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Abstract: Although titanium dioxide (TiO2) has a wide range of potential applications, the photocat-
alytic performance of TiO2 is limited by both its limited photoresponse range and fast recombination
of the photogenerated charge carriers. In this work, the preparation of nitrogen (N)-doped TiO2

accompanied by the introduction of oxygen vacancy (Vo) has been achieved via a facile annealing
treatment with urea as the N source. During the annealing treatment, the presence of urea not only
realizes the N-doping of TiO2 but also creates Vo in N-doped TiO2 (N-TiO2), which is also suitable
for commercial TiO2 (P25). Unexpectedly, the annealing treatment-induced decrease in the specific
surface area of N-TiO2 is inhibited by the N-doping and, thus, more active sites are maintained.
Therefore, both the N-doping and formation of Vo as well as the increased active sites contribute to
the excellent photocatalytic performance of N-TiO2 under visible light irradiation. Our work offers a
facile strategy for the preparation of N-TiO2 with Vo via the annealing treatment with urea.

Keywords: nitrogen doping; TiO2; oxygen vacancy; annealing treatment; urea

1. Introduction

Titanium dioxide (TiO2) has been widely investigated because of its excellent chemical
stability, nontoxicity, and low cost [1,2]. Although TiO2 shows great potential in many
fields [3–5], it can only absorb ultraviolet (UV) light [6], which limits its sufficient absorp-
tion of solar light because visible light (43%) takes up the majority of the solar spectrum [7].
In addition, the fast recombination of photogenerated charge carriers in TiO2 impedes
its efficient use of solar energy [8,9]. Thus, in order to improve the photocatalytic perfor-
mance of TiO2, not only does the photoresponse range need to be extended but also the
recombination of photogenerated charge carriers needs to be inhibited [10,11].

To extend the photoresponse range of TiO2 from UV light to visible light, the doping
strategy is commonly applied to adjust the intrinsic wide bandgap of TiO2 [12,13]. Among
various doping strategies, it is reported that nitrogen (N) doping is an effective approach to
reduce the bandgap of TiO2 and enables its absorption of visible light [14–16]. Generally, the
preparation of N-doped TiO2 can be realized by the annealing treatment with the presence
of additional N sources such as urea and ammonia [17–19]. To reduce the recombination
of photogenerated charge carriers, the formation of defective structure is reported to
be a useful strategy [6,20]. The introduction of point defects into TiO2, such as oxygen
vacancy (Vo), could trap the photogenerated electron inhibiting the recombination of the
photogenerated charge carriers [10,21]. Although many methods have been reported for
the creation of Vo in TiO2 [22–24], the annealing treatment of TiO2 with an organic additive
is reported to be an easy approach for the creation of Vo [25,26]. Thus, it is of great interest
to realize both the N-doping and creation of Vo to enhance the photocatalytic performance
of TiO2.
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To realize both the N-doping and introduction of Vo in one step, in this work, a facile
strategy has been developed to prepare N-doped TiO2 accompanied by the formation
of Vo via the annealing treatment with urea. The effects of the annealing treatment on
the photoresponse property and crystal structure of TiO2 have been investigated as a
function of the amount of urea. The photocatalytic performance of as-synthesized TiO2
photocatalysts has been evaluated by the photocatalytic degradation of organic pollutants
under visible light irradiation.

2. Materials and Methods
2.1. Materials

Hydrothermally prepared TiO2 was obtained according to the reported synthetic
procedures [27]. Commercially available TiO2 (P25, Degussa, Evonik, Resource Effiency
GmbH, Essen, Germany) was purchased and used without further treatment. Custom-built
high-borosilicate glass tubes were used for the annealing treatment. Methyl orange (MO,
AR grade, Beijing Chemical Plant Co., Beijing City, China) was chosen as the model organic
pollutant for evaluating the photocatalytic performance of all photocatalysts.

2.2. Annealing Treatment

To prepare the N-doped TiO2 via the annealing treatment, both hydrothermally pre-
pared TiO2 and urea were sealed in high-borosilicate glass tubes under vacuum and
annealed at 500 ◦C for 2 h. The amount of TiO2 (100 mg) was kept the same and the weight
ratios of TiO2 to urea were set as 1:0, 2:1, 1:1, and 1:2 (Figure S1). The obtained samples were
named as A-TiO2, N-TiO2 (2:1), N-TiO2 (1:1), and N-TiO2 (1:2), respectively. Similarly, the
annealing treatment of P25 with urea was conducted under the same conditions (Figure S2).
The obtained samples were abbreviated as A-P25, N-P25 (2:1), N-P25 (1:1), and N-P25 (1:2),
respectively (Figure S3). For comparison purposes, the annealing treatment of urea (100 mg)
was also performed under the same conditions (Figures S4 and S5). All the as-synthesized
samples were collected for further characterizations and tests.

2.3. Characterizations

The diffuse reflectance spectra (DRS) were measured by the UV-vis diffuse reflectance
spectroscopy (UV-2600, Shimadzu, Kyoto, Japan). The diffraction patterns were recorded
by X-ray diffraction (XRD, Ultima IV, Rigaku, Tokyo, Japan) with a Cu-Kα radiation source
(λ = 1.5406 Å). Brunauer–Emmett–Teller (BET) surface areas were determined with an
accelerated surface area and porosity analyzer (ASAP 2460, Micrometrics, Norcross, GA,
USA). Electron paramagnetic resonance (EPR, ER200DSRC, Bruker, Mannheim, Germany)
spectra were taken by applying an X-band (9.44 GHz, 2.47 mW) microwave and sweeping
magnetic field at room temperature. The ultraviolet-visible (UV-vis) spectra were obtained
with a UV-vis spectrophotometer (Lambda 35, PerkinElmer, Waltham, MA, USA).

2.4. Photocatalytic Performance

Photocatalytic degradation of MO was carried out under visible light irradiation
(Xenon lamp, 300 W, PerfectLight, Beijing, China) with a long-wavelength pass filter
(>420 nm). TiO2 photocatalysts (25 mg, 1 mg/mL) were added to aqueous solutions of MO
(25 ppm, 25 mL) and stirred in dark for 60 min. The concentration variation of MO as a
function of irradiation time was monitored by measuring its characteristic peak centered
at 464 nm. The photocatalytic degradation ratio of MO was estimated by the expression:
(C0 − C)/C0 × 100%, where C0 is the initial concentration of MO and C corresponds to the
concentration of MO at different time intervals.

3. Results and Discussion
3.1. Characterizations of TiO2 Photocatalysts

As shown in Figure 1, hydrothermally prepared TiO2 appears as a white powder
before the annealing treatment (Figure 1a and Figure S1a). In the absence of urea, TiO2
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turns to a dark grey powder after the annealing treatment (Figure 1b and Figure S1e) due
to the pyrolysis of the organic solvent [27,28]. With the presence of urea (Figure S1b–d),
TiO2 is transformed to a brown powder after the annealing treatment (Figure S1f–h). This
obvious color change indicates that N-doping of TiO2 may happen during the annealing
treatment with urea as the N source [29,30]. Although the amount of urea increases, the
colors of all N-TiO2 samples are similar, implying that a low amount of urea is enough for
N-doping (Figure 1c–e). This facile strategy is also suitable for the preparation of N-doped
P25 (Figure S2) and white P25 changes to a brown powder after the annealing treatment
with urea (Figure S3). Since the annealing treatment results in no clear color change of
urea (Figures S4 and S5), it is reasonable to propose that the pyrolysis of urea leads to the
N-doping of TiO2 during the annealing treatment.
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Figure 1. Digital photographs of (a) TiO2, (b) A-TiO2, (c) N-TiO2 (2:1), (d) N-TiO2 (1:1), and (e) N-TiO2

(1:2).

To investigate the effects of the annealing treatment on the photoresponse property of
TiO2, the DRS spectra of all samples were recorded. According to Figure 2a, both TiO2 and
A-TiO2 show clear UV absorption and a negligible visible light response. This result is in
agreement with the color of TiO2 and the reported phenomenon [27]. Conversely, all N-TiO2
samples present obvious visible light absorption with almost identical absorbance, which
further proves that a low amount of urea is enough for N-doping. The annealing treatment
of TiO2 with urea definitely expands the photoresponse range of TiO2 to the visible light
range suggesting that N-doping occurs [13,31]. To further confirm the N-doping of TiO2,
N1s XPS fine spectra of all samples were collected. Compared with TiO2 and A-TiO2, all
N-TiO2 samples show a clear N1s peak which undoubtedly proves that the N-doping of
TiO2 occurs [32,33]. In addition, the peak intensity increases as the amount of urea goes up,
implying an increase in the N-doping level [18,34]. Thus, the annealing treatment of urea
offers a facile approach for the preparation of N-doped TiO2 to extend the photoresponse
range of TiO2.
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To further study the influences of the annealing treatment on the crystal structures
of TiO2, XRD measurements were conducted and the results are shown in Figure 3. All
the characteristic diffraction patterns of TiO2 photocatalysts are in accordance with the
diffraction peaks of anatase, proving that the crystal phase of all TiO2 samples is anatase
(JCPDS-21-1272) [25,35]. In the absence of urea, the crystallinity of TiO2 is improved after
the annealing treatment as indicated by the increased intensity of the diffraction patterns
which correspond to the (101) and (200) crystal planes. However, the crystallinity of all
N-TiO2 samples is similar to that of TiO2 after the annealing treatment with urea. This
unexpected phenomenon suggests that N-doping hampers the further crystallization of N-
TiO2 which may enlarge its specific surface area [3,36]. In addition, new diffraction patterns
appear close to the (101) crystal plane of N-TiO2 (1:2), suggesting that a low amount of urea
is enough for the N-doping.
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Figure 3. XRD patterns of TiO2, A-TiO2, N-TiO2 (2:1), N-TiO2 (1:1), and N-TiO2 (1:2). The arrow
shows the (200) diffraction peak of A-TiO2 [25].

The BET surface areas of all samples were measured to further analyze the effect of
the annealing treatment on TiO2. From Table 1, it is clear that the BET surface area of
hydrothermally prepared TiO2 (134.67 m2/g) is the largest whereas that of A-TiO2 is the
smallest (40.21 m2/g). Compared with TiO2, the specific surface areas of N-TiO2 samples
decrease and a decreasing tendency is observed as the amount of urea increases. Clearly, the
annealing treatment of TiO2 with urea inhibits its crystallization which is in agreement with
the results of XRD (Figure 3). For the moment, the reason for this phenomenon has been
reported and it may result from the N-doping induced by the annealing treatment [3]. This
phenomenon is also observed in the P25 samples obtained after the annealing treatment
with urea (Table S1). As a result, the annealing treatment with urea offers a facile approach
for the preparation of N-doped TiO2 with more active sites reserved.

Table 1. BET surface area of TiO2, A-TiO2, N-TiO2 (2:1), N-TiO2 (1:1), and N-TiO2 (1:2).

Sample BET (m2/g)

TiO2 134.67
A-TiO2 40.21

N-TiO2 (2:1) 107.59
N-TiO2 (1:1) 73.36
N-TiO2 (1:1) 51.87

To further investigate the influences of the annealing treatment on the crystal structure
of TiO2, EPR spectra of all samples were recorded and are shown in Figure 4. As shown in
Figure 4, the characteristic peak with a g value of 2.002 corresponds to Vo [20,37]. Compared
with TiO2, A-TiO2 contains a certain amount of Vo which may result from the both the
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crystallization of TiO2 and the pyrolysis of the organic solvents [25,26]. With the presence of
urea, more Vo is introduced into the N-doped TiO2 and its amount increases first and then
decreases as the amount of urea increases. This result may be due to the N-doping process
which not only induces the formation of Vo but can also occupy the Vo. The formation of Vo
in N-doped TiO2 may contribute to the separation of photogenerated charge carriers [38,39].
Thus, the annealing treatment with urea not only induces the N-doping to extend the
photoresponse range of TiO2 but also creates Vo in N-doped TiO2 which contributes to the
separation of photogenerated charge carriers, which could both favor the enhancement of
the photocatalytic performance of TiO2.
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3.2. Photocatalytic Performance

The photocatalytic performance of all TiO2 photocatalysts was evaluated by the pho-
tocatalytic degradation of MO under visible light irradiation. From Figure 5, all TiO2
photocatalysts are capable of adsorbing a certain amount of MO and N-TiO2 (1:2) shows
(1:1) the highest adsorption capacity for MO (12.9%). Compared with TiO2, the specific
surface area of N-TiO2 (1:2) is smaller and its improved adsorption capacity of MO may be
due to the formation of functional groups, which is in agreement with the XRD analysis
(Figure 3). During visible light irradiation, both TiO2 and A-TiO2 are not able to degrade
MO because they do not absorb the visible light (Figure 2a). With N-TiO2 as the photocata-
lyst, the photocatalytic degradation of MO is feasible and among the samples N-TiO2 (2:1)
presents the best photocatalytic performance. The photocatalytic performance of N-TiO2
proves that the annealing treatment with urea extends the photoresponse range of TiO2
to the visible light range [18,40]. The photocatalytic performance of N-TiO2 is comparable
to the reported results (Table S2) which may be ascribed to the formation of Vo and the
increased specific surface area [33,39,41,42]. Based on the photocatalytic performance,
the optimal weight ratio of TiO2 to urea for the preparation of N-TiO2 via the annealing
treatment is found to be 2:1.
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4. Conclusions

In summary, a facile strategy was developed for the preparation of N-TiO2 via the
annealing treatment with urea. On the one hand, the photoresponse of TiO2 is extended by
N-doping via the annealing treatment with urea as the N source. On the other hand, Vo is
introduced into N-TiO2 which may contribute to the separation of photogenerated charge
carriers. In addition, the specific surface area of N-TiO2 is enlarged with the presence of
urea during the annealing treatment by inhibiting the crystallization of TiO2. Thus, more
active sites could be reserved for photocatalytic reactions. All the above favorable aspects
induced by the annealing treatment with urea contribute to the excellent photocatalytic
performance of N-TiO2. This facile strategy is also suitable for other TiO2 photocatalysts
such as P25 and, thus, our work offers a universal approach for the preparation of N-doped
TiO2 via the annealing treatment with urea. The annealing treatment with other additives
for different elements doping, not merely N doping, may be also possible and further work
is underway.
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