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Abstract: The valorization of the large amount of crude glycerol formed from the biodiesel industry
is of primordial necessity. One possible direction with high interest to the biorefinery sector is the
production of fuel additives such as solketal, through the acetalization of glycerol with acetone.
This is a chemical process that conciliates high sustainability and economic interest, since solketal
contributes to the fulfillment of a Circular Economy Model through its use in biodiesel blends. The
key to guarantee high efficiency and high sustainability for solketal production is the use of recovery
and recyclable heterogeneous catalysts. Reported works indicate that high yields are attributed to
catalyst acidity, mainly the ones containing Brönsted acidic sites. On the other hand, the catalyst
stability and its recycling capacity are completely dependent of the support material and the acidic
sites incorporation methodology. This review intends to conciliate the information spread on this
topic and indicate the most assertive strategies to achieve high solketal production in short reaction
time during various reaction cycles.
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1. Introduction

The development of global civilization has progressively increased energetic demands
through history. In order to answer these needs, fossil fuel production and consumption
soared throughout the last century, with consistently rising demand for coal, oil, and
natural gas as the most predominant energy sources. However, a shift towards production
and consumption of other energy sources is a major societal challenge due to the negative
environmental impact of fossil fuels and their unrenewable supply [1,2]. Fossil fuels are
responsible for most of the carbon dioxide emissions, but are also composed of various
sulfur- and nitrogen-containing compounds which directly contribute to greenhouse gas
(GHG) emissions [3,4]. The growing understanding and awareness of climate change has
led to the implementation of legislation to regulate fuel production and environmental
policies to drive the development and adoption of new energy alternatives for a more
sustainable development [5]. However, nowadays fossil fuel sources relate to approximately
81% of today’s global energy consumption and global demand is projected to peak in 2030.
Even though oil demand in advanced economies peaked back in 2005 and its expected to
decline further in the coming decade, it is projected to continually grow in other regions
until 2050 [6,7]. Fossil fuels are constituted by various sulfur and nitrogen constituents
that when burned originate oxides (SOx and NOx), releasing harmful emissions (Figure 1).
Furthermore, fossil fuels are also one of the main direct contributors of greenhouse gases
(GHGs), responsible for most carbon dioxide emissions [3,8]. Consequently, the European
Union has planned to reduce 55% of GHG emissions by 2030, and completely eliminate
them by 2050 [9].
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solve these problems and, therefore, benefit biodiesel commercialization [2,10]. Biodiesel 

is obtained through the transesterification reaction of triglycerides (a type of fat found in 

vegetable oils) with a short-chain alcohol such as methanol (Figure 1), in the presence of 

an appropriate catalyst and under acidic or basic conditions [1,2,10]. It is also known as 

fatty acid alkyl esters (FAAEs) or fatty acid methyl esters (FAMEs), depending on the al-

cohol used in the reaction (ethanol or methanol, respectively) [1,11]. 
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this reaction, originated as 10% in weight in relation to biodiesel. As such, there is an ex-

cess in crude glycerol in the fuel industry, owing to the increased interest in biodiesel 

production [12–15]. As of 2022, global biodiesel production amounted to approximately 

53,000 million liters and the latest projection of the Organisation for Economic Co-opera-

tion and Development gives an increase of 25% in global production until 2032 (Figure 2) 

[16,17]. In order to increase biodiesel’s own sustainability, it is extremely important to 

develop strategies capable of reutilizing crude glycerol obtained as waste. 
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Glycerol is a compound with a high boiling point, low volatility, and low toxicity, 

constituted by three hydroxyl substituents which allow for the formation of hydrogen 

Figure 1. Transesterification reaction of triglycerides in the presence of methanol, originating biodiesel
and glycerol as a by-product [10].

Biodiesel is considered a non-toxic, biodegradable, and renewable fuel, allowing for
safer handling and reduced carbon, sulfur, and particulate matter emissions. Further,
when compared to normal fuels, it exhibits a higher cetane number and better lubrication,
contributing to a better engine performance and fuel consumption efficiency [3,5]. However,
pure biodiesel also demonstrates some drawbacks, related to its higher viscosity and
less satisfying cold properties, which could lead to serious problems in engine longevity.
Therefore, biodiesel is normally blended with fuel additives, whose application helps
solve these problems and, therefore, benefit biodiesel commercialization [2,10]. Biodiesel
is obtained through the transesterification reaction of triglycerides (a type of fat found in
vegetable oils) with a short-chain alcohol such as methanol (Figure 1), in the presence of an
appropriate catalyst and under acidic or basic conditions [1,2,10]. It is also known as fatty
acid alkyl esters (FAAEs) or fatty acid methyl esters (FAMEs), depending on the alcohol
used in the reaction (ethanol or methanol, respectively) [1,11].

Propane-1,2,3-triol (C3H8O3), also known as glycerol or glycerin, is the by-product
of this reaction, originated as 10% in weight in relation to biodiesel. As such, there is an
excess in crude glycerol in the fuel industry, owing to the increased interest in biodiesel
production [12–15]. As of 2022, global biodiesel production amounted to approximately
53,000 million liters and the latest projection of the Organisation for Economic Co-operation
and Development gives an increase of 25% in global production until 2032 (Figure 2) [16,17].
In order to increase biodiesel’s own sustainability, it is extremely important to develop
strategies capable of reutilizing crude glycerol obtained as waste.
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Glycerol is a compound with a high boiling point, low volatility, and low toxicity, con-
stituted by three hydroxyl substituents which allow for the formation of hydrogen bonds.
These bonds are responsible for its solubility in water and its high viscosity (Figure 3) [11,12].
Glycerol finds application in various industries, from cosmetics and pharmaceuticals to the
food industry, but is also a compound of interest as a chemical platform for conversion into
value-added products [11,13].
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Figure 3. Molecular structure of glycerol.

After transesterification, it is necessary to follow several steps in order to efficiently
obtain the produced biodiesel: (i) neutralization of the reaction mixture, owing to the
acidic or basic nature of the catalyst, (ii) removal of the unreacted methanol, that was used
in excess, through distillation, and (iii) separation of biodiesel from glycerol and other
substances [2,5,18]. As such, the final glycerol, i.e., crude glycerol, possesses impurities
related to these stages, which can vary according to the raw source used, the efficiency of
the washing and biodiesel separation procedures, among other factors. The most common
impurities found in crude glycerol are water, salts, ash, and methanol [18,19].

As mentioned previously, glycerol has many different uses, but it is important to
take into consideration that most are only effective using pure glycerol. The conversion
of glycerol into added-valuable products can only be achieved by performing a previous
purification of crude glycerol; otherwise, the efficiency of the process can be compro-
mised [3,14,20]. On the other hand, the isolate process of glycerol purification is not an
attractive economic method, since this is extremely costly, and therefore, not economi-
cally viable [3,19]. As such, the most commonly adopted strategy is glycerol valorization,
where a variety of catalytic reactions were found to be able to transform glycerol. Figure 4
illustrates the most utilized pathways.
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Hydrogenolysis of glycerol occurs in a catalytic system combining dehydration and
hydrogenation processes [22–25]. In general, glycerol undergoes dehydration in the pres-
ence of an acidic catalyst, followed by the addition of a hydrogen source, commonly using
transition metals. The most commercially interesting products originated by this reaction
are 1,2-propanediol and 1,3-propanediol, whose applications range from pharmaceuticals



Nanomaterials 2024, 14, 828 4 of 15

to cosmetics and, most commonly, polymer formulation [13,22]. Oxidation of glycerol can
originate a wide variety of products, depending on the nature of the catalyst used and
the reaction environment [26–29]. The most well-known products are glyceric acid and
dihydroxyacetone, obtained when the oxidation occurs in a primary or secondary hydroxyl
group, respectively. Applications range from pharmaceuticals and cosmetics to use as
protective agents in coatings [23,26]. Dehydration of glycerol in the presence of catalysts
with an acidic nature, such as Brönsted or Lewis acids, originates acrolein. This compound
is used as an intermediate for many other products, such as acrylic acid, mostly for polymer
formulation [30,31]. The etherification reaction of glycerol originates fuel additives, such as
di-ethers and tri-ethers, in the presence of acid or basic catalysts [32–34]. Other pathways
can be reduction, carboxylation, oligomerization, and pyrolysis [35].

Acetalization is one of the most promising glycerol valorization methodologies produc-
ing valuable products by clean and moderate procedures. The acetalization/ketalization
of glycerol has been studied under different conditions and catalysts. The cyclic acetals
and ketal products obtained with aldehydes and ketones, respectively, present a large
variety of applications [36]. One of the most desired is solketal, being a renewable raw
material, obtained from glycerol by an acid-catalyzed reaction with acetone [12]. Solketal
presents a high variety of applications. As a fuel additive, it reduces fuel gelling, particles
emission, and fuel consumption. The use of solketal with gasoline enhances the octane
number [37]. Furthermore, solketal presents other useful applications such as a solvent
in the paint and ink industries, and as a component in pharmaceuticals, cosmetics, and
polymer chemistry, including the development of drug delivery materials [38]. However,
studies demonstrating the viability of solketal’s industrial applications are scarce [39].

This review intends to conciliate the information presented in the literature about the
production of solketal from glycerol with acetone. The most important parameters that can
influence its fast and selective preparation will be identified and discussed, giving a stronger
emphasis to the catalyst nature and structure, since this is the main key to obtain solketal from
crude glycerol. The use of a most suitable catalyst promotes a green route to prepare solketal
at low temperature, even at room temperature, under a solvent-free system [10,40].

2. Acetalization Reaction: Parameters That Can Influence Efficiency

The glycerol acetalization reaction takes place in the presence of aldehydes or ketones,
originating a five-membered cyclic compound and a six-membered cyclic compound [11,19].
Finally, water is obtained as a by-product of the acetalization reaction. When in the presence
of acetone (Figure 5), the reaction product obtained with highest selectivity is 2,2-dimethyl-
1,3-dioxolane-4-methanol (C6H12O3), commonly known as solketal. This compound is
considered environmentally friendly, combining low toxicity with high miscibility in
most solvents, which favors its application in various industries [3,10]. However, the
use of solketal as an oxygenated fuel additive is extremely interesting, especially when
applied to biodiesel blends. As mentioned previously, biodiesel cannot be used in its
pure form, since its high viscosity and under-performing cold flow properties can become
a very serious problem for engine functioning, and the high NOx emissions raise an
environmental concern. However, when biodiesel is blended, i.e., combined with fuel
additives, these problems are eliminated, since these substances have the ability to improve
fuel characteristics [13,20]. Amongst many other things, additives can decrease the viscosity
of the fuel, act as cleanliness agents, and provide a shorter ignition delay, which prevents
unnecessary particulate matter and NOx emissions [10,12,19]. Further, the use of solketal
as a fuel additive for biodiesel is economically advantageous, allowing the application of
a Circular Economy perspective [11], since (i) the biodiesel formation reaction originates
glycerol as a by-product, creating an overplus, (ii) through acetalization, glycerol can be
repurposed as solketal, whose interest as a fuel additive has been suggested, and (iii)
biodiesel requires the use of fuel additives to be commercialized.
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and water [10].

The acetalization of glycerol is a reversible reaction, hindered by the existence of a
large thermodynamic setback owing to its low equilibrium constant [10,20]. Further, this
reaction originates water as a by-product, whose presence has been proven to greatly
decrease the solketal yield obtained [3,11,19]. As such, it is essential to adopt strategies
that guarantee that the reaction is shifted in favour of the products, while assuring optimal
conditions for solketal formation. This reaction efficiency is linked to the correct choice of
the substrate, solvent, and catalyst.

2.1. Substrate

One of the most adopted strategies to increase glycerol conversion is to use a sub-
strate in excess, increasing the glycerol/substrate ratio. In acetalization, substrates are
oxygen-containing compounds, such as aldehydes and ketones (Figure 6). Many different
substrates have been used in acetalization reactions before, with the most reported ones
being butanal [41], furfural [42], citral [43], benzaldehyde [44], formaldehyde [45], and
acetone. This review will be focused on acetone, as it is by far the most studied substrate,
and its application in glycerol conversion has proved incredibly effective [46–48]. Further,
excess acetone has been reported to increase glycerol conversion to solketal, while also act-
ing as an entrainer, helping the removal of water from the reactional system, and increasing
its miscibility with the viscous glycerol [10,12]. When the reaction is finalized, the unreacted
acetone can be recuperated through distillation and be continuously reutilized [12], which
helps ensure the sustainability of the acetalization reaction.
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Figure 6. Examples of substrates used in the acetalization reaction of glycerol, mainly aldehydes
(formaldehyde, benzaldehyde, butanal, furfural) and ketones (acetone).

2.2. Solvent

As seen previously, when glycerol undergoes, acetalization, it originates two other
products besides solketal: acetal and water. Removal of water can be ensured by the use
of entrainers, desiccants and membranes, amongst other methods [10,49]. The removal
of acetal helps shift the reaction in order to obtain higher glycerol conversions, while
simultaneously allowing its recuperation. Further, while solketal is a product of higher
commercial interest, acetal also demonstrates fuel additive qualities, and therefore should
not be wasted. Traditionally, the removal of acetal from the reactional system was possible
through the use of solvents. Some examples that have been previously reported in the
literature include toluene [50], ethanol [51], and acetonitrile [52]. The evolution of research
in the last years allowed the development of highly efficient catalysts that can assure
a favourable reaction equilibrium by themselves. As such, acetalization reactions have
evolved into solvent-free environments [12,46,53–55].
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2.3. Catalyst

In glycerol acetalization, the correct choice of the catalyst is one of the most important
reaction parameters since, without the presence of a catalyst, the reaction practically does
not occur and no glycerol conversion can be observed [56–59]. The importance and the role
of catalysts in this reaction becomes clear when observing the reaction mechanism behind
glycerol acetalization. According to previous speculation, a proposed mechanism can be
seen in Figure 7, in this case specifically for a Brönsted acid catalyst [19]. In general, the
reaction is kickstarted when the catalyst interacts with the carbonyl of the substrate, either
by protonation or coordination with a metal site (for Brönsted and Lewis acids, respec-
tively) [40,46,47,60]. This interaction forms a protonated intermediate structure that, when
interacting with the hydroxyl groups in glycerol, originates a hemiketal/hemiacetal. Once
the water molecules are removed from the reaction, the formation of a tertiary carbenium
ion occurs [12,19]. Finally, this structure suffers an attack from the hydroxyl groups from
glycerol and solketal is originated from the interaction of the ion with a secondary −OH,
and acetal occurs from the interaction with a primary −OH [56,57,61]. As such, product
selectivity for solketal is much higher, and as a consequence the attack of the secondary
hydroxyl is more facilitated, since the primary −OH suffers steric hindrance [3,10,55].
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Figure 7. Mechanism of the acetalization reaction of glycerol, with acetone as the substrate and in the
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products, solketal and acetal, respectively.

Essentially, the role of the catalyst is to assure the activation of the substrate and initiate
the acetalization of glycerol. Further, it has been extensively reported that the efficiency of
this initial activation, and thus the efficiency of glycerol conversion, is highly dependent on
catalyst acidity [40,57,61,62]. In Section 3 the various catalysts that have been used since
2012 for the acetalization of glycerol with acetone to form solketal without using auxiliary
solvents will be presented. A careful discussion is here presented correlating the nature
and structure of catalysts and their efficiency and stability.

3. Heterogeneous Catalysts for Glycerol Acetalization

Conventionally, acetalization reactions required the use of homogeneous catalysts, such
as sulfuric acid, hydrochloric acid, and p-toluenesulfonic acid [10,12]. However, the use of
these catalysts lead to various reaction drawbacks requiring long reaction times and exhibiting
difficult recuperation from the reaction medium, which increased the cost [12]. Further,
and most importantly, these catalysts are known for their environmental problems, raising
attention for their toxicity [3,10]. The awareness for reaction sustainability and its alignment
with the Principles of Green Chemistry raised interest in the search for alternative catalysts
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that allowed high catalytic efficiency and recyclability, while facilitating handling/recovery
and being environmentally friendly [3,20,63]. As such, heterogeneous catalysts appeared as
potential candidates for the acetalization reaction of glycerol [10,12]. In the last years, many
different catalysts and their application in glycerol conversion have been reported, with some
examples being heteropolyacids, mesoporous silicas, metal–organic frameworks (MOFs),
resins, carbon-based materials, and polymers. Tables 1–4 present various reported glycerol
conversion and solketal selectivity results, using different types of heterogeneous catalysts, in
the acetalization of glycerol using acetone under solvent-free systems.

Balula et al. studied the influence of Keggin-type heteropolyacids, with the use of phos-
photungstic acid (PW12), phosphomolybdic acid (PMo12), and silicotungstic acid (SiW12),
in the acetalization reaction of glycerol at room temperature (Figure 8) [46]. The results
reported a catalytic efficiency trend of PW12 (99.2%) > PMo12 (91.4%) > SiW12 (90.7%) after
only 10 min, where PW12 is widely reported to be the most acidic out of the three heteropoly-
acids [46,64,65]. Da Silva et al. developed a cation-exchanged heteropolyacid, where the
protons of silicotungstic acid were substituted by tin(II) cations [56]. Such a change assured
heteropolyacid salt insolubility, in an effort to solve the recuperation problems associated with
this type of catalyst [64,66]. Glycerol conversion reached 99% after 1 h, with high selectivity
at room temperature, owing to the characteristic acidic behaviour of Sn2SiW12O40, with the
catalyst possessing both Brönsted and Lewis acid sites [56]. The catalyst was reused for four
consecutive cycles, demonstrating catalytic stability; however, catalyst recuperation was very
burdensome [56]. Also, cationic exchange was performed by Ali et al. using imidazolium
cations; however, the conversion and selectivity of the glycerol acetalization was not increased
when compared with the commercial acids of polyoxometalates [67]. Chen et al. investigated
another possibility of facilitating heteropolyacids as catalysts in acetalization, through the
preparation of a cesium phosphotungstic salt, and its consequent immobilization in KIT-6
silica [58]. The conversion results obtained for the catalyst in its bulk and incorporated form
were very similar (94 and 95%, respectively), with Cs2.5H0.5PW12O40@KIT-6 reaching higher
conversions after only 15 min. Stability tests showed no loss of activity after three consecutive
cycles, demonstrating its effectiveness [58].
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were obtained using a glycerol/acetone ratio of 1:6 and PW12 (3% referred to glycerol weight) as
catalyst. Adapted from reference [46].
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Table 1. Metallic oxide-based catalysts used for glycerol acetalization reactions, with acetone as a
substrate and in the absence of an auxiliary solvent.

Catalyst Ratio of
Glycerol/Acetone

Temperature
(◦C)

Time
(h)

Conversion
(%)

Selectivity to
Solketal (%) Ref.

H3PW12040 1:15 RT 0.08 99.2 97 [46]

H3PMo12040 1:15 RT 0.08 91.4 94 [46]

H4SiW12O40 1:15 RT 0.08 90.7 85.7 [46]

Sn2SiW12O40 1:16 RT 1 99 97 [56]

Cs2.5H0.5PW12O40 1:6 RT 1 94 98 [58]

Cs2.5H0.5PW12O40@KIT-6 1:6 RT 0.25 95 98 [58]

meso-MoO2 1:10 RT 1 95.8 97.8 [68]

meso-WO3 1:10 RT 1 34.7 71.2 [68]

meso-SnO2 1:10 RT 1 28.9 68.9 [68]

SnO2 1:1 RT 1.5 15 96 [47]

WO3/SnO2 1:1 RT 1.5 55 90 [47]

MoO3/SnO2 1:1 RT 1.5 61 96 [47]

SO4
2−/SnO2 1:1.5 RT 4 98 96 [69]

MoO3-ZrO2 1:8 50 0.2 89 97 [70]

[HMIm]3[PW12O40] 1:2 RT 1 85 87.06 [67]

[HMIm]3[PMo12O40] 1:2 RT 1 80 82.5 [67]

[HMIm]4[SiW12O40] 1:2 RT 1 76 78.94 [67]

Mallesham et al. prepared modified SnO2 catalysts, whose catalytic performance was
studied in the acetalization reaction at room temperature [47,69]. After 1 h, the following
results were obtained: SO4

2−/SnO2 (98%) > MoO3/SnO2 (61%) > WO3/SnO2 (55%). All
three catalysts exhibited higher conversion results than the non-modified SnO2 solid acid
(15% after 1.5 h), with SO4

2−/SnO2 demonstrating superior conversion owing to the
presence of super acidic sites in its structure, further confirming the influence of catalyst
acidity [69]. In summary, of the metallic oxide basic catalysts, the polyoxometalates showed
a higher conversion rate and higher selectivity for solketal production.

Among the various heterogeneous catalysts based on silica (Table 2) used for the
acetalization of glycerol with acetone, the work from Gadamsetti et al. [55] presented one of
the best catalytic results. In this case, the development of a silica-incorporated molybdenum
phosphate catalyst is reported, and its consequent study in acetalization of glycerol, at room
temperature. The prepared catalyst demonstrated perfect glycerol conversion, combined
with high solketal selectivity (98%), after only 1 h. Through material characterization, it
was shown that MoPo@SBA-15 possessed Brönsted acidic sites, responsible for the high
glycerol conversion. Catalyst stability was evaluated for four consecutive recycling cycles,
demonstrating the existence of acidic sites leaching, corresponding to a decrease in catalytic
efficiency [55]. Another important catalytic achievement was achieved by Ammaji et al. by
incorporating transition metals in the SBA-15 structure, further studying the application
of SBA-15-based catalysts in acetalization reactions [57]. At room temperature, the follow
order of conversion capacity was obtained: Nb-SBA-15 (95%) > Zr-SBA-15 (92%) > Ti-
SBA-15 (65%) > Al-SBA-15 (60%), with the Nb-SBA-15 catalyst demonstrating the best
catalytic results, along with complete solketal selectivity [57]. Similarly to previous reports,
the best-performing catalysts (Nb-SBA-15 and Zr-SBA-15) were those that exhibited the
highest amount of Brönsted acidic sites, highlighting its importance for this particular
reaction. The Nb-SBA-15 catalyst was continuously applied in acetalization reactions for
four cycles, showing a decrease in glycerol conversion which was related to leaching of
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acidic sites [57]. Comparing in general the catalytic results obtained with the functional
silica catalysts (Table 2) with the previous heterogeneous polyoxometalates (Table 1), it
is possible to observe that identical results were obtained for solketal conversion and
selectivity, with shorter reaction times (0.08 or 0.25 h) when polyoxotungstates were used
and in the presence of a lower ratio of glycerol/acetone (1:3) when Nb-SBA-15 or Zr-SBA-15
were used.

Table 2. Silica-based catalysts used for glycerol acetalization reactions, with acetone as a substrate,
under a solvent-free system.

Catalyst Ratio of
Glycerol/Acetone

Temperature
(◦C)

Time
(h)

Conversion
(%)

Selectivity to
Solketal (%) Ref.

MoPo@SBA-15 1:3 RT 1 100 98 [55]

Nb-SBA-15 1:3 RT 1 95 100 [57]

Zr-SBA-15 1:3 RT 1 92 98 [57]

Ti-SBA-15 1:3 RT 1 65 98 [57]

Al-SBA-15 1:3 RT 1 60 98 [57]

Ar-SBA-15 1:6 70 0.5 82.5 wi [71]

Pr-SBA-15 1:6 70 0.5 79.0 wi [71]

PSF 1:10 RT 1.5 75 98 [72]

PSF/SiO2 1:10 RT 1.5 86.6 98 [72]

PSF/K-SiO2 1:10 RT 1.5 86.3 98 [72]

MoO3/SiO2 1:2 RT 1 46.8 90 [59]

SO4-Al-MCM-41 1:10 RT 2 94.8 99 [73]

wi: without information.

Carbon-based materials, such as metal–organic frameworks (MOFs), have also been
used as heterogeneous catalysts for the acetalization of glycerol with acetone (Table 3).
Among these works, Bakuru et al. [61] presented one of the most active and sustainable
catalytic systems based on MOFs. In this case, the effect of acidity in the structure of UiO-66
was studied, and its influence in the acetalization of glycerol, at room temperature. This
MOF structure is very interesting for acetalization, since the combination of the oxophilicity
behavior and the existence of defects causes the appearance of more acidic sites in its
structure [61]. From the three MOFs studied, it was seen that UiO-66 (Hf) (94.5%) > UiO-
66 (Ce) (70.9) > UiO-66 (Zr) (1.5%), confirming that UiO-66 (Hf) is the best-performing
catalyst since it has the highest amount of µ3-OH groups, acting as Brönsted acidic sites [74].
The higher the oxophilicity of the MOF structure, the higher the acidity, which originates
a higher glycerol conversion [61]. Mirante et al. compared the catalytic efficiency of
another family of MOFs, based on MOF-808 [40]. Similarly, MOF-808 (Hf) exhibited the
best catalytic behaviour, reaching 91% after 3 h at 60 ◦C, which was expected due to the
superior acidity obtained when compared to the MOF-808 (Zr) catalyst (Figure 9). Catalyst
recycling was evaluated for ten consecutive cycles, with MOF-808 (Hf) demonstrating high
stability [40]. Santos-Vieira et al. reported the preparation of a coordination polymer (UAV-
59), constituted by Gd3+ cations and nitrile (trimethylphosphonic acid) [60]. This catalyst
was applied to acetalization reactions, at 55 ◦C, obtaining a glycerol conversion of 94%, with
simultaneous high solketal selectivity (97%). The efficiency of this polymer can be explained
by the high concentration of acidic protons in its structure. Catalyst stability studies
demonstrated only a minor decrease in activity, after four consecutive recycling cycles [60].
The best catalytic performance between the MOF-based materials presented in Table 3 is
shown by a composite formed by the incorporation of a polyoxotungstate into the MOF–Fe
framework [HMIm]3[PW12O40]@MOF-Fe (Table 3) [67]. This catalyst obtained complete
glycerol conversion and complete solketal selectivity, after only one hour, using the lowest
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ratio of glycerol/acetone reported in the literature. Using [HMIm]3[PW12O40]@MOF-Fe
catalyst during seven recycling cycles, the glycerol conversion and solketal selectivity were
maintained, demonstrating the superior acetalization behaviour of this catalyst compared
to the isolated polyoxotungstate [67].
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Table 3. MOF-based catalysts used for glycerol acetalization reactions, with acetone as a substrate
and in the absence of an auxiliary solvent.

Catalyst Ratio of
Glycerol/Acetone

Temperature
(◦C)

Time
(h)

Conversion
(%)

Selectivity to
Solketal (%) Ref.

UiO-66 (Hf) 1:4 RT 1 94.5 97.2 [61]

UiO-66 (Ce) 1:4 RT 1 70.9 90.1 [61]

UiO-66 (Zr) 1:4 RT 1 1.5 73.2 [61]

UiO-SO3H-0.5 1:10 60 1 60.2 99.7 [48]

MOF-808 (Hf) 1:6 60 3 91 98 [40]

MOF-808 (Zr) 1:6 60 3 6 100 [40]

MOF-Fe 1:2 RT 1 72 72.22 [67]

MIL-118 (Al) 1:10 wi 4 43 58 [75]

MIL-118-SnO2 1:10 wi 4 76 97 [75]

UAV-59 1:10 55 2 94 97 [60]

UAV-63 1:10 55 6 84 96 [76]

UAV-20 1:10 55 6 56 90 [76]

[HMIm]3[PW12O40]@MOF-Fe 1:2 RT 1 100 100 [67]

[HMIm]3[PMo12O40]@MOF-Fe 1:2 RT 1 95 96.84 [67]

[HMIm]4[SiW12O40]@MOF-Fe 1:2 RT 1 90 93.33 [67]

PVA40 1:6 70 3 94 wi [77]

SCS1/2 1:6 70 0.5 75 90 [78]

HSCS1/2 1:6 70 0.5 82 99 [78]

SO3H-C 1:8 57 1 80 wi [79]

wi: without information.
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Few reported works can also be found in the literature using zeolite-based hetero-
geneous catalysts for acetalization of glycerol with acetone (Table 4). Using this type of
catalyst, a higher ratio of glycerol/acetone needed to be used to achieve similar results to
those obtained with MOFs and polyoxotungstate (Table 3). One of the most interesting
examples is reported by Saini et al., who developed a metal-free mordenite zeolite catalyst
which was applied in acetalization reactions at 60 ◦C [80]. After 4 h of reaction, the catalyst
obtained 99% of glycerol conversion, while demonstrating high solketal selectivity (99%).
Mordenite was recycled for three cycles, showing no loss of activity [80]. Other interest-
ing kinetic studies using Amberlyst-35 catalyst are also presented in the literature [81].
However, in this study an auxiliary solvent was used.

Table 4. Zeolite-based catalysts and other composites used for glycerol acetalization reactions, with
acetone as a substrate and in the absence of an auxiliary solvent.

Catalyst Ratio of
Glycerol/Acetone

Temperature
(◦C)

Time
(h)

Conversion
(%)

Selectivity to
Solketal (%) Ref.

ZrMo-KIT-6 1:8 50 4 85.8 97.8 [82]

Zeolite HY 1:2 RT 1 74.2 98.2 [59]

Zeolite OTS-HY 1:12 30 1 89 95 [83]

Zeolite H-Beta-1 1:2 RT 1 86 98.5 [59]

Zeolite HBEA 1:10 RT 1.5 70.9 97.5 [72]

Zeolite Mordenite 1:10 60 4 99 99 [80]

Amberlyst-15 1:2 RT 1 73.1 91 [59]

Amberlyst-45 1:10 RT 1.5 80.6 97.4 [72]

4. Conclusions

The implementation of legislation designed to reduce and eventually eliminate com-
pletely the use of fossil fuels derivatives has demonstrated the increasingly urgent search
for new sustainable energy sources. Biodiesel has been explored as a non-toxic and envi-
ronmentally friendly alternative, whose formation reaction still needs to be optimized in
order to increase its sustainability and economic interest. An obstacle associated with this
industry is the large amount of glycerol produced as a by-product, raising importance for
the discovery and investigation of glycerol valorization strategies, such as acetalization.
The acetalization reaction of glycerol, in the presence of acetone, originates solketal, a
very interesting fuel additive that contributes to the fulfilment of a Circular Economy
Model through its use in biodiesel blends. In the last years, heterogeneous catalysts have
distinguished themselves in acetalization, allowing high conversion and selectivity, while
simultaneously facilitating recuperation and increasing the sustainability of this valorized
process. High glycerol conversion results are linked to the catalyst acidity, where the
preference of Brönsted acidic sites over Lewis sites has been extensively reported, owing to
their efficient activation of the substrate, and thus increasing its interaction with glycerol
and producing higher amounts of solketal. The acetalization of glycerol has been confirmed
to be a fast-acting reaction, using mild experimental conditions, since the majority of works
published report better conversion results at room temperature. Higher temperatures, such
as 55 ◦C or 60 ◦C, are also verified, mainly in order to increase acetone/glycerol miscibility
and increase diffusion. Several excellent results have been obtained thus far; however, there
is still much room for improvement, for example: (i) mesoporous silicas demonstrate high
conversion results at fast rates, but many report stability issues linked with leaching of
the acidic sites; (ii) the application of MOFs has raised interest, owing to the combination
of their satisfactory glycerol conversion and recyclability behaviour. Another advantage
of using silica- and MOF-based materials is the lower ratio of glycerol/acetone needed
to achieve near complete conversion and 100% of selectivity for thee solketal after 1 h of
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reaction. Keggin-type polyoxotungstates have been shown to achieve the same catalytic
results but with shorter reaction times, such as after 10 and 20 min. However, the combina-
tion of the most promising catalysts, i.e., the acid polyoxometalates and MOFs or silicas,
for the production of solketal is practically unexplored, and the only example reported is
considered the most sustainable and productive for this acetalization reaction. Advanced
catalysts for solketal production will be needed in the future and these should be designed
using acid polyoxometalates incorporated into silicas and/or MOFs.
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