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Abstract: Corrosion and wear issues of motion components exposed to water-based corrosion medi-
ums, e.g., naval vessels and oil extraction equipment, pose challenges for the lifespan and reliability
of the motion systems. In this work, epoxy-based coatings modified with polytetrafluoroethylene
(PTFE) and cuprous oxide (Cu2O) nanoparticles were prepared. The anti-corrosion performance of
the coatings was comparatively investigated by electrical impedance spectroscopy and Tafel tests in
sterile and sulphate-reducing bacteria (SRB) mediums. Moreover, the tribological behaviors of the
coatings were examined under water lubrication conditions. Our results demonstrate that the epoxy
coatings lower significantly the corrosion current density icorr and the charge transfer resistance
of the electrical double layer Rct of the carbon steel substrate. Interestingly, the hybrid coatings
filled with both PTFE and Cu2O exhibit excellent anti-corrosion and anti-wear performance. After
being immersed in the SRB medium for 18 days, the icorr of the pure EP coating and hybrid coatings
are 1.10 × 10−7 Amp/cm2 and 0.3 × 10−7 Amp/cm2, and the Rct values are 1.04 × 103 Ω·cm2 and
3.87 × 103 Ω·cm2, respectively. A solid tribofilm forms on the stainless steel counterface sliding
against the hybrid coating, which is surmised to be essential for the low friction coefficients and
wear. The present work paves a route for formulating the dual-function coatings of anti-biocorrosion
and anti-wear.

Keywords: sulphate-reducing bacteria; biocorrosion; wear; anti-wear

1. Introduction

Corrosion and wear are important factors causing issues such as equipment failures
and security risks, etc. [1]. The metallic motion components of naval vessels [2], oil borehole
equipment, [3] and wastewater pollution equipment [4] are exposed to seawater, sewage
or oilfield produced fluids. In these mediums, a variety of corrosive microorganisms
thrive, including sulfate-reducing bacteria, iron bacteria, methanogens, acid-producing
bacteria and so on [5–8]. In particular, the motion components lubricated with water often
operate in mixed and even boundary lubrication regimes [9]. The tribo-corrosion of the
metallic components is a significant challenge regarding the lifespan and reliability of
the equipment [10,11]. That is, corrosion caused by aggressive chemicals and microorgan-
isms in the water medium can accelerate the wear of the motion components, and vice
versa [12,13].

Microbiologically influenced corrosion (MIC) causes significant financial loss, i.e.,
approximately 20% of the total corrosion cost of metals globally [14]. Nowadays, to
prevent and control MIC, numerous chemical biocides, e.g., glutaraldehyde, 2,2-dibromo-
3-nitrilopropionamide and tetrakis hydroxymethyl phosphonium sulfate, are used to
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eliminate microorganisms in sewage and oilfield produced fluids [15,16]. However, such
chemical biocides usually result in various environmental issues and induce the resistance
of bacteria to chemical biocides [17]. Hence, stringent regulations have been established
by governments worldwide for controlling the utilization of these chemical biocides. It
has been recognized that sulfate-reducing bacteria (SRB) are one of the most common
microorganisms inducing MIC [14]. Extracellular polymeric substances (EPS) secreted by
SRB attach to the surfaces of metallic materials and form biofilms in which other corrosion
products are distributed [18]. The biofilms provide an anaerobic circumstance which is
more favorable for the growth and activities of SRB and can aggravate long-term localized
corrosion [19].

Several models have been proposed to explain mechanisms governing MIC. SRB can
utilize sulfates (SO4

2−) as an electron acceptor and release sulfide ions (S2−) or hydrogen
sulfide (H2S) in the process of metabolism [20]. The S2− produced by SRB can react with
Fe2+ released from the steel to form FeS, which can cause the blockage of oil pipelines
and the degradation of oil quality [21,22]. Moreover, the presence of FeS in the biofilms
can promote electron transfer from Fe to SRB [23]. H2S as corrosive gas itself can cause
corrosion and the souring of petroleum reservoirs [22,24]. According to Kuhr’s cathode
depolarization theory [25,26], SRB can cause the cathodic depolarization and corrosion of
steel, and thereby aggravate hydrogen evolution corrosion. Another mechanism of SRB
corrosion is known as the theory of extracellular electron transfer (EET) [27,28]. In the
absence of a carbon source, SRB may form conductive nanowires and connect with the
steel through conductive proteins on their outer membrane to capture electrons from Fe
atoms [27,29].

Polymer composites have been recognized as effective anticorrosive coating materi-
als, demonstrating good barrier properties against electrochemical corrosion caused by
chemicals in the ocean and chemistry industries [30]. Polymer resins such as epoxy and
acrylate are commonly utilized as binder materials of the composite coatings [31–33]. Vari-
ous formulating strategies and approaches of anti-corrosion composite coatings have been
developed and applied successfully. In the last decade, various metallic oxide nanoparticles,
e.g., titanium dioxide [34], copper oxide [35] and cerium dioxide [36], and nanosheets, e.g.,
graphene and its derivatives [37], nano-graphitic carbon nitride [38] and nano-hexagonal
boron nitride [39], are dispersed into polymer matrices and their effects on polymers’
anti-corrosion performance have been investigated. It has been demonstrated that the
addition of the nanofillers is an effective approach for greatly improving the anti-corrosion
performance of the polymer coatings. The anti-corrosion mechanisms of nanofillers are
ascribed to their complex inhibition effects, which are associated with physical barriers [40],
passivation [41], cathodic protection [42] and so on.

However, polymer coatings are susceptible to corrosion caused by biofouling due to
the adhesion and growth of bacteria and marine organisms [43]. The anti-corrosion perfor-
mance of polymer coatings exposed to bacteria mediums have been explored in recent years.
The results of Zhu et al. [44] demonstrated that polydimethylsiloxane (PDMS)/cuprous
oxide (Cu2O) composite coating exhibits remarkable antifouling and anti-corrosion resis-
tance against Pseudomonas aeruginosa, Staphylococcus aureus, algae and mussels. The authors
surmised that Cu irons progressively released from the composite coating can inhibit
biofilm formation and bacteria proliferation, whilst the low surface energy of PDMS is less
conducive for fouling microorganisms to establish attachment. Zhao et al. [45] reported
that core–shell-structured Cu2O/polyaniline (PANI) dispersed in acrylate coatings showed
anti-fouling and anti-corrosion dual-functions. The authors claimed that the possible elec-
trostatic adsorption of the PANI shell to Gram-negative E. coli can shorten the function
routes of Cu2+ for killing the microorganisms. It should be noted that investigations on
effects of SRB on the corrosion behaviors of polymer coatings have been rarely reported.

Polymer composites are being increasingly used as tribo-materials subjected to water
lubrication conditions thanks to their chemical stability and self-lubrication characteristics.
Owing to the low viscosity of water, the water film exhibits a low load-bearing ability. This
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is true, especially for sliding at high loads and low speeds [46]. Previous works [47,48]
demonstrate that the growth of a solid-lubricating tribofilm at the water-lubricated interface
can compensate for the lubrication insufficiency of the water film, and thus greatly improve
the tribological performance of the sliding pair.

Epoxy resins have been widely utilized for developing enormous kinds of engineering
and functional coatings. Polytetrafluoroethylene (PTFE) is a high-performance polymer
demonstrating excellent chemical stability, self-lubrication and superior hydrophobic nature
owing to its low surface energy [49]. Cu2O is an excellent antifouling component in coatings
and is more environmentally friendly than conventional fungicides [50]. In this study, epoxy
coatings filled with PTFE or/and Cu2O nanoparticles were prepared and deposited onto a
carbon steel substrate. The comparative electrochemical performances of the carbon steel
and the epoxy coatings when exposed to sterile and SRB mediums were studied. In order
to shed light on hindering corrosion mechanisms, the topographies as well as chemical
components of the corroded surfaces were comprehensively analyzed. The tribological
behaviors of the epoxy-based coatings were investigated under water lubrication conditions.
The aims of this work are to explore a route for formulating dual-function coatings, i.e., anti-
corrosion and anti-wear, for applications on metallic components exposed to SRB medium
and to elucidate the structure/performance relationship of the epoxy composite coatings.

2. Materials and Methods
2.1. SRB Cultivation

Wastewater originating from produced fluids in the Zhidan oilfield (Shanxi province,
Zhidan, China) was cultured using Postgate’s medium (Qingdao Haibo Co., Ltd., Qingdao,
China) containing (per 1 L of dH2O): 7.0 g NaCl, 1.2 g MgCl2·6H2O, 0.05 g KH2PO4, 1.0 g
NH4Cl, 4.5 g Na2SO4, 0.04 g MgSO4·7H2O, 1 mL sodium lactate (60%), 0.1 g yeast extract
and 0.03 g sodium citrate placed in a constant temperature incubator with an oxygen-free
environment at 30 ◦C. Prior to culturing the wastewater, Postgate’s medium was adjusted
to pH 7.0 and sterilized in an autoclave at 121 ◦C for 30 min. After 7 days culturing, the
Postgate’s medium turned black, suggesting that the bacterial consortium in the medium is
dominated by SRB [51]. The bacterial consortium dominated by SRB was inoculated into
Postgate’s medium with 2% agar powder at 40 ◦C. After incubating for 7 days, a pure SRB
colony was obtained.

2.2. Materials and Electrode Preparation

Q20 carbon steel (GB/T711-2017 [52], Dongguan LingXing Co., Ltd., Dongguan,
China), containing (in wt.%) of 0.07 C, 1.82 Mn, 0.19 Si, 0.17 Ni, 0.01 Mo, 0.023 S, 0.026 Cr,
0.007 P, 0.02 Cu, 0.002 V, 0.028 Al, 0.056 Nb, 0.004 N and 0.0001 B (the rest being Fe), were
used for preparing the working electrode. Sections of Q20 carbon steel with dimensions of
10 × 10 × 3 mm3 were connected with copper wire and sealed in epoxy resin to ensure an
exposed work area of 1 cm2. Then, the work area was polished in succession with 400, 600,
and 1000 grit silicon carbide papers.

PTFE powder (Hangzhou Bolong, Co., Ltd., Hangzhou, China) with an average grain
diameter of 5 µm and Cu2O particles (Zhejiang Jiuli, Co., Ltd., Hangzhou, China) with an
average size of 50 nm were used as fillers for epoxy-based composite coatings. Figure 1 illus-
trates the SEM graph of the PTFE powders and the TEM graph of the Cu2O nanoparticles.
To prepare the composite coatings, the fillers, i.e., PTFE, Cu2O or PTFE/Cu2O combination,
were dispersed into bisphenol A epoxy resin (E51, Nanjing Xingchen Co., Ltd., Nanjing,
China) using a vacuum dissolver. Subsequently, the mixture was milled with a three-roll
mill. Then, a polyamide curing agent (650, Zhenjiang Danbao Co., Ltd., Zhenjiang, China)
was added into the milled resin. Epoxy coatings of approximately 30 µm were sprayed
onto the carbon steel and cured at 80 ◦C for 6 h. Four coatings, referenced as EP (neat epoxy
resin), EP/1.5Cu2O (epoxy resin filled with 1.5 vol.% Cu2O), EP/15PTFE (epoxy resin filled
with 15 vol.% PTFE) and EP/15PTFE/1.5Cu2O (epoxy resin filled with 1.5 vol.% Cu2O and
15 vol.% PTFE) were studied and compared directly with carbon steel.
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2.3. Electrochemical Experiments

Electrochemical measurements consisting of electrical impedance spectroscopy (EIS)
and potentiodynamic polarization curves were conducted in a three-electrode electrochem-
ical cell with a 0.1 mol/L KCl using electrochemical workstation (CHI660E, Chenhua,
Shanghai, Co., Ltd., China). In a three-electrode system, the Q20 carbon steel or epoxy-based
coating, with only a 1 cm2 work area exposed; a saturated calomel electrode (Huayu, Shanghai
Co., Ltd., Shanghai, China); and platinum (Huayu, Shanghai Co., Ltd., Shanghai, China) were
used as the working electrode, reference electrode and counter electrode, respectively.

Before electrochemical measurement, open-circuit potential (OCP) was monitored
for approximately 60 min until it reached a stable value. On the basis of OCP, the EIS
was measured under the excitation of a sinusoidal wave with an amplitude of 5 mV and
within a frequency range of 10−2 to 106 Hz. The potentiodynamic polarization curves were
measured with a potential scanning range from 250 mV to +300 mV vs. OCP from the
cathodic to the anodic direction at a potential scan rate of 0.167 mV min−1.

Before corrosion experiments, the working electrode was sterilized by exposure to
ultraviolet light for half a minute. The sterilized work electrode was immersed into
sterilized Postgate’s medium and inoculated with SRB for 18 days and then removed at the
4th, 11th, and 18th days for electrochemical measurement or corroded surface morphology
and components analysis. Before corrosion morphology and components analysis, the
removed working electrode was cleaned by using petroleum ether and ultrasonic 30 s
and then immersed in 2.5 wt.% glutaraldehyde at 4 ◦C for 8 h to fix the morphology of
SRB, followed by dehydration using a graded aqueous-ethanol series (25 wt.%, 50 wt.%,
75 wt.%, and 100 wt.% for 15 min). A field emission scanning electron microscope (FE-SEM,
Merlin Compact, Zeiss, Oberkochen, Germany) equipped with energy-dispersive X-ray
spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo
Fisher Scientific, Waltham, MA, USA) were used to analyze the morphologies and chemical
components of corroded surfaces.

2.4. Tribological Experiments

The tribological characteristics, i.e., friction coefficient and wear rate, of the epoxy-
based coatings were measured using a plate-on-ring tribometer (MRH-3, Yihua, Co., Ltd.,
Jinan, China) at an applied load of 50 N and a sliding velocity of 0.1 m/s over a duration of
2 h. The used ring was made of 304 stainless steel (GB/T 18254-2002 [53], China), with an
initial surface roughness (Ra) of 0.12–0.15 µm. Prior to tribo-tests, the steel rings were fully
cleaned with petroleum ether.

The wear scar width of the coatings was measured using a digital reading stereo-
scopic microscope (Olympus BX41, Tokyo, Japan). The specific wear rate (Ws), i.e., wear
volume per sliding distance and loading force, was calculated according to the following
formula [54].

Ws =
L′

L·F

[
r2·sin−1

(
W
2r

)
− W

4

√
4r2 − W2

]
(mm3/Nm) (1)
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where Ws is the specific wear rate (mm3/N·m), L′ and W are the length and width of the
wear scar (mm), r is the radius of steel ring (25 mm), F represents the applied load (N) and
L is the total sliding distance (m). And the average value of friction coefficients during
the last 10 min of a running-in process was taken as the mean friction coefficient. Each
test was conducted a minimum of three times, with mean friction coefficients and specific
wear rates calculated for analysis. After the tribo-test, the morphological characterizations
and elemental composition mapping of the worn surfaces were analyzed by using SEM
and XPS.

3. Results and Discussion
3.1. Electrochemical Measurements
3.1.1. EIS

EIS is efficient for characterizing electrochemical reactions at metal/biofilm interfaces
and studying the formation of corrosion products and biofilms [55]. The equivalent circuit
model can describe the electrochemical characteristics of an electrochemical system by
assuming circuit elements.

Figure 2a–d present the Nyquist plots of the steel and the coatings after being im-
mersed in the sterile medium and SRB mediums. It is well known that a smaller diameter
in Nyquist plots suggests a lower corrosion resistance and a higher corrosion rate [56]. As
seen from Figure 2a,b, the radius of the arc gradually decreased with increasing immersion
time, meaning that the steel was corroded in the medium with or without SRB. Moreover,
the arc radius of steel immersed in SRB medium for 18 days is significantly smaller than
that of immersed in sterile medium. The steel immersed in SRB medium saw more serious
corrosion. As seen from Figure 2c, after immersion in the sterile medium for 18 days, the ra-
dius of the arc gradually increased in the following order: EP < EP/1.5Cu2O < EP/15PTFE
< EP/15PTFE/1.5Cu2O. However, after immersion in the SRB medium for 18 days, the
radius of the arc gradually increased in the following order: steel < EP < EP/15PTFE
< EP/1.5Cu2O < EP/15PTFE/1.5Cu2O.
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Figure 2. Nyquist plots of Q20 steel after immersion in sterile (a) and SRB mediums (b); Nyquist
plots of coatings after immersion in sterile (c) and SRB mediums (d); equivalent circuit models for
Q20 steel (e1) and coatings (e2).

Figure 2e1,e2 are the equivalent circuit model for fitting Nyquist plots of Q20 carbon
steel and their coatings, respectively. Tables 1 and 2 show the fitting values of Nyquist
plots for Q20 steel and the coatings in sterile and SRB medium, respectively. Rs, Rc, Rf and
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Rct represent the electrolyte solution resistance, the coating resistance, the resistance the
Q20 steel surface layer including the passivation film or the corrosion product film, and the
charge transfer resistance of electrical double layer at the carbon steel, respectively. Qf and
Qct represent surface film capacitance, and electric double-layer capacitance, respectively.
O represents the charge transfer free diffusion element. The dotted curve in the Nyquist
plots represents the original data obtained from the electrochemical workstation, while the
solid curve depicts the fitted data. The trend of the fitted data curve closely matches the
original data curve.

Table 1. Fitting data Nyquist plots of Q20 steel in sterile and SRB mediums.

Corrosion
Time

(Days)

Rs
(Ω·cm2)

Qf
(×10−8)
(µF·cm2)

Qf-n
Rf

(×10)
(Ω·cm2)

Qct
(×10−4)
(µF·cm2)

Qct-n
(10−1)

Rct
(×102)

(Ω·cm2)

O-Yo
(10−3) O-B

Initial 0 6.75 6.78 0.94 2.30 7.25 0.94 7.52 2.90 2.79

Sterile
medium

4 5.76 7.25 0.88 2.09 1.69 0.88 7.0 1.87 9.00
11 5.31 1.69 0.44 2.61 1.78 0.44 5.62 1.15 8.66
18 5.78 1.78 0.62 2.85 2.89 0.62 4.99 4.00 6.00

SRB
medium

4 5.87 3.52 5.48 2.36 7.22 0.77 7.15 6.26 4.22
11 6.02 2.21 3.15 2.83 1.41 1.00 4.71 2.58 7.73
18 6.00 1.08 5.27 2.92 2.56 0.89 2.90 1.04 9.92

Table 2. Fitting data Nyquist plots of coatings in sterile and SRB mediums.

Coatings
Rs

(×10−2)
(Ω·cm2)

Qf
(×10−10)
(µF·cm2)

Qf-n
Rc

(×102)
(Ω·cm2)

Qct
(×10−5)
(µF·cm2)

Qct-n
(10−1)

Rf
(×103)
(Ω·cm2)

Q-Yo
(×10−4)

Q-n
(×10−1)

Rct
(×108)
(Ω·cm2)

O-Yo
(×10−1)

O-B
(×10−5)

Sterile
medium

EP 3.67 1.87 1.00 0.48 3.39 7.61 7.81 3.75 4.64 0.15 9.29 1.39
EP/1.5Cu2O 1.01 6.40 1.00 5.24 1.01 2.28 2.38 1.20 2.37 2.11 1.02 1.21
EP/15PTFE 4.99 6.62 1.00 6.25 1.13 4.09 3.43 1.63 5.20 4.99 5.01 2.28

EP/15PTFE/1.5Cu2O 2.40 3.52 1.00 9.21 1.46 3.45 3.55 1.08 8.44 6.29 4.57 3.60

SRB
medium

EP 5.60 1.31 1.42 0.66 1.87 1.00 3.87 4.04 6.65 0.01 2.44 8.85
EP/1.5Cu2O 9.99 6.91 1.00 6.01 2.14 7.87 4.34 1.42 4.37 2.94 9.82 2.58
EP/15PTFE 1.89 1.00 1.20 7.04 4.09 8.08 1.05 7.18 1.38 2.28 1.22 1.89

EP/15PTFE/1.5Cu2O 2.33 5.35 1.00 9.33 6.95 2.50 1.04 4.19 3.84 5.35 8.45 8.26

Rct in the sterile medium decreases gradually over 4, 11, and 18 days. This behavior is
attributed to the corrosion caused by ions in the sterile medium. Previous studies report
that the larger the Rct, the lower the charge transfer activity of the metal surface and the
less susceptible to corrosion [51]. In the SRB medium, Rct saw no significant change after
4 days of immersion, probably owing to biofilm formation on the steel surface, which can
hinder the corrosion of carbon steel. However, after immersion in in the SRB medium for
11 days, the Rct of the steel starts to decrease. Furthermore, the Rct of the steel after being
immersed in the SRB medium is lower than that of the steel immersed in the sterile medium
for the same number of days. After immersion for 18 days, the Rct of the steel immersed in
the SRB medium is lower than that of the steel immersed in the sterile medium by up to
2.09 × 102 Ω·cm2.

The Rct values of the coatings fitted from the Nyquist plots are summarized in Ta-
ble 2. After immersion in the sterilized medium, Rct values of the steel and the coatings
follow the sequence: steel < EP < EP/1.5Cu2O < EP/15PTFE < EP/15PTFE/1.5Cu2O. How-
ever, after immersion in the SRB medium, the sequence order of Rct values is as follows:
steel < EP < EP/15PTFE < EP/1.5Cu2O < EP/15PTFE/1.5Cu2O. When immersed in the
sterile medium, EP/15PTFE exhibits higher corrosion resistance than EP/1.5Cu2O. It is
surmised that the hydrophobic feature of PTFE benefits the electrochemical corrosion of
the coating [34], whereas Cu2O nanoparticles are more effective than PTFE particles for
enhancing the biocorrosion resistance of the epoxy coating. Interestingly, the above results
demonstrate that the Cu2O nanoparticles and PTFE particles play a synergetic role in
enhancing the corrosion resistance of the coatings.
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3.1.2. Potentiodynamic Polarization Curves

Figure 3 displays the potentiodynamic polarization curves of the steel after 4, 11, and
18 days of corrosion in the sterile medium and SRB mediums, respectively. Table 3 lists the
fitting corrosion current density (icorr) and corrosion potential.
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Figure 3. Potentiodynamic polarization curves of the Q20 steel (a,b) and the coatings (c,d) after being
immersed in sterile (a,c) and SRB mediums (b,d) for 18 days.

Table 3. Fitted data from potentiodynamic polarization curves of the Q20 steel immersed in ster-
ile medium.

Corrosion Time
(Days)

Io × 10−7

(Amp/cm2) Eo (Volts) Ba (mv) Bc (mv)

Initial 0 1.47 −0.54 18.93 −21.63

Sterile medium
4 1.97 −0.62 14.23 −18.18

11 2.32 −0.65 13.56 −13.56
18 2.55 −0.62 17.73 −23.32

SRB medium
4 1.32 −0.52 13.56 −13.56

11 2.95 −0.67 11.14 −7.43
18 4.17 −0.63 7.80 −7.80

It has been well recognized that the larger the icorr, more susceptible to corrosion [57].
icorr of the steel increases gradually when being immersed in the sterile medium for 4, 11
and 18 days. Nevertheless, after being immersed in the SRB medium for 4 days, icorr de-
creases, probably due to biofilm formation [58]. The biofilm that forms on the metal surface
effectively decreases the ionic and electronic conductivity of steel [59–61]. After immersion
for 11 days in the SRB medium, icorr starts to increase. At 18 days immersion in the SRB
medium, the icorr of the steel is 1.62 × 10−7 Amp/cm2 higher than that of the steel immersed
for the same period in the sterile medium. These results are consistent with the tendency of
aforementioned EIS results. Figure 4 compares the potentiodynamic polarization curves of
the steel and the four coatings after 18 days of corrosion in sterilized and SRB mediums.
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Table 4 summarizes the icorr fitted from the potentiodynamic polarization curves of the
coatings after being immersed in both kinds of mediums. The icorr of the steel and the coat-
ings immersed in the SRB medium follows the sequence: EP > EP/1.5Cu2O > EP/15PTFE
> EP/15PTFE/1.5Cu2O. The icorr of the steel and the coatings immersed in the sterile
medium follows the sequence: EP > EP/15PTFE > EP/1.5Cu2O > EP/15PTFE/1.5Cu2O.
Note that the icorr results are consistent with the EIS results.
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Figure 4. SEM graphs and EDS elemental maps of carbon steel surfaces after being immersed in the
sterile medium (a) and the SRB medium (b,c) for 18 days.

Table 4. Fitted data from potentiodynamic polarization curves of the coatings immersed in
SRB medium.

Coatings Io × 10−7

(Amp/cm2) Eo (Volts) Ba (mv) Bc (mv)

Sterile medium

EP 0.83 −0.62 30.82 −58.45
EP/1.5Cu2O 0.62 −0.51 53.57 −45.93
EP/15PTFE 0.24 −0.46 53.58 −70.48

EP/15PTFE/1.5Cu2O 0.20 −0.45 64.32 −86.42

SRB medium

EP 1.10 −0.61 16.90 −14.54
EP/1.5Cu2O 0.75 −0.57 40.99 −52.43
EP/15PTFE 0.35 −0.54 44.45 −79.27

EP/15PTFE/1.5Cu2O 0.30 −0.55 72.18 −75.32

3.2. Characterization of Corrosion Morphologies

Figure 4a,b are SEM graphs and EDS elemental maps of Q20 steel after 18 days of
corrosion in the sterile and the SRB mediums, respectively. On the corroded surface in
the sterile medium, radial rod-like structures containing P and O elements are identified.
Consistent with Kadhim Finteel’s XRD results of corroded surfaces in a similar medium,
the FePO4 is one of the corrosion products [62]. It is surmised that the phosphatization of
the steel dominates the corrosion process in this research. On the steel surface immersed in
the SRB medium, a gravel-like morphology was generated and a biofilm consisting mainly
of S, O and P elements are observed. It has been reported that FeS was generated in the
biofilm due to SRB corrosion [51]. The closer inspection of the steel surface shows that
“nanowire-like” structures consisting mainly of C, O and S elements are generated in the
SRB medium (Figure 4c). Sherar et al. [63] and Gu et al. [27] assumed that such nanowire
structures are be conductive and thus aggravate the corrosion of the steel by capturing
electrons from the steel substrate.

In order to elucidate the chemical states of the corrosion products on the steel surface,
XPS analyses were conducted. Figure 5 shows the XPS spectra of the steel surfaces after
immersion 18 days in the sterile medium and the SRB medium. The presence of FePO4 on
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the surface immersed in the sterile medium is identified on the P 2p spectrum (Figure 5(a1)),
whilst FePO4 and FeO peaks are clearly observed on the Fe 2p spectrum (Figure 5(a2)).
These results corroborate that the corrosion products of the steel in the sterile medium are
mainly FePO4 and FeO [57]. After 18 days corrosion in the SRB medium, the fingerprints
of FeSO4, FeS and FeS2 are clearly identified on the XPS spectra (Figure 5(b1,b2)). It is thus
verified that SRB causes the corrosion of the steel and generates FeS and FeS2 as corrosion
products.
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Figure 5. XPS spectra of Q20 steel surfaces after being immersed in the sterile medium (a,a1,a2) and
the SRB medium (b,b1,b2) for 18 days.

Figure 6 shows the SEM graphs of EP and EP/15PTFE/1.5Cu2O coatings after 18 days
of corrosion in the sterile and the SRB medium, respectively. Microcracks, as indicated by
arrows in Figure 6a, can be seen on the surface of the EP coating. We assume that corrosion
by the sterile medium can cause damage to the epoxy chains. After being immersed in the
SRB medium, holes were generated on the EP coating, hinting that more severe corrosion
occurs in the SRB medium than that in the sterile medium. As consistent with the above
results of EIS and potentiodynamic polarization curves, the presence of SRB in the medium
aggravates the corrosion damage of the EP coating. No obvious failure marks are noticed
on the SEM graphs of the EP/15PTFE/1.5Cu2O coating immersed for 18 days in both the
sterile medium and the SRB medium (c.f. Figure 6c,d). The high corrosion resistance of the
hybrid composite coating against SRB corrosion is thus verified. Zhang et al. [64] and Ying
et al. [34] reported that the hydrophobicity of PTFE can benefit the corrosion resistance
of the coating by decreasing adhesion with SRB. Cu2O nanoparticles can slow down the
permeation of the corrosive medium and release Cu2+ to penetrate the cell membrane and
destroy the structure of nucleic of the SRB [50,65].
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3.3. Tribological Behaviors

Figure 7a compares the friction coefficient evolutions of EP, EP/1.5Cu2O, EP/15PTFE
and EP/1.5Cu2O/15PTFE coatings obtained from sliding in water at 50 N, 0.1 m/s. The
friction coefficient of EP increases quickly and stabilizes at about 0.58. After 40 min of
sliding, the test was terminated because of the fast wear of the pure EP coating (the coating
was nearly worn off after 40 min). The addition of Cu2O nanoparticles does not exert a
pronounced effect on the friction coefficient evolution. Nevertheless, the addition of Cu2O
nanoparticles significantly improves the wear resistance of the EP coating. Unlike the
sliding of EP, EP/1.5Cu2O was not worn off even after 120 min of sliding. Interestingly,
adding 15 vol.% PTFE into EP lowers the friction coefficient from 0.58 to 0.22. Moreover,
in comparison to the sliding of pure EP, the friction fluctuation during the sliding of
EP/15PTFE is far more suppressed. As elucidated below, the addition of PTFE leads to the
formation of a tribofilm, which is deemed essential for improving the boundary lubrication
effect of the water-lubricated pair. With respect to the sliding of EP/1.5Cu2O/15PTFE, a
friction evolution tendency similar to the sliding of EP/15PTFE was achieved. It seems
that further adding 1.5 vol.% Cu2O nanoparticles into PTFE-filled epoxy does not affect the
friction coefficient.
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(b) mean friction coefficients and specific wear rates of the coatings investigated.

Figure 7b presents the mean friction coefficient and wear rate of the EP-based coatings
investigated. The addition of 15 vol.% PTFE into epoxy resin greatly decreases the wear
rate of the coating. That is, in comparison to the wear rate of the EP coating, the wear
rate of EP/15PTFE is reduced by up to 96.44%. Further adding Cu2O nanoparticles at
volume fractions from 0.5% to 2.5% into PTFE-filled epoxy does not significantly influence
the friction coefficient and wear rate. It is thus demonstrated that the hybrid epoxy-based
coatings filled with either PTFE or Cu2O, i.e., EP/1.5Cu2O/15PTFE, both exhibit excellent
anti-wear and anti-biocorrosion performances.

From the worn surface of the EP coating (Figure 8a), abrasion marks parallel to the
sliding direction are observed. Moreover, cracks perpendicular to the sliding direction were
generated on the surface. As can be seen in Figure 8b, abrasion furrows are also noticeable
on the worn surface of EP/1.5Cu2O. Nevertheless, unlike the sliding of neat epoxy resin,
no crack perpendicular to the sliding direction was generated. The enhancement of wear re-
sistance due to the addition of Cu2O nanoparticles could be associated with the toughening
effect of the nanoparticles [66]. The worn surfaces of EP/15PTFE and EP/1.5Cu2O/15PTFE
are smoother than those of EP and EP/1.5Cu2O (Figure 8c,d), indicating that the abrasion
wear of the coatings containing PTFE is mitigated.
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Figure 8. SEM graphs of worn surfaces of EP (a), EP/1.5Cu2O (b), EP/15PTFE (c) and
EP/1.5Cu2O/15PTFE (d) sliding against the steel surface in water lubrication. Arrows indicate
the sliding direction.

In order to reveal possible tribochemical actions occurring at the sliding interface
of EP/1.5Cu2O/15PTFE, XPS analyses of the steel counterface were performed. As can
be seen in the survey spectrum in Figure 9, C, O, F and Fe elements are identified. The
peaks at 284.7 eV, 288.4 eV and 292.4 eV in the C 1s spectrum are assigned to C-C/C=C,
C=O and -CF2-, derived from the tribo-products of epoxy resin and PTFE. The peaks at
688.7 eV in the F 1s spectrum is a signature of -CF2-, verifying the presence of PTFE tribo-
products. Moreover, the new compositions of FeF2 are detected, corresponding to the peaks
at 684.90 eV on the F 1s spectrum and 713.6 eV on the Fe 2p spectrum. Consistent with
findings of Ren et al. [67] and Sun et al. [68], the scission of PTFE molecules occurred and
oxides and fluorides formed under shear and frictional heat. It is believed that the growth
of a solid tribofilm as a result of the complex tribo-chemical actions of PTFE molecules is
important as it can compensate for the boundary lubrication insufficiency of the water film.
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4. Conclusions

In the present work, epoxy-based coatings modified with PTFE and Cu2O nanopar-
ticles were prepared. The anti-corrosion performance of the coatings was comparatively
investigated in sterile and SRB mediums. Moreover, the tribological behaviors of the
coatings were examined under water lubrication conditions. Specifically, the corroded
and worn surfaces were comprehensively characterized. The following conclusions can
be inferred:

(1) The presence of SRB in the medium aggravates the corrosion damage of the carbon
steel and coatings. After immersion for 18 days, the Rct of the steel immersed in the
SRB medium was lower than that of the steel immersed in the sterile medium by up
to 2.09 × 102 Ω·cm2, and the icorr of the steel was 1.62 × 10−7 Amp/cm2 higher than
that of the steel immersed for the same period in the sterile medium.
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(2) The epoxy-based coatings filled with PTFE or/and Cu2O significantly mitigate the
corrosion of the carbon steel. After being immersed in the SRB medium for 18 days,
the EP/1.5Cu2O/15PTFE exhibited the lowest icorr and the highest Rct and no obvious
defects and failures were noticed on the corroded surface. The hydrophobic feature
of PTFE can benefit the electrochemical corrosion of the coating, whereas Cu2O
nanoparticles are more effective than PTFE particles for enhancing the biocorrosion
resistance of the epoxy coating. The synergetic anti-biocorrosion role of PTFE and
Cu2O was identified.

(3) In comparison to neat EP and EP/1.5Cu2O coatings, the EP-based coatings filled with
PTFE exhibit a much improved tribological performance under water lubrication
conditions. FeF2 fluoride and the -CF2- group are identified on the steel counterface
sliding against EP/1.5Cu2O/15PTFE. It is surmised that tribofilm growth as a result
of the tribo-chemical actions of PTFE molecules plays an important role in friction
and wear reduction.

(4) The addition of PTFE and Cu2O significantly improves the anti-corrosion and anti-
wear performance of the epoxy resin coating. The present work paves the way
for formulating dual-function anti-biocorrosion and anti-wear coatings for motion
component applications exposed to water-based corrosion mediums.
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