Dynamics FVM Finite Volume Method
CHT Conjugate Heat Transfer GPU Graphics Processing Unit
CPU Central Processing Unit PDE Partial Differential Equations
CV Control Volume SIMPLE Semi-Implicit Method for Pressure Linked Equations
CUDA Compute Unified Device Architecture SOR Successive Over-Relaxation
FSM Fractional Step Method

Table of Symbols
α thermal diffusivity (m2/s) TH heated face temperature (K)
β volume expansion coefficient (1/K) T∞ reference temperature (K)
c specific heat (J/kgK) TC cooled face temperature (K)
fb body forces vector (N) TH heated face temperature (K)
gy gravity acceleration (m/s2) Tdimless dimless. temperature (-)
k thermal conductivity (W/mK) t time (s)
L square cavity dimension (m) u horizontal velocity (m/s)
µ fluid viscosity coefficient (Pa·s) U dimless. horizontal velocity (-)
∇ Nabla Operator (-) v vertical velocity (m/s)
p fluid pressure (Pa) v velocity vector (m/s)
pdimless dimless. fluid pressure (-) V dimless. vertical velocity (-)
QT source term (W/m3) Vc volume of the control volume (m3)
ρf fluid density (kg/m3) x and y Cartesian coordinates (m)
ρf,∞ fluid density at T∞ (kg/m3) X and Y dimless. Cartesian coord. (-)
T temperature (K)
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