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Abstract: This work continues the study of the process of friction between a steel spherical indenter
and a soft elastic elastomer previously published in our paper. It is done in the context of our previous
experimental results obtained on systems with strongly pronounced adhesive interaction between
the surfaces of contacting bodies during the process of friction between a steel spherical indenter and
a soft elastic elastomer. In the present paper, we concentrate on the theoretical study of the processes
developing in a vertical cross-section of the system. For continuity, here the case of indenter motion
at a low speed at different indentation depths is considered as before. The analysis of the evolution
of normal and tangential contact forces, mean normal pressure, tangential stresses, as well as the
size of the contact area is performed. Despite its relative simplicity, a numerical two-dimensional
(2D = 1 + 1) model, which is used here, satisfactorily reproduces experimentally observed effects.
Furthermore, it allows direct visualization of the motion in the vertical cross-section of the system,
which is currently invisible experimentally. Partially, it recalls two-dimensional (2D = 1 + 1) models
recently proposed to describe the “turbulent” shear flow of solids under torsion and in cellular
materials. The observations extracted from the model help us to understand better the adhesive
processes that underlie the experimental results.
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1. Introduction

The study of adhesive contacts is one of the actively developing fields of contact
mechanics. In normal contact, adhesion can significantly increase the pull-off strength, and
in tangential contact, the presence of adhesive interaction can lead to additional energy
dissipation. As a result, it can increase friction. Constantly growing interest in the study of
adhesion processes is caused by the relationship between the following two factors. First
of all, adhesion effects are common in the formation, restructuring and destruction of the
contact. Often, they are even easily seen by the naked eye, and their experimental study
does not require any expensive equipment. On the other hand, these seemingly simple
processes are actually quite complex, requiring the creation of corresponding theories that
adequately describe them.

Furthermore, the adhesive technologies have found extensive use in wide range of
practically important application areas, for example, in robotics [1–3] and medicine [4,5].
The adhesive properties of contacting surfaces play a decisive role in such common techno-
logical processes as painting [6,7], soldering [8,9], welding [10,11], gluing surfaces [12,13],
coatings [14], etc. The surface roughness partially prevents the creation of good con-
tact [15,16], and as a result, adhesion often does not manifest itself. However, adhesion
should be taken into account when developing certain types of microelectronic devices,
where the size of contacting objects is small, and adhesive forces between them are signifi-
cant [17,18]. This is especially critical, for example, for MEMS (micro electric mechanical
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systems), where contacting surfaces can spontaneously stick to each other due to adhe-
sion [19,20].

The first rigorous theory of adhesive contact was published more than 50 years ago,
in 1971. It is the JKR theory [21], which is based on the principle of energy balance and
describes the normal adhesive contact between a spherical body and an elastic half-space.
In JKR, the radius of action of adhesive forces is assumed to be small compared to other
geometric parameters of the problem, such as indentation depth and contact radius. The
opposite case of long-range adhesive forces is described by the DMT theory [22], which
was published a few years after JKR. Both theories give significantly different results, and
only in 1992 in [23] was it shown that they are both limiting cases of the general theory of
adhesion, in which the radius of adhesion interaction was introduced as a free parameter.

However, in real experiments, additional effects are almost always observed, that
cannot be described using classical theories. For example, there is secondary adhesion
hysteresis, which refers to the fact that the loading and unloading phases of the contact
formation correspond to different dependences of the normal force on the indentation
depth [24,25]. Such hysteresis leads to the additional dissipation of mechanical energy in
oscillating adhesive contacts. It must be taken into account in the design of the devices and
technological processes wherein adhesion plays an important role. Tangential adhesive
contacts, compared to normal ones, show even more complex processes. One can mention,
for example, the propagation of elastic waves in the contact zone with simultaneous
restructuring of its boundary (Schallamach waves [26–28]), changes in the geometric shape
of the contact and its area [29–31], etc.

Schallamach waves are one of the intriguing phenomena of modern contact mechanics.
As a rule, they are observed during the restructuring of contact between soft materials with
large elastic deformations (so-called “elastomers”). Elastic gels, which were created recently,
are good materials to use to study Schallamach waves. They are optically transparent, have
high viscosity and adhesion as well as being able to withstand large elastic deformations.
For example, in works [32,33], the sliding of gel samples on a silicate glass surface is studied.
They demonstrate a transition between different types of stick–slip motion, which have
been studied at different velocities of gel samples driven along the glass. At high speeds,
the stick–slip mode is periodic. While velocity decreases, motion becomes irregular and
even demonstrates stochastic behavior. Here, chaotic behavior is caused by the fact that at
any given moment, the contact between the elastomer and the glass exists in multiple areas,
and this complex contact configuration is constantly rearranged during motion. Systems
wherein full contact occurs between rubbing surfaces in the stick phase typically exhibit a
regular periodic stick–slip motion regime [34,35]. Since the gel material used in [32,33] is
transparent, it is possible not only to observe directly the dynamic processes in the contact
zone, but also quantitatively determine the corresponding contact area. In turn, one can
calculate the value of shear stresses, on which the nature of the propagating elastic waves
in the contact zone depends.

In our previous work [36], we experimentally investigated the tangential adhesive
contact between a hard steel spherical indenter and a much softer elastomer, at different
indentation depths. As an elastomer, the soft gel sheet (thermoplastic polystyrene-type gel
sheet, CRG N3005, TANAC Co., Ltd., Gifu, Japan) with thickness h = 25 mm and linear
horizontal dimensions 100 mm × 100 mm was used. Note that the much softer CRG
N0505 material, produced by the same company, was used in the work cited above [32].
The work [36] considered a quasi-static mode in which the indenter shifted at a very low
speed, which was only 1 µm/s. It was shown that, regardless of the indentation depth,
in a stationary sliding mode, a regime is established in which constant tangential stresses
are distributed throughout the entire contact area, which is a characteristic of the contact,
and does not depend on external pressure. In this regime, the friction coefficient becomes
meaningless, since the friction force Fx is proportional to the contact area Fx = τ0A, where
the stress τ0 is kept constant for all the indentation depths and contact areas.
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The constant shear stress τ0 during sliding is often observed in adhesive contacts, and
there are two reasons for it. The first reason is that the process of the destruction of adhesive
bonds during tangential movement is weakly influenced by external pressure. And the
second reason is that in the case wherein one of the contact bodies is sufficiently soft, it is
easily deformed and well fills the roughness existing on the surface of the indenter [37].
In this case, the observed (nominal) contact area A is always close to the real one. These
two reasons lead to constant shear stresses in contacts in which macroscopic adhesion is
observed. In addition to the experiment, ref. [36] proposed a dynamic model of adhesive
contact, which confirms the experimental results.

Let us mention, however, one important feature of the work [36] and, in general, of
all the experimental works related to the study of quasi-static tangential contact. Despite
the fact that in [36], the indenter was moved with a low speed, at the moment when
shear stress reached a critical value, partial sliding of rubber developed over the whole
surface of the indenter. It ran at a speed many times higher than the shear rate of the
indenter by itself and led to the appearance of elastic waves at the interface. This type
of systemic excitation causes a propagation of the elastic waves running not only in the
interface (which are observed visually), but also inside the bulk of the elastomer material.
At the same time, it is quite difficult to experimentally detect these waves without violating
the integrity of the system. The creation of dynamic models should help us understand
the processes that develop inside the bulk of an adhesive material in this specific friction
mode. Let us stress that numerical models are widely applied now as powerful instruments
for the visualization of processes in the adhesion contact cross-section. As examples of
the frequently used techniques, one can mention the finite element method (FEM) [38,39],
molecular dynamics (MD) [40,41] and the method of the movable digital automata [42–45].
Further, plural analytical models [21–23,29–31,46,47] are often applied to investigate the
adhesion phenomena.

In the present paper, based on the method of interacting movable automata, a model is
proposed, with the help of which the modeling of an elastic medium can be naturally per-
formed. Since the purpose of the work is mainly a qualitative description of the processes, a
relatively simple and less time-consuming two-dimensional version of the model is consid-
ered. The dynamics of this system is quite clear, and one can treat it as a visualization of a
two-dimensional cross-section of the adhesive elastomer. The present study continues and
compliments the experimental study [36] by a dynamic picture of the propagation of the
elastic waves inside an elastomer, in the orthogonal projection, where direct observation in
real experiment is a difficult task due to various technological reasons. One has to note that
there are fresh works that have experimentally observed the processes in the orthogonal
cross-section of the adhesive contact (see, for example, [48]). Their observations look closely
at the numerical results that we obtained in the model that is described below.

2. Experimental Technique

The elastic modulus of the elastomer used in experiments in [36] was E ≈ 0.324 MPa,
and its Poisson’s ratio was ν ≈ 0.48. The elastomer is several orders of magnitude softer
than the other materials used: the substrate (silicon glass) and indenter (steel). So, in the
experiment, only the elastomer layer could deform. The elastomeric sample consisted
of 5 sheets superimposed on each other; every layer of h = 5 mm thick. Due to mutual
adhesion, they were firmly attached to each other. As a result, the elastomer could be
practically considered as a solid one with thickness h = 25 mm. In the horizontal direction,
the elastomer size was 100 mm × 100 mm.

The radius of the steel indenter, which was pressed into the elastomer, was R = 22 mm.
To avoid misunderstandings, let us note that the illustrative photograph in Figure 1 shows
only one such elastomer sheet, having the thickness h = 5 mm. The indenter, with a larger
radius R than in experiments in [36], is also shown in Figure 1.
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Figure 1. (Left panel) Simplified experimental design; (right panel) real photograph of the contact 
zone from [36]: ① indenter, ② elastomeric sample, ③ rigid silicate glass substrate. 
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valley potential, 𝑈 = (|𝐫 − 𝐫 ± | ± 𝑎) /2. It can be treated, in fact, as a mathematical pro-
cedure wherein every node is attracted according to Hook’s law to a local minimum 
formed by its neighbors in the distances |𝐫 − 𝐫 ± | = ±𝑎 to each of them. 

Another possibility was used in the studies [43–45], where a lattice was naturally 
formed by a set of the interacting movable automata supplied by a combination of the 
short-range repulsion and long-range attraction between the automata, which naturally 
form a lattice having a fixed distance between the neighbors. Such a system can reproduce 
a behavior of any viscous “lubricant” placed between two rigid contact surfaces of differ-
ent forms (planar, spherical, etc.) moving in 3D space. The main features of the system, 
which have to be reproduced in the model frames, should include an external pressure 
(including gravitation) acting on at least one of the surfaces. Below, we will call a surface 
under pressure the ʺupperʺ one and describe a shear force caused by the mutual motion 
of the surfaces. 

Let us note that here and below, all the values used in the numerical experiment are 
normalized to the corresponding measured ones. In particular, a series of experiments, 
previously published in [36], was carried out with varied indentation depths Dind = 0.0, 0.2, 
0.4, 0.6, 0.8 and 1 mm. Normal forces FN at the end of the indentation phase (before the 
onset of tangential shear), corresponding to the listed indentation depths, were equal to 
Fz = −0.027, 0.261, 0.765, 1.44, 2.3 and 3.3 N. The corresponding contact areas were equal to 
A = 6.1, 17.1, 33.66, 51.71, 70.85 and 88.72 mm2, respectively. These values make it possible 
to calculate the average pressure acting in the contact at different indentation depths <P> 
= FN/A = −0.0044, 0.015, 0.023, 0.028, 0.032 and 0.037 kPa. 

Let us note, additionally, that negative values of normal force Fz and contact pressure 
<P> at zero indentation depth Dind = 0.0 mm are caused by the fact that in this case, the 
contact exists only due to adhesion. The adhesive component of the force tends to “pull” 
the indenter into the elastomer. As a result, to ensure an indentation depth Dind close to 

Figure 1. (Left panel) Simplified experimental design; (right panel) real photograph of the contact
zone from [36]: 1⃝ indenter, 2⃝ elastomeric sample, 3⃝ rigid silicate glass substrate.

3. Numerical Model

Below, to simulate the dynamic behavior of the system under consideration, we
apply a combination of numerically generated elastic substrate and movable hard ball
with appropriately defined repulsive and adhesion interactions between them. Differ-
ent possibilities to construct an elastic substrate were described in our previous works
(see for example [36,43–45]). In particular, one can keep a fixed distance between the
particles in the nodes of the mesh of any nature with 4th order potential with two mini-

mums, U =
(
rj − rj±1

)2
[

a − (r j − rj±1

)2
/2
]

/2. Close results can be achieved if one uses

quadratic 2-valley potential, U =
(∣∣rj − rj±1

∣∣±a
)2/2. It can be treated, in fact, as a math-

ematical procedure wherein every node is attracted according to Hook’s law to a local
minimum formed by its neighbors in the distances |r j − rj±1

∣∣∣= ±a to each of them.
Another possibility was used in the studies [43–45], where a lattice was naturally

formed by a set of the interacting movable automata supplied by a combination of the
short-range repulsion and long-range attraction between the automata, which naturally
form a lattice having a fixed distance between the neighbors. Such a system can reproduce
a behavior of any viscous “lubricant” placed between two rigid contact surfaces of different
forms (planar, spherical, etc.) moving in 3D space. The main features of the system, which
have to be reproduced in the model frames, should include an external pressure (including
gravitation) acting on at least one of the surfaces. Below, we will call a surface under
pressure the “upper” one and describe a shear force caused by the mutual motion of
the surfaces.

Let us note that here and below, all the values used in the numerical experiment are
normalized to the corresponding measured ones. In particular, a series of experiments,
previously published in [36], was carried out with varied indentation depths Dind = 0.0,
0.2, 0.4, 0.6, 0.8 and 1 mm. Normal forces FN at the end of the indentation phase (before
the onset of tangential shear), corresponding to the listed indentation depths, were equal
to Fz = −0.027, 0.261, 0.765, 1.44, 2.3 and 3.3 N. The corresponding contact areas were
equal to A = 6.1, 17.1, 33.66, 51.71, 70.85 and 88.72 mm2, respectively. These values make
it possible to calculate the average pressure acting in the contact at different indentation
depths <P> = FN/A = −0.0044, 0.015, 0.023, 0.028, 0.032 and 0.037 kPa.

Let us note, additionally, that negative values of normal force Fz and contact pressure
<P> at zero indentation depth Dind = 0.0 mm are caused by the fact that in this case, the
contact exists only due to adhesion. The adhesive component of the force tends to “pull”
the indenter into the elastomer. As a result, to ensure an indentation depth Dind close to
zero, it is necessary to apply a negative normal force Fz, i.e., change the direction of its
action (see Figure 1). It is interesting that if we formally calculate the friction coefficient
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µ = Fx/Fz, then it will turn out negative in this case [36]. This fact will be reflected by the
numerical results described below.

In our case, one of these surfaces is a rigid spherical ball and another one is the planar
substrate. Certainly, such a combination represents quite a standard tribological situation,
which should be characterized by the specific geometrical configuration, adhesion, pressure,
tangential velocity and other parameters of the problem. In fact, such a model is not re-
stricted to elastic systems only. It allows for a changeable amount of the “lubricant” moving
between the surfaces over time. The lubricant can be either gradually added into the space
between the surfaces, or extracted from the system, arbitrarily redistributed between them
in the course of the whole process or during some transient period, while a balance between
the external pressure and bearing force caused by the “lubricant” particles (automata) will
be reached. Such a “lubricant” substance combines the ability of extremely strong elastic
deformations, including irreversible plastic ones, and some transverse stiffness that allows
it to support the upper surface against external pressure. One more advantage of the
approach is the following: to hold the automata confined together in arbitrary form, one
does not need artificial boundary conditions in addition to the natural ones. Only physical
conditions are needed. For example, to keep the system under external load, one needs a
repulsing rigid boundary supporting it. We will exploit this advantage below.

Different materials such as those described above were recently simulated by us in
the work [43]. Basically, the model used there describes a system of N particles repre-
sented by the vector radius ri, the momentum pi, and the interaction potential U(|ri − rj

∣∣)
corresponding to the following Hamiltonian [49]:

H(ri, pi) =
1
2

N

∑
i=1

p2
i

mi
+

1
2

N

∑
i,j=1

U(
∣∣ri − rj

∣∣). (1)

For our goals, it is convenient to represent the interaction potential by a pair of
the potentials:

U(|ri − rj|) = C exp

{
−
( ri − rj

c

)2
}
− D exp

{
−
( ri − rj

d

)2
}

, (2)

where C and D define the magnitude, while c and d describe the radii of attraction and
repulsion, respectively. The minimization condition corresponding to an equilibrium reads
as follows:

C >> D, c < d. (3)

One of the surfaces is moving along a direction x. In different experiments, it can
be any of the boundaries between which the automata “particles” are confined. The only
physically important things are the following: the particular direction in which an external
pressure is applied and the direction in which (normally, orthogonal to it) some of the
plates are moving. In this paper, we always treat an “upper” plate as a movable ball of the
radius R.

As we mentioned above, the boundary conditions in the horizontal directions of 3D
space are not needed. But, one can apply them in some modifications of the model; typically,
on a rectangle with the side lengths of [0, Lx] and [0, Ly]. For example, in the case of shear
deformation, it is convenient sometimes to employ periodic boundary conditions, wherein
a particle leaving the interval [0, Lx] is returned to it at the opposite side of the system. On
the vertical axis, the system is limited by a substrate plate at y = 0 that supports the system
against gravitation force and/or the normal load P with a reflecting boundary:

Udown = C exp
(
− z

c

)
. (4)

To simulate an elastic system, one has to define the initial positions of the automata
on some grid where each node is connected with its neighbors by an elastic force. Elastic
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force tends to conserve the initial distance between the nodes, so such an interaction can be
described by the following potential:

Uelastic(|ri − rj|) = Kij

[
1 −

( ri − rj

a

)2
]
× exp

{
−
( ri − rj

R0

)2
}

. (5)

Here, R0 is a correlation radius that describes a distance wherein the elastic interaction
of the nodes is essentially large. It leads to a linear elastic force at small deviations and
automatically keeps the nodes connected with one another on equilibrium distance a. It
provides effective longitudinal and lateral stiffness of the material and returns it to the
original form when external force is removed.

As in the previous work [36], we add also an interaction between the ball and segments
of the elastic substrate. Each particular interaction should be a combination of the repul-
sion of an elastic segment from the hard “wall” of the ball’s surface and the short-range
(adhesive) attraction to the ball in a close proximity to its surface.

It is convenient to simulate them numerically by the sufficiently sharp, but still contin-
uous, potentials. For definiteness, we actually use strong exponential repulsion:

Urepuls = Urep
0 exp

{
−
(r − Rsphere)

Rrepuls

}
(6)

and short-range attraction in a narrow spherical belt around the surface:

Uadh = Uadh
0 exp

{
−
( r − Rsphere

Radh

)2
}

. (7)

Here, Urep
0 > 0 and Uadh

0 < 0, respectively, while both characteristic distances are
much smaller than the radius Rsphere of the spherical ball: Rrepuls << Rsphere, Radh << Rsphere.

The equations of motion have the following form [49]:

mi
∂vi
∂t

= −∂H(xi, pi)

∂pi
= fr

i , (8)

where vi is the velocity of the i-th particle. Interacting automata exchange momentum pi,
and, hence, a dissipation channel acting to equilibrate relative velocities of the particles
that happen to be within the relatively short mutual distance cv, close to the equilibrium
one, needs to be introduced. This can be done by including an additive dissipation force,

fv
i ∝

N

∑
j=1

(vi − vj) exp

{
−
( ri − rj

cv

)2
}

(9)

acting on every particle from the surrounding ones, with corresponding dissipation constant
η. As a result, the equations of motion formally assume the following form:

mi
∂vi
∂t

= fr
i − ηfv

i . (10)

Let us note that here, one deals with a dissipative system, which consists of large
numbers of effective particles. So, it is generally expected to demonstrate complex chaotic
behavior, typical for such systems [50,51]. Such a behavior can be a topic for an independent
study, but it is not a particular aim of the present work. The equations of motion can
be integrated by using Verlet’s method, which conserves the energy of the system at
each time step, provided no energy is supplied externally through mechanical work or
temperature variation.
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However, to simulate the effect of adhesion realistically, one has to complete the
equations of motion by a condition that specifies when a segment of the substrate follows
the ball, being practically glued to it by the adhesion force. Such a condition counts two
important features of the adhesion:

1. It attaches a given segment of the substrate to the spherical surface when the distance

between them is small enough
∣∣∣R(x, y, z)− Rsphere

∣∣∣ ≤ δRcrit;

2. It detaches the elastic segment from the ball when its deviation from the ball’s surface

exceeds a threshold k
(∣∣∣→r −→

r 0

∣∣∣) > fcrit, corresponding to some critical force at given
elastic constant k.

In fact, the description above corresponds to a numerical procedure applied at every
stage of the simulation routine. But, it also can be formally written in the analytical from as
a product of two formal conditions:

Condition = θ
(

δRcrit −
∣∣∣R(x, y, z)− Rsphere

∣∣∣)× θ
(

fcrit − k
∣∣∣→r −→

r 0

∣∣∣), (11)

where θ is the Heaviside step-function, defined by the standard relations [52]:

θ(x) =
{

1, when x ≥ 0;
0, when x < 0.

(12)

The corresponding numerical procedure either solves a set of the dynamic equations
for the particular segment, if these threshold conditions are not satisfied, or shifts this
elastic segment together with the contacting ball surface, moving according to its own
motion. The adhesion indicators are defined (in the same dimensionless units as above) by
the distance equal to the unit, as well as the mutual difference of the velocities between
the individual automata and indenter δvcrit =|Vx|= 1 and the critical force caused by their
displacements from the equilibrium (original) distances fcrit = K0δ|x − x0| = 3, where
Kij ≡ K0 is the effective elastic constant in Equation (5).

According to above description of the model, our simulation procedure is organized
as follows. First of all, we place the ball on the top upper boundary of the elastic slab
and allow the system to relax to a state close to equilibrium. This stage is necessary to
exclude the errors related to uncertainty in the original position of the elastic mesh at the
present values of the repulsion and adhesive potentials of the ball, repulsion of the elastic
continuum from the basal (hard solid boundary in the bottom) and other components of
the numerical model.

After this, we apply positive (or negative) external load P. If the load is positive, the
elastic substrate obviously deforms under its pressure. It causes an opposite force on the
ball, which tends to fix it on some equilibrium indentation depth Dind > 0. The motion of
the slowly moving ball is described by the equation of motion:

1
γ

∂Y
∂t

= −
(

P − ∑
j

f y
sphere(rj)

)
, f y

sphere(rj) = −
∂(Urepuls + Uadh)

∂rj
. (13)

Here, the variables Y and 1/γ describe the vertical position of the ball’s center and the
effective relaxation time for the overdamped motion of ball. The ball monotonously moves
while all the vertical components of the force balance one another in a self-consistent equilib-
rium. The balance of the pressure P and total repulsion force ∑j f y

sphere
(
rj
)

naturally defines
equilibrium indentation depth Dind. This equilibrium is automatically established despite
the uncertainty in the initial position of the ball, elastic medium and external pressure.
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When the depth Dind > 0 is defined, one can start pulling the ball in a horizontal
direction. This motion obviously causes some nonzero friction in the horizontal direction.

Fx = ∑
j

f x
sphere(rj). (14)

One has to note that in the presence of adhesion, some nonzero indentation depth is
still possible at formally negative values of the external load P < 0. In this case, the behavior
of the system is not so obvious and trivial, because the adhesive component of the force
pulls the ball down. If this force overpowers the external negative load P, the ball goes
down to the elastic substrate. Due to the curvature of the spherical ball, the deeper it dives
inside the elastic foundation, the larger is the contact area that is formed and, respectively,
stronger adhesion becomes possible. In turn, mutual repulsion between rigid ball and
elastic foundation, due to the compressibility of the elastic subsystem, grows as well. As a
result, some equilibrium distance from the surface can still be established.

However, if negative “load” P < 0 is stronger than some critical one, it overpowers the
attraction caused by the adhesion. In this case, some equilibrium negative depth Dind < 0
can be reached. In this case, the ball “levitates” at some positive distance from the (trial)
position of the upper boundary of the elastic subsystem. By changing the value P < 0, one
can find out a critical value of the negative “load” Pcrit < 0 starting from which the adhesion
cannot balance external pulling at all. In this case, the distance between the indenter and
surface increases with time because the short-range adhesion force exponentially decreases
simultaneously. Adhesion already cannot prevent the vertical motion of the ball, and it
leaves proximity of the surface completely. In other words, the absolute value of |Dind(t)|
infinitely increases with time: lim

t→∞
|Dind(t)| = ∞. It is interesting to note that, despite the

levitation, up to this threshold P ≤ |Pcrit|, nonzero friction caused by the adhesion is
conserved. It is very small, but it still exists.

Results, which are shown in the next section of the article, were obtained with fixed
parameters of the model: “length” of the elastomer Lx = 200; “thickness” of the elastomer
Ly = 35; number of automata N = 8000; mass of the automata in Equation (1): m = 0.1;
parameters of potentials in Equations (2) and (4): C = 10, c = 1, D = 0.1, d = 10; parameters
of potential in Equation (5): Kij ≡ K0 = 1, a = 1, R0 = 10−5; parameters of potentials in
Equations (6) and (7): radius of the sphere Rsphere = 30, Rrepuls = 1, Urep

0 = 1, Radh = 0.1,
Uadh

0 = 0.1; in Equation (9): cv = 2; “viscosity” in Equation (10): η = 0.25; “adhesive”
parameters in Equation (11): δRcrit = 1, fcrit = 3, k = 3; damping coefficient in Equation (13):
γ = 0.1; horizontal velocity of the sphere V = 1.

4. Results and Discussion

To establish the difference between the particular regimes, we have performed a
numerical simulation of the system under consideration with a sequence of the physically
interesting normal loads, including negative ones: P = −50, −45, −10, −5, 0, 25, 50, 75, 100.
The main results of the simulation are accumulated in Figure 2, where the time evolution
of the contact area, tangential force, normal force and indentation depth are reproduced in
the subplots (a)–(d), respectively.

The initial relaxation of the system to the equilibrium continues from t = 0 to t = 2.
After this preliminary relaxation, the vertical indentation is performed up to the moment
t = 12. After this moment, a tangential shift starts. A corresponding change is clearly seen
in the curves drawn in all the subplots, (a)–(d). In addition, one can notice a qualitative
change in the behavior in the vicinity of a “saddle point” Pcrit ≈−10 in the parametric space
where the standard friction regime with a relatively deep indentation under a sufficiently
strong positive normal load changes into “levitation” or even to detachment regimes. As
was expected, the value corresponding to this “saddle point” Pcrit ≈ −10 indentation depth
is close to zero. It is depicted by the blue curve in all the subplots of Figure 2.
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Figure 2. Time evolution of the contact area A (a), tangential force Fx (b), normal force Fz (c) and
indentation depth Dind (d). Saddle point, corresponding to the equilibrium indentation depth close to
zero, is shown by the blue line in all the subplots. It is seen from the subplot (a) that it corresponds
to a relatively small but nonzero contact area. The yellow and red curves mark the regimes caused
by negative pressure smaller than critical Pcrit < 0. Starting from this pressure, the adhesion cannot
balance external pulling. It is especially clear from the subplot (d) where red and yellow curves
go to infinity. Simultaneously, the contact area falls down to zero after a short transient process.
Cian and light blue curves depict the regime wherein the normal force must be negative to support
equilibrium indentation P ≤ |Pcrit|. It corresponds to a relatively small but nonzero contact area
in asymptotics t→∞ shown in the subplot (a). Ordinary friction regimes that correspond to the
monotonously growing positive normal load are depicted by the curves with the colors regularly
changing in the fixed color gamma (from magenta to black). Correlation between the particular value
of the equilibrium pressure Pt→∞ and the color of each curve in the subplots (b,d) is marked by
the arrow.

In particular, the critical regime corresponds to a relatively small but nonzero contact
area, as is seen from the subplot (a). The yellow and red curves in the same subplot mark the
regimes caused by negative pressure that is smaller than the critical one. As was discussed
above, a situation starting from a sufficiently strong negative “load” weakening due to
external pulling adhesion cannot balance the negative pressure. This fact is especially clear
from the subplot (d), where red and yellow curves, after a short transient process, diverge
to infinity. The rate of the divergency definitely depends on the strength of the pulling force.
It is different for two presented values of the parameter: P = −50, −45. Simultaneously
with the deviation of the ball from the surface, the contact area quickly falls down to zero
after a short transient process.
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Cian and light blue curves depict the regime wherein, due to the adhesion, the normal
force must be negative to support static equilibrium indentation. It corresponds to a
relatively small but nonzero asymptotic contact area at t→∞, shown by the curves of the
same color in the subplot (a). The family of other curves represents ordinary friction regimes
at a monotonously growing normal load. Their colors gradually vary from magenta to
black. The correlation between the particular value of the equilibrium pressure Pt→∞ and
the color of each curve in the subplots (b) and (d) is marked by the arrows. In both cases,
when the ball is completely detached from the substrate at the end of the process (red and
yellow curves), the asymptotic vertical force monotonously tends toward zero after the
moment of detaching.

The fine structure of the instant configuration of the system during tangential motion
at intermediate normal load P = 25 is presented in Figure 3.
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Figure 3. Typical instant configuration of the system at intermediate normal load P = 25. Subplot
(a) reproduces spatial distribution of the absolute local velocities normalized to the pulling velocity

v =
∣∣∣vj

∣∣∣/Vx , where deep red and blue colors correspond to the large and small values, respectively.
It can be seen directly that the elastic substrate is involved in the motion of the ball mainly near a
region of the contact. The subplot (b) reproduces the vector field of the local velocity that overlaps
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the density of its circulation, shown by a colormap. From the comparison with the subplot (a), one
can see that two regions of the maximal absolute velocity correspond to the couple of the opposite
vortices caused by the ball. The vortex rotates clockwise almost under its bottom, and the anti-vortex
rotates counterclockwise behind it. These rotations are accompanied by the waves of the compression
and extension shown in the subplot (c) together with the velocity vector field. One can see that
the compression mainly takes place in front of the moving ball, while successive extension and
compression waves (partially caused by an effect of the adhesion) follow the ball behind it.

Subplot (a) of this figure reproduces the spatial distribution of the absolute local
velocities normalized to the tangential pulling velocity v =

∣∣vj
∣∣/Vx . For its visualization,

we apply a scatter plot of the movable automata distribution, where deep red and blue
colors correspond to the large and small values, respectively.

It can be seen directly from Figure 3a that the elastic substrate is involved in the
motion of the ball mainly near a region of the contact. Subplot (b) reproduces the vector
field of the same distribution of local velocity as shown in subplot (a), which overlaps the
density of its circulation, shown by a colormap. One can establish a relation between the
distributions of the absolute velocity and intensity of the circulation from the subplots (a)
and (b), respectively. The only mutual relation of the calculated values has a meaning. The
distances are measured in the units shown directly on the vertical and horizontal axes of
the plots. In these units, the radius of the indenter, used for the particular simulation (also
shown by the part of the gray circle) is equal to R = 30. The tangential velocity is equal to
the unit as well: Vx = 1. All the densities are reproduced in the standard MatLab colormap
“jet” and distributed (in the same dimensionless units). For the movable digital automata, it
is done by a so-called “scatter-plot” of MatLab, where every automaton has an individual
color corresponding to the desirable value. The continuous densities seen in Figure 3 are
a kind of “optical illusion” caused by the large number of automata densely parked in
the picture.

In particular, it can be seen that two regions of the maximal absolute velocity in subplot
(a) actually correspond to a couple of the opposite vortices, caused by the directed motion
of the ball. One of them is a vortex, rotating clockwise almost under the bottom of the ball.
The second one is anti-vortex, which rotates counterclockwise behind it. These rotations are
accompanied by the waves of compression and extension shown in the subplot (c) together
with the velocity vector field.

From Figure 3c, one can see also that the compression mainly takes place in front of
the moving ball. In contrast to it, successive extension caused by its weaker compression
waves follow the ball behind. Partially, the extension of the elastic substance behind the
ball is caused by its compression under it, but partially it appears to be due to the adhesion,
which can pull the elastic medium to follow the ball behind, because of its attraction to the
ball’s surface.

It is interesting to compare vortex structures caused by the motion of the ball in vertical
and horizontal directions, which consequently take place at different stages of the process:
during its indentation and pulling. For such a comparison, we have plotted the same
snapshots, analogous to those shown in Figure 3, but calculated during a stage of vertical
indentation without tangential motion at an extremely strong normal load, P = 100.

The corresponding picture is reproduced in Figure 4. The difference in the symmetry
of the velocity distribution in subplot (a), as well as in the circulation structure of its vector
field, and the compression presented for this case in subplots (b) and (c), respectively, can
be seen directly. One can see in Figure 4b a couple of the symmetrical-appearing vortex
and antivortex. They are accompanied by the obvious region of compression that emerged
under the ball due to the simultaneous extrusion of the material symmetrically to the left
and right sides of the ball. It is useful, also, to compare the vortex structure caused by
the motion of the ball in the vertical direction at a positive (as in Figure 4) and “negative”
normal load. In the second case, the ball is actually lifted from a trial position, which will be
either stopped by the adhesion force, with a relatively weak lifting force, or will continue
to move out with infinitely increasing distance.
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Figure 4. The same as in Figure 3, calculated in a stage of vertical indentation at large normal
load P = 100 for a comparison with the horizontal pulling. The difference in the symmetry of the
velocity distribution in the subplot (a), as well as in the circulation structure of its vector field and
compression in the subplots (b) and (c), respectively, can be seen directly. One can see here a couple
of the symmetric vortex and antivortex accompanied by the obvious compression under the ball
leading to the extrusion of the material to its left and right sides.

The typical configuration obtained for the “negative” load P = −40 is reproduced in
Figure 5. The difference in the velocity distribution shown in subplot (a) of this figure,
as well as in the circulation structure of its vector field and compression in subplots (b)
and (c) at positive indentation force P = 100, shown in Figure 4, can be seen directly. In
Figure 5b, on each side of the ball, one can see vortex–antivortex pairs. This combination of
the vortices is caused here by a combination of the compression of the elastic foundation
directly under the ball and its extension on both sides, seen in subplot (c). Respectively, the
complexity of these motions leads to more complexity than in the distribution of absolute
velocity shown in Figure 4a. In Figure 5a, this distribution has three maximums: under the
ball directly and on both of its sides. These maximums are separated by the belts of smaller
velocity between them.
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Figure 5. The same as in Figure 4, calculated in a stage of vertical lifting of the ball with “negative
normal load” P = −40. The complexity of deformations leads to a corresponding distribution of the
absolute velocity shown in subplot (a). It has a maximum directly under the ball and two maximums
on both its sides. They are separated by belts of small absolute velocity. On each side of the ball
in subplot (b), one can see a couple of vortex–antivortex pairs, caused here by a combination of
compression of the elastic foundation directly under the ball and its extension on both sides. These
deformations are seen in subplot (c).

Time evolution of the system in dynamics is reproduced in the Supplementary Ma-
terials: Videos S1–S3, where the process in dynamics is presented for different normal
loads, respectively:

(a) At positive normal load P = 25;
(b) Strong “negative normal load” P = −40, strong enough to detach the ball from the

adhesive surface;
(c) Intermediate “negative load” P = −5 at which, despite the vertically pulling force,

the ball and adhesive substrate attract one another and, as result, move along the
deformed surface with some nonzero indentation.

The history of the process is recorded in the static form of the time–space maps in
Figure 6. In this figure, the top layer’s tangential velocity and the inverse distance from the
ball are plotted in subplots (a) and (b), respectively.



Computation 2024, 12, 107 14 of 17
Computation 2024, 12, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 6. Time–space distributions of the top layerʹs tangential velocity (a) and inverse distance be-
tween the ball and top layer (b). The distributions are calculated during a relatively short run after 
an initial preparation of the system and indentation of the ball. The system is adjusted to the static 
configuration close to equilibrium during the time interval t1 = 2 and the indentation period after it 
is up to t2 = 10. They are marked by black and magenta dashed lines, respectively. 

These pictures are plotted for a relatively short run of the system to make them clear. 
As is described above, the system has been preliminary adjusted to the natural static con-
figuration close to equilibrium during the initial time interval, equal to t1 = 2. After this, an 
indentation with normal load P = 75 during t2 = 10 has been applied. These two time mo-
ments are marked by the black and magenta dashed lines in the subplot (a) of the figure, 
respectively. During this time, as was found in the previous numerical experiments, the 
system practically stabilizes at the equilibrium indentation. After this, the horizontal mo-
tion of the ball is performed with constant velocity. The dimensionless velocity Vx = 1 is 
shown in all the figures (in fact, all the velocities of the problem are normalized to the 
pulling one). Both temporal maps in Figure 6a,b are plotted by the surfaces, where large 
and small values are shown by the deep red and blue colors, respectively. 

5. Conclusions 
To conclude, in this paper we presented the investigation that continues the study of 

the process of friction between a steel spherical indenter and a soft elastic elastomer pre-
viously published in our paper [36]. It was done in the context of the same experimental 
studies performed on the systems with strongly pronounced adhesive interactions be-
tween a steel spherical indenter and a soft elastic elastomer. In the present paper, we con-
centrate on the theoretical study of the processes developing in a vertical cross-section of 
the system. It is shown that despite its relative simplicity, a numerical two–dimensional 
(2D = 1 + 1) model describes quite well the system under consideration. 

The advantage of the model is that it allows visualization of the motion in the vertical 
cross-section of the system through experimental observation, which became available 
very recently [48]. It is still very hard to observe this, and information about it is still quite 
limited. At the same time, the model satisfactorily describes the experimentally observed 
effects and qualitatively reproduces the correct behavior of the physical system. Numeri-
cal experiments in the frame of this model can be used to obtain a better understanding of 

Figure 6. Time–space distributions of the top layer’s tangential velocity (a) and inverse distance
between the ball and top layer (b). The distributions are calculated during a relatively short run after
an initial preparation of the system and indentation of the ball. The system is adjusted to the static
configuration close to equilibrium during the time interval t1 = 2 and the indentation period after it is
up to t2 = 10. They are marked by black and magenta dashed lines, respectively.

These pictures are plotted for a relatively short run of the system to make them clear.
As is described above, the system has been preliminary adjusted to the natural static
configuration close to equilibrium during the initial time interval, equal to t1 = 2. After
this, an indentation with normal load P = 75 during t2 = 10 has been applied. These two
time moments are marked by the black and magenta dashed lines in the subplot (a) of the
figure, respectively. During this time, as was found in the previous numerical experiments,
the system practically stabilizes at the equilibrium indentation. After this, the horizontal
motion of the ball is performed with constant velocity. The dimensionless velocity Vx = 1
is shown in all the figures (in fact, all the velocities of the problem are normalized to the
pulling one). Both temporal maps in Figure 6a,b are plotted by the surfaces, where large
and small values are shown by the deep red and blue colors, respectively.

5. Conclusions

To conclude, in this paper we presented the investigation that continues the study
of the process of friction between a steel spherical indenter and a soft elastic elastomer
previously published in our paper [36]. It was done in the context of the same experimental
studies performed on the systems with strongly pronounced adhesive interactions between
a steel spherical indenter and a soft elastic elastomer. In the present paper, we concentrate
on the theoretical study of the processes developing in a vertical cross-section of the system.
It is shown that despite its relative simplicity, a numerical two–dimensional (2D = 1 + 1)
model describes quite well the system under consideration.

The advantage of the model is that it allows visualization of the motion in the vertical
cross-section of the system through experimental observation, which became available
very recently [48]. It is still very hard to observe this, and information about it is still quite
limited. At the same time, the model satisfactorily describes the experimentally observed
effects and qualitatively reproduces the correct behavior of the physical system. Numerical
experiments in the frame of this model can be used to obtain a better understanding of
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the adhesive processes, which underlie our physical expectations and are very difficult to
observe visually.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/computation12050107/s1, Video S1: Dynamics of the indentation
at positive normal load P = 25. Spatial distributions of the absolute local velocities, velocity vector field
circulation and local extensions and compressions (divergency) are shown by MatLab colormap “jet”
in the corresponding subplots. Three stages: preliminary preparation of the equilibrium system, static
indentation and pulling are seen consequently. Video S2: The same as in the first movie, obtained at
strong “negative normal load”, P = −40. It can be seen that after an initial (preparation) stage, the ball
detaches from the surface, being pulled by the external force, and moves further in a vertical direction.
Video S3: The same as in the first movie, obtained at a relatively weak “negative normal load”, P = −5.
It can be seen that after an initial (preparation) stage, the ball remains touching the surface and moves
with some indentation depth corresponding to an equilibrium between adhesion and the vertical
component of the pulling force. It can be seen also that despite a “negative load”, a horizontal motion
of the ball causes density waves and circulations in a manner qualitatively analogous to that caused
by the positive normal load.
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