

Article A Facile Strategy for the Preparation of N-Doped TiO₂ with Oxygen Vacancy via the Annealing Treatment with Urea

Zhe Zhang¹, Zhenpeng Cui^{1,2,*}, Yinghao Xu¹, Mohamed Nawfal Ghazzal³, Christophe Colbeau-Justin³, Duoqiang Pan^{1,2} and Wangsuo Wu^{1,2}

- ¹ School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- ² Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
- ³ Institute of Physical Chemistry, Paris-Saclay University, 91405 Orsay, France
- * Correspondence: cuizp@lzu.edu.cn

Abstract: Although titanium dioxide (TiO₂) has a wide range of potential applications, the photocatalytic performance of TiO₂ is limited by both its limited photoresponse range and fast recombination of the photogenerated charge carriers. In this work, the preparation of nitrogen (N)-doped TiO₂ accompanied by the introduction of oxygen vacancy (Vo) has been achieved via a facile annealing treatment with urea as the N source. During the annealing treatment, the presence of urea not only realizes the N-doping of TiO₂ but also creates Vo in N-doped TiO₂ (N-TiO₂), which is also suitable for commercial TiO₂ (P25). Unexpectedly, the annealing treatment-induced decrease in the specific surface area of N-TiO₂ is inhibited by the N-doping and, thus, more active sites are maintained. Therefore, both the N-doping and formation of Vo as well as the increased active sites contribute to the excellent photocatalytic performance of N-TiO₂ under visible light irradiation. Our work offers a facile strategy for the preparation of N-TiO₂ with Vo via the annealing treatment with urea.

Keywords: nitrogen doping; TiO₂; oxygen vacancy; annealing treatment; urea

Citation: Zhang, Z.; Cui, Z.; Xu, Y.; Ghazzal, M.N.; Colbeau-Justin, C.; Pan, D.; Wu, W. A Facile Strategy for the Preparation of N-Doped TiO₂ with Oxygen Vacancy via the Annealing Treatment with Urea. *Nanomaterials* **2024**, *14*, 818. https://doi.org/ 10.3390/nano14100818

Academic Editor: Alexandra Carvalho

Received: 3 April 2024 Revised: 29 April 2024 Accepted: 2 May 2024 Published: 7 May 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

Titanium dioxide (TiO₂) has been widely investigated because of its excellent chemical stability, nontoxicity, and low cost [1,2]. Although TiO₂ shows great potential in many fields [3–5], it can only absorb ultraviolet (UV) light [6], which limits its sufficient absorption of solar light because visible light (43%) takes up the majority of the solar spectrum [7]. In addition, the fast recombination of photogenerated charge carriers in TiO₂ impedes its efficient use of solar energy [8,9]. Thus, in order to improve the photocatalytic performance of TiO₂, not only does the photoresponse range need to be extended but also the recombination of photogenerated charge carriers needs to be inhibited [10,11].

To extend the photoresponse range of TiO₂ from UV light to visible light, the doping strategy is commonly applied to adjust the intrinsic wide bandgap of TiO₂ [12,13]. Among various doping strategies, it is reported that nitrogen (N) doping is an effective approach to reduce the bandgap of TiO₂ and enables its absorption of visible light [14–16]. Generally, the preparation of N-doped TiO₂ can be realized by the annealing treatment with the presence of additional N sources such as urea and ammonia [17–19]. To reduce the recombination of photogenerated charge carriers, the formation of defective structure is reported to be a useful strategy [6,20]. The introduction of point defects into TiO₂, such as oxygen vacancy (Vo), could trap the photogenerated electron inhibiting the recombination of the photogenerated charge carriers [10,21]. Although many methods have been reported for the creation of Vo in TiO₂ [22–24], the annealing treatment of TiO₂ with an organic additive is reported to be an easy approach for the creation of Vo [25,26]. Thus, it is of great interest to realize both the N-doping and creation of Vo to enhance the photocatalytic performance of TiO₂.

To realize both the N-doping and introduction of Vo in one step, in this work, a facile strategy has been developed to prepare N-doped TiO_2 accompanied by the formation of Vo via the annealing treatment with urea. The effects of the annealing treatment on the photoresponse property and crystal structure of TiO_2 have been investigated as a function of the amount of urea. The photocatalytic performance of as-synthesized TiO_2 photocatalysts has been evaluated by the photocatalytic degradation of organic pollutants under visible light irradiation.

2. Materials and Methods

2.1. Materials

Hydrothermally prepared TiO_2 was obtained according to the reported synthetic procedures [27]. Commercially available TiO_2 (P25, Degussa, Evonik, Resource Effiency GmbH, Essen, Germany) was purchased and used without further treatment. Custom-built high-borosilicate glass tubes were used for the annealing treatment. Methyl orange (MO, AR grade, Beijing Chemical Plant Co., Beijing City, China) was chosen as the model organic pollutant for evaluating the photocatalytic performance of all photocatalysts.

2.2. Annealing Treatment

To prepare the N-doped TiO₂ via the annealing treatment, both hydrothermally prepared TiO₂ and urea were sealed in high-borosilicate glass tubes under vacuum and annealed at 500 °C for 2 h. The amount of TiO₂ (100 mg) was kept the same and the weight ratios of TiO₂ to urea were set as 1:0, 2:1, 1:1, and 1:2 (Figure S1). The obtained samples were named as A-TiO₂, N-TiO₂ (2:1), N-TiO₂ (1:1), and N-TiO₂ (1:2), respectively. Similarly, the annealing treatment of P25 with urea was conducted under the same conditions (Figure S2). The obtained samples were abbreviated as A-P25, N-P25 (2:1), N-P25 (1:1), and N-P25 (1:2), respectively (Figure S3). For comparison purposes, the annealing treatment of urea (100 mg) was also performed under the same conditions (Figures S4 and S5). All the as-synthesized samples were collected for further characterizations and tests.

2.3. Characterizations

The diffuse reflectance spectra (DRS) were measured by the UV-vis diffuse reflectance spectroscopy (UV-2600, Shimadzu, Kyoto, Japan). The diffraction patterns were recorded by X-ray diffraction (XRD, Ultima IV, Rigaku, Tokyo, Japan) with a Cu-K α radiation source ($\lambda = 1.5406$ Å). Brunauer–Emmett–Teller (BET) surface areas were determined with an accelerated surface area and porosity analyzer (ASAP 2460, Micrometrics, Norcross, GA, USA). Electron paramagnetic resonance (EPR, ER200DSRC, Bruker, Mannheim, Germany) spectra were taken by applying an X-band (9.44 GHz, 2.47 mW) microwave and sweeping magnetic field at room temperature. The ultraviolet-visible (UV-vis) spectra were obtained with a UV-vis spectrophotometer (Lambda 35, PerkinElmer, Waltham, MA, USA).

2.4. Photocatalytic Performance

Photocatalytic degradation of MO was carried out under visible light irradiation (Xenon lamp, 300 W, PerfectLight, Beijing, China) with a long-wavelength pass filter (>420 nm). TiO₂ photocatalysts (25 mg, 1 mg/mL) were added to aqueous solutions of MO (25 ppm, 25 mL) and stirred in dark for 60 min. The concentration variation of MO as a function of irradiation time was monitored by measuring its characteristic peak centered at 464 nm. The photocatalytic degradation ratio of MO was estimated by the expression: $(C_0 - C)/C_0 \times 100\%$, where C_0 is the initial concentration of MO and C corresponds to the concentration of MO at different time intervals.

3. Results and Discussion

3.1. Characterizations of TiO₂ Photocatalysts

As shown in Figure 1, hydrothermally prepared TiO_2 appears as a white powder before the annealing treatment (Figure 1a and Figure S1a). In the absence of urea, TiO_2

turns to a dark grey powder after the annealing treatment (Figure 1b and Figure S1e) due to the pyrolysis of the organic solvent [27,28]. With the presence of urea (Figure S1b–d), TiO_2 is transformed to a brown powder after the annealing treatment (Figure S1f–h). This obvious color change indicates that N-doping of TiO_2 may happen during the annealing treatment with urea as the N source [29,30]. Although the amount of urea increases, the colors of all N-TiO₂ samples are similar, implying that a low amount of urea is enough for N-doping (Figure 1c–e). This facile strategy is also suitable for the preparation of N-doped P25 (Figure S2) and white P25 changes to a brown powder after the annealing treatment with urea (Figure S3). Since the annealing treatment results in no clear color change of urea (Figures S4 and S5), it is reasonable to propose that the pyrolysis of urea leads to the N-doping of TiO_2 during the annealing treatment.

Figure 1. Digital photographs of (**a**) TiO₂, (**b**) A-TiO₂, (**c**) N-TiO₂ (2:1), (**d**) N-TiO₂ (1:1), and (**e**) N-TiO₂ (1:2).

To investigate the effects of the annealing treatment on the photoresponse property of TiO_2 , the DRS spectra of all samples were recorded. According to Figure 2a, both TiO_2 and A- TiO_2 show clear UV absorption and a negligible visible light response. This result is in agreement with the color of TiO_2 and the reported phenomenon [27]. Conversely, all N- TiO_2 samples present obvious visible light absorption with almost identical absorbance, which further proves that a low amount of urea is enough for N-doping. The annealing treatment of TiO_2 with urea definitely expands the photoresponse range of TiO_2 to the visible light range suggesting that N-doping occurs [13,31]. To further confirm the N-doping of TiO_2 , N1s XPS fine spectra of all samples were collected. Compared with TiO_2 and A- TiO_2 , all N- TiO_2 samples show a clear N1s peak which undoubtedly proves that the N-doping of TiO_2 occurs [32,33]. In addition, the peak intensity increases as the amount of urea goes up, implying an increase in the N-doping level [18,34]. Thus, the annealing treatment of urea offers a facile approach for the preparation of N-doped TiO_2 to extend the photoresponse range of TiO_2 .

Figure 2. (a) DRS spectra and (b) N1s XPS fine spectra of TiO₂, A-TiO₂, N-TiO₂ (2:1), N-TiO₂ (1:1), and N-TiO₂ (1:2).

To further study the influences of the annealing treatment on the crystal structures of TiO₂, XRD measurements were conducted and the results are shown in Figure 3. All the characteristic diffraction patterns of TiO₂ photocatalysts are in accordance with the diffraction peaks of anatase, proving that the crystal phase of all TiO₂ samples is anatase (JCPDS-21-1272) [25,35]. In the absence of urea, the crystallinity of TiO₂ is improved after the annealing treatment as indicated by the increased intensity of the diffraction patterns which correspond to the (101) and (200) crystal planes. However, the crystallinity of all N-TiO₂ samples is similar to that of TiO₂ after the annealing treatment with urea. This unexpected phenomenon suggests that N-doping hampers the further crystallization of N-TiO₂ which may enlarge its specific surface area [3,36]. In addition, new diffraction patterns appear close to the (101) crystal plane of N-TiO₂ (1:2), suggesting that a low amount of urea is enough for the N-doping.

Figure 3. XRD patterns of TiO₂, A-TiO₂, N-TiO₂ (2:1), N-TiO₂ (1:1), and N-TiO₂ (1:2). The arrow shows the (200) diffraction peak of A-TiO₂ [25].

The BET surface areas of all samples were measured to further analyze the effect of the annealing treatment on TiO₂. From Table 1, it is clear that the BET surface area of hydrothermally prepared TiO₂ (134.67 m²/g) is the largest whereas that of A-TiO₂ is the smallest (40.21 m²/g). Compared with TiO₂, the specific surface areas of N-TiO₂ samples decrease and a decreasing tendency is observed as the amount of urea increases. Clearly, the annealing treatment of TiO₂ with urea inhibits its crystallization which is in agreement with the results of XRD (Figure 3). For the moment, the reason for this phenomenon has been reported and it may result from the N-doping induced by the annealing treatment [3]. This phenomenon is also observed in the P25 samples obtained after the annealing treatment with urea (Table S1). As a result, the annealing treatment with urea offers a facile approach for the preparation of N-doped TiO₂ with more active sites reserved.

Table 1. BET surface area of TiO₂, A-TiO₂, N-TiO₂ (2:1), N-TiO₂ (1:1), and N-TiO₂ (1:2).

Sample	BET (m ² /g)
TiO ₂	134.67
A-TiO ₂	40.21
N-TiO ₂ (2:1)	107.59
N-TiO ₂ (1:1)	73.36
N-TiO ₂ (1:1)	51.87

To further investigate the influences of the annealing treatment on the crystal structure of TiO_2 , EPR spectra of all samples were recorded and are shown in Figure 4. As shown in Figure 4, the characteristic peak with a g value of 2.002 corresponds to Vo [20,37]. Compared with TiO_2 , A- TiO_2 contains a certain amount of Vo which may result from the both the

crystallization of TiO₂ and the pyrolysis of the organic solvents [25,26]. With the presence of urea, more Vo is introduced into the N-doped TiO₂ and its amount increases first and then decreases as the amount of urea increases. This result may be due to the N-doping process which not only induces the formation of Vo but can also occupy the Vo. The formation of Vo in N-doped TiO₂ may contribute to the separation of photogenerated charge carriers [38,39]. Thus, the annealing treatment with urea not only induces the N-doping to extend the photoresponse range of TiO₂ but also creates Vo in N-doped TiO₂ which contributes to the separation of photogenerated charge carries to the separation of photogenerated charge carriers, which could both favor the enhancement of the photocatalytic performance of TiO₂.

Figure 4. EPR spectra of TiO₂, ATiO₂, N-TiO₂ (2:1), N-TiO₂ (1:1), and N-TiO₂ (1:2).

3.2. Photocatalytic Performance

The photocatalytic performance of all TiO₂ photocatalysts was evaluated by the photocatalytic degradation of MO under visible light irradiation. From Figure 5, all TiO_2 photocatalysts are capable of adsorbing a certain amount of MO and N-TiO₂ (1:2) shows (1:1) the highest adsorption capacity for MO (12.9%). Compared with TiO_2 , the specific surface area of N-TiO₂ (1:2) is smaller and its improved adsorption capacity of MO may be due to the formation of functional groups, which is in agreement with the XRD analysis (Figure 3). During visible light irradiation, both TiO_2 and A- TiO_2 are not able to degrade MO because they do not absorb the visible light (Figure 2a). With N-TiO₂ as the photocatalyst, the photocatalytic degradation of MO is feasible and among the samples N-TiO₂ (2:1) presents the best photocatalytic performance. The photocatalytic performance of N-TiO₂ proves that the annealing treatment with urea extends the photoresponse range of TiO_2 to the visible light range [18,40]. The photocatalytic performance of N-TiO₂ is comparable to the reported results (Table S2) which may be ascribed to the formation of Vo and the increased specific surface area [33,39,41,42]. Based on the photocatalytic performance, the optimal weight ratio of TiO_2 to urea for the preparation of N-TiO₂ via the annealing treatment is found to be 2:1.

Figure 5. Photocatalytic degradation curves of MO by TiO₂, A-TiO₂, N-TiO₂ (2:1), N-TiO₂ (1:1), and N-TiO₂ (1:2) under visible light irradiation.

4. Conclusions

In summary, a facile strategy was developed for the preparation of N-TiO₂ via the annealing treatment with urea. On the one hand, the photoresponse of TiO₂ is extended by N-doping via the annealing treatment with urea as the N source. On the other hand, Vo is introduced into N-TiO₂ which may contribute to the separation of photogenerated charge carriers. In addition, the specific surface area of N-TiO₂ is enlarged with the presence of urea during the annealing treatment by inhibiting the crystallization of TiO₂. Thus, more active sites could be reserved for photocatalytic reactions. All the above favorable aspects induced by the annealing treatment with urea contribute to the excellent photocatalytic performance of N-TiO₂. This facile strategy is also suitable for other TiO₂ photocatalysts such as P25 and, thus, our work offers a universal approach for the preparation of N-doped TiO₂ via the annealing treatment with urea. The annealing treatment with other additives for different elements doping, not merely N doping, may be also possible and further work is underway.

Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/nano14100818/s1, Figure S1: Digital photographs of TiO₂ and urea (a–d) before and (e–h) after the annealing treatment (500 °C, 2 h). The weight ratios of TiO₂ to urea are (a,e) 1:0, (b,f) 2:1, (c,g) 1:1 and (d,h) 1:2, respectively. Figure S2: Digital photographs of P25 and urea (a–d) before and (e–h) after the annealing treatment (500 °C, 2 h). The weight ratios of P25 to urea are (a,e) 1:0, (b,f) 2:1, (c,g) 1:1 and (d,h) 1:2, respectively. Figure S3: Digital photographs of (a) P25, (b) A-P25, (c) N-P25 (2:1), (d) N-P25 (1:1), and (e) N-P25 (1:2). Figure S4: Digital photographs of urea (a) before and (b) after the annealing treatment (500 °C, 2 h). Figure S5: Digital photographs of the urea (a) before and (b) after the annealing treatment (500 °C, 2 h). Table S1: BET surface area of P25, A-P25, N-P25 (2:1), N-P25 (1:1), and N-P25 (1:2). Table S2: Comparison of photocatalytic activity of N-TiO₂ photocatalyst for degradation of MO [43–49].

Author Contributions: Z.Z.: investigation, visualization, formal analysis, and writing—original draft. Y.X.: validation, formal analysis, and investigation. M.N.G.: validation and data curation. C.C.-J.: validation, formal analysis and data curation. D.P.: validation and formal analysis. W.W.: validation and formal analysis. Z.C.: conceptualization, project administration, supervision, resources, writing—review and editing and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (No. 12005086).

Data Availability Statement: Data will be made available on request.

Acknowledgments: The authors acknowledge the China Scholarship Council (CSC) for the financial support.

Conflicts of Interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO₂ photocatalysis: Mechanisms and materials. *Chem. Rev.* 2014, 114, 9919–9986. [CrossRef]
- Ma, Y.; Wang, X.L.; Jia, Y.S.; Chen, X.B.; Han, H.X.; Li, C. Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. *Chem. Rev.* 2014, 114, 9987–10043. [CrossRef] [PubMed]
- 3. Zhou, Y.; Liu, Y.; Liu, P.; Zhang, W.; Xing, M.; Zhang, J. A facile approach to further improve the substitution of nitrogen into reduced TiO_{2-x} with an enhanced photocatalytic activity. *Appl. Catal. B Environ.* **2015**, 170–171, 66–73. [CrossRef]
- Wang, C.; Li, J.; Paineau, E.; Laachachi, A.; Colbeau-Justin, C.; Remita, H.; Ghazzal, M.N. A sol-gel biotemplating route with cellulose nanocrystals to design a photocatalyst for improving hydrogen generation. *J. Mater. Chem. A* 2020, *8*, 10779–10786. [CrossRef]
- Wang, W.; Tadé, M.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. *Prog. Mater. Sci.* 2018, 92, 33–63. [CrossRef]
- Naldoni, A.; Altomare, M.; Zoppellaro, G.; Liu, N.; Kment, Š.; Zbořil, R.; Schmuki, P. Photocatalysis with Reduced TiO₂: From Black TiO₂ to Cocatalyst-Free Hydrogen Production. ACS Catal. 2019, 9, 345–364. [CrossRef]
- Levinson, R.; Berdahl, P.; Akbari, H. Solar spectral optical properties of pigments-Part I: Model for deriving scattering and absorption coefficients from transmittance and reflectance measurements. *Sol. Energy Mater. Sol. Cells* 2005, *89*, 319–349. [CrossRef]
- 8. Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO₂. *Nat. Mater.* **2013**, *12*, 798–801. [CrossRef]
- 9. Zhu, S.; Wang, D. Photocatalysis: Basic principles, diverse forms of implementations and emerging scientific opportunities. *Adv. Energy Mater.* **2017**, *7*, 1700841. [CrossRef]
- 10. Gao, Y.; Zhu, J.; An, H.; Yan, P.; Huang, B.; Chen, R.; Fan, F.; Li, C. Directly Probing Charge Separation at Interface of TiO₂ Phase Junction. *J. Phys. Chem. Lett.* **2017**, *8*, 1419–1423. [CrossRef]
- 11. Nosaka, Y.; Nosaka, A.Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. *Chem. Rev.* 2017, 117, 11302–11336. [CrossRef] [PubMed]
- Yuan, W.; Cheng, L.; An, Y.; Lv, S.; Wu, H.; Fan, X.; Zhang, Y.; Guo, X.; Tang, J. Laminated Hybrid Junction of Sulfur-Doped TiO₂ and a Carbon Substrate Derived from Ti₃C₂ MXenes: Toward Highly Visible Light-Driven Photocatalytic Hydrogen Evolution. *Adv. Sci.* 2018, *5*, 1700870. [CrossRef] [PubMed]
- Chen, X.; Lou, Y.-B.; Samia, A.C.S.; Burda, C.; Gole, J.L. Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen-Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder. *Adv. Funct. Mater.* 2005, 15, 41–49. [CrossRef]
- 14. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. *Chem. Rev.* **2014**, *114*, 9824–9852. [CrossRef] [PubMed]
- 15. Dong, F.; Zhao, W.; Wu, Z.; Guo, S. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO₂ nanoparticles prepared by thermal decomposition. *J. Hazard. Mater.* **2009**, *162*, 763–770. [CrossRef]
- Kong, X.; Peng, Z.; Jiang, R.; Jia, P.; Feng, J.; Yang, P.; Chi, Q.; Ye, W.; Xu, F.; Gao, P. Nanolayered Heterostructures of N-Doped TiO₂ and N-Doped Carbon for Hydrogen Evolution. ACS Appl. Nano Mater. 2020, 3, 1373–1381. [CrossRef]
- 17. Ansari, S.A.; Khan, M.M.; Ansari, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO₂) for visible light photocatalysis. *New J. Chem.* **2016**, *40*, 3000–3009. [CrossRef]
- 18. Zeng, L.; Lu, Z.; Li, M.; Yang, J.; Song, W.; Zeng, D.; Xie, C. A modular calcination method to prepare modified N-doped TiO₂ nanoparticle with high photocatalytic activity. *Appl. Catal. B Environ.* **2016**, *183*, 308–316. [CrossRef]
- 19. Matsubara, K.; Danno, M.; Inoue, M.; Honda, Y.; Abe, T. Characterization of nitrogen-doped TiO₂ powder prepared by newly developed plasma-treatment system. *Chem. Eng. J.* **2012**, *181–182*, 754–760. [CrossRef]
- 20. Su, T.; Yang, Y.; Na, Y.; Fan, R.; Li, L.; Wei, L.; Yang, B.; Cao, W. An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO₂ Nanocrystals in the Performance of Dye-Sensitized Solar Cells. *ACS Appl. Mater. Interfaces* **2015**, *7*, 3754–3763. [CrossRef]
- Xu, Y.; Li, H.; Sun, B.; Qiao, P.; Ren, L.; Tian, G.; Jiang, B.; Pan, K.; Zhou, W. Surface oxygen vacancy defect-promoted electron-hole separation for porous defective ZnO hexagonal plates and enhanced solar-driven photocatalytic performance. *Chem. Eng. J.* 2020, 379, 122295. [CrossRef]
- 22. Huang, Y.; Yu, Y.; Yu, Y.; Zhang, B. Oxygen Vacancy Engineering in Photocatalysis. Solar RRL 2020, 4, 2000037. [CrossRef]
- Wang, Z.; Lin, R.; Huo, Y.; Li, H.; Wang, L. Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. *Adv. Funct. Mater.* 2022, 32, 2109503. [CrossRef]
- 24. Long, M.; Zheng, L. Engineering vacancies for solar photocatalytic applications. Chin. J. Catal. 2017, 38, 617–624. [CrossRef]
- Cui, Z.; Xu, Y.; Xu, Y.; Zhao, M.; Li, S.; Wang, J.; Pan, D.; Wu, W. Effects of Solvent Treatment on the Formation of Oxygen Vacancy in TiO₂ via Vacuum Annealing. *J. Phys. Chem. C* 2022, *126*, 21751–21758. [CrossRef]

- 26. Cui, Z.; Zhang, Z.; Tang, Z.; Nawfal Ghazzal, M.; Colbeau-Justin, C.; Shao, F.; Pan, D.; Wu, W. A facile strategy for the construction of visible light responsive P25 heterojunction via the annealing treatment with PEG. *Mater. Lett.* **2024**, *364*, 136325. [CrossRef]
- Cui, Z.; Zhao, M.; Que, X.; Wang, J.; Xu, Y.; Ghazzal, M.N.; Colbeau-Justin, C.; Pan, D.; Wu, W. Facile Vacuum Annealing-Induced Modification of TiO₂ with an Enhanced Photocatalytic Performance. ACS Omega 2021, 6, 27121–27128. [CrossRef] [PubMed]
- Cui, Z.; Zhao, M.; Li, S.; Wang, J.; Xu, Y.; Ghazzal, M.N.; Colbeau-Justin, C.; Pan, D.; Wu, W. Facile Vacuum Annealing of TiO₂ with Ethanol-Induced Enhancement of Its Photocatalytic Performance under Visible Light. *Ind. Eng. Chem. Res.* 2022, *61*, 14455–14461. [CrossRef]
- 29. Bakre, P.V.; Tilve, S.G.; Shirsat, R.N. Influence of N sources on the photocatalytic activity of N-doped TiO₂. *Arab. J. Chem.* **2020**, *13*, 7637–7651. [CrossRef]
- 30. Jian, Y.; Chen, M.; Shi, J.; Shangguan, W. Preparations and photocatalytic hydrogen evolution of N-doped TiO₂ from urea and titanium tetrachloride. *Int. J. Hydrog. Energy* **2006**, *31*, 1326–1331.
- 31. Irie, H.; Washizuka, S.; Yoshino, N.; Hashimoto, K. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films. *Chem. Commun.* **2003**, 1298–1299. [CrossRef] [PubMed]
- Batalović, K.; Bundaleski, N.; Radaković, J.; Abazović, N.; Mitrić, M.; Silva, R.A.; Savić, M.; Belošević-Čavor, J.; Rakočević, Z.; Rangel, C.M. Modification of N-doped TiO₂ photocatalysts using noble metals (Pt, Pd)—A combined XPS and DFT study. *Phys. Chem. Chem. Phys.* 2017, 19, 7062–7071. [CrossRef]
- 33. Wang, Y.; Chen, F.; Li, Y.; Lin, X.; Hu, H.; Yin, Q.; Hu, G. Novel synthesis of N-doped TiO₂ flower-like microspheres with excellent photocatalytic activity for removal of Cr(VI) and methylene blue. *Mater. Lett.* **2023**, *334*, 133745. [CrossRef]
- 34. Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and Nitrogen co-doped TiO₂ photocatalyst with enhanced optical absorption and catalytic activity. *Appl. Catal. B Environ.* **2015**, *168–169*, 333–341. [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P.; Gopinath, C.S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO₂ Nanocatalyst. *Chem. Mater.* 2005, 17, 6349–6353. [CrossRef]
- 36. Zeng, L.; Lu, Z.; Yang, J.; Li, M.; Song, W.; Xie, C. Highly efficient visible-light driven photocatalyst with enhanced charge separation prepared by annealing continuously in ammonia and vacuum. *Appl. Catal. B Environ.* **2015**, *166–167*, 1–8. [CrossRef]
- Li, C.; Wang, T.; Zhao, Z.-J.; Yang, W.; Li, J.-F.; Li, A.; Yang, Z.; Ozin, G.A.; Gong, J. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO₂ Photoelectrodes. *Angew. Chem. Int. Ed.* 2018, *57*, 5278–5282. [CrossRef] [PubMed]
- Elbanna, O.; Zhang, P.; Fujitsuka, M.; Majima, T. Facile preparation of nitrogen and fluorine codoped TiO₂ mesocrystal with visible light photocatalytic activity. *Appl. Catal. B Environ.* 2016, 192, 80–87. [CrossRef]
- Katoh, R.; Furube, A.; Yamanaka, K.-I.; Morikawa, T. Charge Separation and Trapping in N-Doped TiO₂ Photocatalysts: A Time-Resolved Microwave Conductivity Study. J. Phys. Chem. Lett. 2010, 1, 3261–3265. [CrossRef]
- 40. Panepinto, A.; Cornil, D.; Guttmann, P.; Bittencourt, C.; Cornil, J.; Snyders, R. Fine Control of the Chemistry of Nitrogen Doping in TiO₂: A Joint Experimental and Theoretical Study. *J. Phys. Chem. C* **2020**, *124*, 17401–17412. [CrossRef]
- 41. Livraghi, S.; Paganini, M.C.; Giamello, E.; Selloni, A.; Di Valentin, C.; Pacchioni, G. Origin of Photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light. *J. Am. Chem. Soc.* **2006**, *128*, 15666–15671. [CrossRef] [PubMed]
- 42. Livraghi, S.; Elghniji, K.; Czoska, A.M.; Paganini, M.C.; Giamello, E.; Ksibi, M. Nitrogen-doped and nitrogen–fluorine-codoped titanium dioxide. Nature and concentration of the photoactive species and their role in determining the photoactalytic activity under visible light. *J. Photochem. Photobiol. A Chem.* 2009, 205, 93–97. [CrossRef]
- Yang, G.D.; Jiang, Z.; Shi, H.H.; Xiao, T.C.; Yan, Z.F. Preparation of highly visible-light active N-doped TiO₂ photocatalyst. J. Mater. Chem. 2010, 20, 5301–5309. [CrossRef]
- 44. Wang, J.; Tafen, D.N.; Lewis, J.P.; Hong, Z.L.; Manivannan, A.; Zhi, M.J.; Li, M.; Wu, N.Q. Origin of photocatalytic activity of nitrogen-doped TiO₂ nanobelts. *J. Am. Chem. Soc.* **2009**, *131*, 12290–12297. [CrossRef] [PubMed]
- 45. Gai, L.G.; Duan, X.Q.; Jiang, H.H.; Mei, Q.H.; Zhou, G.W.; Tian, Y.; Liu, H. One-pot synthesis of nitrogen-doped TiO₂ nanorods with anatase/brookite structures and enhanced photocatalytic activity. *CrystEngComm* **2012**, *14*, 7662–7671. [CrossRef]
- Saien, J.; Mesgari, Z. Photocatalytic degradation of methyl orange using hematoporphyrin/N-doped TiO₂ nanohybrids under visible light: Kinetics and energy consumption. *Appl. Organomet. Chem.* 2017, *31*, e3755. [CrossRef]
- 47. Peng, Y.; Lo, S.; Ou, H.; Lai, S. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-lightresponsive photocatalysis. *J. Hazard. Mater.* 2010, *183*, 754–758. [CrossRef] [PubMed]
- Xiong, Z.H.; Chen, H.Y.; Lu, L.L.; Shan, R.; Zhang, Y.Y.; Yuan, H.R.; Chen, Y. Nitrogen-doped TiO₂/nitrogen-containing biochar composite catalyst as a photocatalytic material for the decontamination of aqueous organic pollutants. ACS Omega 2023, 8, 791–803. [CrossRef]
- 49. Zhou, X.S.; Peng, F.; Wang, H.J.; Yu, H.; Yang, J. Preparation of nitrogen doped TiO₂ photocatalyst by oxidation of titanium nitride with H₂O₂. *Mater. Res. Bull.* **2011**, *46*, 840–844. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.