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Abstract: Virtual human is widely employed in various industries, including personal assistance,
intelligent customer service, and online education, thanks to the rapid development of artificial
intelligence. An anthropomorphic digital human can quickly contact people and enhance user
experience in human–computer interaction. Hence, we design the human–computer interaction
system framework, which includes speech recognition, text-to-speech, dialogue systems, and virtual
human generation. Next, we classify the model of talking-head video generation by the virtual
human deep generation framework. Meanwhile, we systematically review the past five years’ worth
of technological advancements and trends in talking-head video generation, highlight the critical
works and summarize the dataset.

Keywords: talking-head generation; virtual human generation; human–computer interaction

1. Introduction

With the rapid development of artificial intelligence technology, virtual humans have
been continuously applied in various scenarios, including virtual anchors, virtual customer
service, and online education. In human–computer interaction, there is an anthropomorphic
digital human who can quickly establish contact with users and improve user experience.
Simultaneously, multimodal human–computer interaction is one of the application di-
rections of virtual humans. The system aims to generate interactive objects with natural
characteristics using deep learning models, including speech recognition, dialogue system,
text-to-speech, and virtual human video synthesis. Among them, virtual human video
generation is mainly divided into 2D/3D facial reconstruction, talking-head generation,
body movements, and human movements. Meanwhile, in the talking-head generation task,
we need to consider the audition consistency of lip shapes and facial attributes, such as
facial expressions and eye movements.

In the research of talking-head generation, audio-driven lip synthesis is a popular
research direction by inputting the corresponding audio and any mesh vertex, facial image,
or video to synthesize the lip-synced talking-head video. In other words, the model
dynamically maps the lower-dimensional speech or text signal to the higher-dimensional
video signal. Note that text-driven lip synthesis is a natural extension of the task.

Prior to the popularity of deep learning, many researchers mainly adopted cross-
modal retrieval methods [1–4] and Hidden Markov Model (HMM) to solve this problem [5].
However, cross-modal retrieval methods based on the mapping relationship between
morphemes and visemes do not consider the contextual semantic information of the speech.
Similarly, many factors, such as prior assumptions, also limit the application of HMM-based
methods.
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With the rapid improvement of computing power, the task of talking-head generation
based on deep learning has attracted widespread attention, promoting the vigorous de-
velopment of this field. The paper mainly makes a systematic review of the talking-head
video synthesis model based on deep learning in the past five years. Figure 1 shows the
literature map for talking-head generation. Along the timeline, the number of works has
increased dramatically in recent years. According to the content of the model input, we can
divide talking-head generation models into 2D-based methods and those based on a 3D
approach. According to the method structure of the model, we can divide the talking-head
generation technology into a pipeline and end-to-end types, as shown in Figure 2. However,
in synthesizing talking-head video, most models take a relatively long time to generate
video, and only a small part of models, such as DCK [6], can output results in a short time.
More details are discussed in the third part of this paper.
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In the research process of the whole task, datasets and evaluation metrics are an
indispensable part of training the talking-head generative model. During the widespread
application of deep learning methods, the emergence of large-scale datasets has driven
the further development of models for talking-head video generation and served as a
general platform for measuring and comparing different algorithms. However, science and
technology have two sides, such as deepfake. In order to prevent technology from being
used to harm the country and society, only a small part of the data set is completely open-
sourced, and some are obtained by application (Note: The application authority for this
part of data is only open to researchers, teachers, and engineers from universities, research
institutes, and enterprises. Students are prohibited from applying.). In the fourth part, we
review commonly used datasets, including statistics, highlights, and download links.

Now, we can summarize our main contributions in this paper:

1. We present a systematic framework for multimodal human–computer interaction,
which provides a new idea for the application of talking-head generation models.

2. We propose two taxonomies to group methods with important reference significance
and analyze the strengths and weaknesses of representative methods and their poten-
tial connections.

3. We summarize the datasets and evaluation metrics commonly used for talking-head
generation models. Meanwhile, we highlight the significance of the consumption
time to generate videos as a measure of model performance.
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The rest of the paper is organized as follows: Section 2 describes the architecture of
a multimodal human–computer interaction system, including a voice module, dialogue
system, and talking-head generation module; Section 3 surveys two different methods
of generating virtual human talking-head in recent five years: pipeline and end-to-end;
Section 4 discusses the dataset used to train the virtual human talking-head generation
model and the indicators used to evaluate the model performance; we described three
potential methods to improve the speed of virtual human talking-head generation model
in Section 5 and conclude in Section 6.

2. Human–Computer Interaction System Architecture

Based on artificial intelligence technologies, such as natural language processing,
voice, and image processing, the system pursues multimodal interaction with low-latency
and high-fidelity anthropomorphic virtual humans. As shown in Figure 3, the system is
mainly composed of four modules: (1) the system converts the voice information input
by the user into text information through the automatic speech recognition (ASR) module;
(2) the dialogue system (DS) takes the text information output by the ASR module as input;
(3) the text-to-speech (TTS) module converts the text output by the DS into realistic speech
information; (4) the talking-head generation module preprocesses the picture, video, or
blendshape as the model input to extract its facial features. Then, the model maps the
lower-dimensional voice signal by the TTS module to the higher-dimensional video signals,
including the mouth, expression, motion, etc. Finally, the model uses the rendering system
to fuse the features and multimodal output video and displays it on the user side.
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2.1. Speech Module

The ASR and TTS of the speech module correspond to the human hearing and language
function, respectively. After decades of research, speech recognition and text-to-speech
synthesis have been widely used in various commercial products. We use the Paddle-
Speech [32], a code, open-sourced by Baidu. One model can complete both ASR and
TTS tasks, which greatly reduces the complexity of model deployment and enables better
collaboration with other modules. In addition, we can also choose API services provided
by commercial companies, such as Baidu, Sogou, iFLYTEK, etc.

2.2. Dialogue System Module

Our dialogue system module needs to have the ability to have multiple rounds of
dialogue. The system needs to answer domain-specific questions and meet users’ needs
to chat. As shown in Figure 3, the question is passed to the dialogue module after the
user’s voice passes through the ASR. The dialogue module must retrieve or generate
matching answers from the knowledge base according to the user’s question. However,
it is impossible to rely entirely on the model to generate answers in a specific domain
multi-turn dialogue. In some scenarios, to better consider the context information, the
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above information will be aggregated to identify the user’s intent and return the answer in
the way of QA.

2.3. Talking-Head Generation

The facial appearance data of the talking-head generation module mainly comes from
real-person photos, videos, or blendshape character model coefficients. Taking video as an
example, we first perform video preprocessing on these facial appearance data and then
map the audio signal of TTS in Figure 3 to higher-dimensional signals such as human face
lip shape, facial expression, and facial action, and finally, use a neural network. The model
performs video rendering and outputs multimodal video data.

In human–computer interaction, a timely response can improve user experience. How-
ever, the time delay of the whole system is equal to the sum of the time consumed by each
data processing module. Among them, the voice module and the dialogue module have
been commercialized by a wide range of users, which can meet the real-time requirements
of human–computer interaction. At present, it takes a long time for the talking-head gener-
ation model to render and output multimodal video. Therefore, we need to improve the
data processing efficiency of the talking-head generation model, reduce the rendering time
of the multimodal video, and reduce the response time of the human–computer interaction
system extension. Although the virtual human has achieved low-latency response in some
commercial products such as JD’s ViDA-MAN [33], etc., the long production cycle, high
cost, and poor portability are also problems that cannot be ignored.

3. Talking-Head Generation

Talking-head video generation, i.e., lip motion sequence generation, aims to synthesize
lip motion sequences corresponding to the driving source (a segment of audio or text).
Based on synthesizing the lip motion, the video synthesis of the talking head also needs to
consider its facial attributes, such as facial expressions and head movements.

In the early talking-head video generation methods, researchers mainly used cross-
modal retrieval [3] and HMM-based methods [34] to realize the dynamic mapping of
driving sources to lip motion data. However, these methods have relatively high require-
ments on the application environment of the model, visual phoneme annotation, etc. Thies
et al. [3] introduced an image-based lip-motion synthesis method, which generates the real
oral cavity by retrieving and selecting the optimal lip shape from offline samples. However,
the method is based on text–morpheme–morpheme. The retrieval of the map does not truly
take into account the contextual information of the speech. Zhang et al. [30] introduced
key pose interpolation and smoothing modules to synthesize pose sequences based on
cross-modal retrieval and used a GAN model to generate videos.

Recently, the rapid development of deep learning technology has provided technical
support for talking-head video generation and promoted the vigorous development of
talking-head video generation methods. Figure 1 shows that the image dimension of the
talking head can be divided into 2D-based and 3D-based methods. Figure 2 shows that the
talking-head video generation framework based on deep learning can be roughly divided
into two types: pipeline and end-to-end. Table 1 summarizes the representative works on
talking-head video generation.

(1) 2D-based methods.

In 2D-based methods, talking-head generation mainly used landmarks, semantic
maps, or other image-like representations to solve the problem, which dates back to Bregler
et al. 1997 [4]. In talking-head video generation, Chen et al. [17] used landmarks as an
intermediate layer for mapping from low-dimensional audio to high-dimensional video
and divided the whole method into two stages. Chung et al. [9] used two decoders to
decouple the voice and the speaker identity to generate the video without the influence of
the speaker identity. Lip synthesis can also use image-to-image translation to generate [35]
an extension of this method. Zhou et al. [16] and Song et al. [15] use a combination of
separate audio-visual representations and neural networks to optimize the synthesis.
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(2) 3D-based methods.

Early 3D-based approaches pre-built 3D models of specific people and then rendered
the models. Compared to 2D methods, this method can have better control over motion.
However, the construction cost of such a 3D model is relatively high, and the effect of chang-
ing a new identity cannot be guaranteed. In synthesizing Barack Obama’s videos, these
works [8,11] synthesize realistic speaking facial videos by pre-constructing 3D facial models
and learning to map audio sequences to video sequences to drive the model. In addition,
there are many generative talking-head models based on 3DMM parameters [10,19,20,23],
and models, such as blendshape [19], flame [36], and 3D mesh [37], are used with the audio
as model input. Among them, VOCA [16] uses the blendshape of the character’s head to
create the model. Meshtalk [37] uses the neutral face template mesh as the basis to generate
the talking-head video. However, the model with intermediate parameter 3DMM brings a
certain loss of information. Moreover, VOCA is an independent 3D talking-head synthesis
model that can capture different speech styles, while Meshtalk can parse out the absolute
latent space of audio-related and audio-independent facial movements.

Table 1. The main model of talking-head generation in recent years. ID: The model can be divided
into three types: identity-dependent (D), identity-independent(I), and hybrid(H). Driving Data:
Audio(A), Text(T), and Video(V).

References Key Idea Driving Factor ID D/I 3D Model

Suwajanakorn [8] Audio-to-mouth editing to video A D 3D
Karras [10] From audio and emotion-state to 3D vertices A D 3D
Kumar [11] Text-to-audio-to-mouth key-points to video T D 2D

[9,12] Joint embedding of audio and identity features A I 2D

Kim [13] DVP: parameter replacement and facial
reenactment with cGAN to video V I 3D

Vougioukas [14] Audio-driven GAN A I 2D
Zhou [16] Joint embedding of person-id and word-id features V or A I 2D
Chen [17] From Audio to facial landmarks to video synthesis A I 2D

Yu [18] From text or audio feature to facial landmarks to
video synthesis A and T I 2D

Cudeiro [19] VOCA: from audio to FLAME head model with
facial motions A I 3D

Fried [20] 3D reconstruction and parameter recombination T D 3D
Zhou [21] Audio-driven landmark prediction A I 2D

Prajwal [22] Wav2Lip: audio-driven, based GAN lip-sync
discriminator A I 2D

Thies [23] NVP: from the fusion of audio expression feature
extraction and intermediate 3D model to video A H 3D

Guo [25] AD-NeRF: Audio-to-video generation via two
individual neural radiance fields A D 3D

Li [26]
TE: text-driven to video generation combine

phoneme alignment, viseme search and parameter
blending

T D 3D

Fan [28] FaceFormer: Audio-to-3D Mesh to video A I 3D

Yang [29] A unified framework for visual-to-speech
recognition and audio-to-video synthesis A I 3D

Zhang [30] Text2Video: GAN+phoneme-pose dictionary T I 3D

Most current methods reconstruct 3D models from training videos directly. NVP
(neural voice puppetry) has since designed the Audio2ExpressionNet and the 3D model of
the independent identity. NeRF (Neural Radiance Fields) [38–41], which simulates implicit
representation with MLP, can store 3D spatial coordinates and appearance information and
be used for large-resolution scenes. To reduce information loss, AD-NeRF [25] trains two
NeRFs for head and drive rendering of talking-head synthesis and obtains good visual
effects. Many models require unrestricted universal identity and speech as input in practical
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application scenarios. Prajwal et al. [22,42] take any unidentified video and arbitrary speech
as input to synthesize unrestricted talking-head video.

This section will mainly introduce problem formulation and the framework of talking-
head generation with pipeline and end-to-end.

3.1. Problem Formulation

Given an input audio A and a subject reference video V, our talking-head video
generation aims to synthesize an action-natural video S synchronized with A. The general
steps to generate a neural talking head can be expressed as follows:

Flips = G(E(A))

S = R
(
Flips, V

) (1)

The explicit features created by the generator G are designated by the term Flips. E
denotes the audio feature extraction network, and R the rendering network to convert the
synthesized features into the output video.

In the speech feature extraction network, existing methods often use Mel Frequency
Cepstral Coefficients (MFCC) to extract audio features. Previous studies have found that
identity information coupled with audio features will reduce the accuracy of mapping from
speech to lip movements, so it is necessary to extract audio content representations that are
independent of identity features:

E(A) = Wix + bi = W̃i x̃ ,
where W̃i = (Wi, bi), x̃ = (x; 1),

W̃i = I +
m
∑

j=1
jג W̃j

(2)

In Equation (2), x and E(A) denote the raw and the transferred audio feature, respec-
tively, while W̃i = I + ∑m

j=1 jג W̃j represents the identity information adaptation parameter

that is factorized into an identity matrix I plus the weighted sum of m components W̃j, and
the parameters jג need to be learned from the input audio feature [43].

In the rendering network from speech to video, the existing models respectively
introduce network structures such as U-Net, GAN, Vision Transformer (ViT), and the
emerging NeRF.

1. In generating talking-head videos using GAN, wav2lip [22] proposes the expert
lip-sync discriminator based on SyncNet, and the formula is as follows:

Dsync =
v·E(A)

max(‖v‖2·‖E(A)‖2, E) =
v· flip

max
(
‖v‖2·‖ flip‖2, E

) (3)

In Equation (3), R computes the video embedding v from an image encoder and the
audio embedding E(A) from an audio encoder. We replace the low-dimensional audio
embedding of E(A) with the mapped high-dimensional video embedding flip to facilitate
the calculation of the cosine similarity of the synchronous probability between v and flip.

2. In generating talking-head videos using ViT, FaceFormer [28] propose a novel seq2seq
architecture to autoregressively predict facial movements, and the formula is as
follows:

v̂t = FaceFormerθ(v̂ < t, sn, E(A) ) (4)
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In Equation (4), θ denotes the model parameters, t is the current time-step in the
sequence, v̂t denotes the decoder autoregressively prediction result conditioned on E(A),
and sn denotes the speaker identities, not from raw data.

v̂t = vt + PPE(t)
where PPE(t,2i) = sin

(
(t mod p)/10002i/d

)
,

PPE(t,2i+1) = cos
(
(t mod p)/10002i/d

)
,

vt =

{
(Wv·ŷt−1 + bv) + sn, 1 < t ≤ T,

sn, t = 1

(5)

In Equation (5), t denotes the token position, d the model dimension, i the dimension
index, Wv the weight, bv the bias, ŷt−1 the prediction from the last time, and PPE is applied
to vt to provide the temporal order information periodically.

3. NeRF is a powerful and elegant 3D scene representation framework. It can encode the
scene into a 3D volume space using MLP Fθ and then renders the 3D volume into an
image by integrating color and densities along camera rays. The formula is as follows:

(c, σ) = Fθ(p, d)
where p = (x, y, z), d = (θ, φ)

(6)

In Equation (6), p denotes the query point in 3D voxel space, d the 2D view direction, c
and σ denote RGB color and densities along the dispatched rays, respectively.

In generating talking-head videos using NeRF, the audio-driven talking-head genera-
tion formula is as follows:

(c, σ) = Fθ(p, d, A) (7)

In Equation (7), θ and A denote the weight and the audio embedding, respectively.

3.2. Pipeline

The Pipeline methods are mainly divided into two steps: low-dimensional driving
source data are mapped to facial parameters; then, GPU rendering, video editing, or GAN
is used to convert the learned facial parameters into high-dimensional video output.

According to the data type of the facial parameters, the Pipeline methods can be
divided into Landmark-based, Coefficient-based, and Vertex-based methods.

3.2.1. Landmark-Based Method

Face landmarks are widely used in various face analysis tasks, including head video
synthesis. In their pioneering work, Suwajanakorn et al. [8] used a single-layer LSTM to
map low-dimensional speech data into nonlinear lip key points, followed by face texture
synthesis, video retiming, and target video synthesis, in turn. Kumar et al. [11] proposed
the architecture of LSTM+UNet and used Pix2Pix instead of the Pipeline-based video
synthesis method to improve the model. Meanwhile, the LSTM+UNet architecture has also
been widely used in many works [21,44].

Due to the wide range of application scenarios of the synthesized video of the talking
head, a method that is not limited by the input voice and identity is needed. Therefore, the
works [8,11] that only use the Obama-speaking video as the data cannot meet the business
requirements and synthesize another person or voice. Jalalifar et al. [45] introduced the
basic conditional generative adversarial network (C-GAN) as a standalone module for the
problem of audio-to-video mapping to generate videos given face landmarks. Since the two
modules are independent, the model can use any audio as a driving source to synthesize a
new video. Chen et al. [17] further considered the correlation between the video frames
before and after the synthesis process. They proposed a dynamic pixel-level loss to solve
the pixel jitter problem in the target area. However, in the generative adversarial network
part of the model, due to the insufficient accuracy of dlib [46] detector lip landmarks, there
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is an error with the lip landmark data of the dataset, which affects the effect of the model’s
output video.

In addition to methods for 2D landmarks, the mapping of low-dimensional driving
source data to high-dimensional 3D landmarks has also been extensively studied. The
speech signal contains not only semantic-level information but also information such as
speech, speech style, and emotion. Zhou et al. [21] used neural networks to learn separate
speech content and identity features, predicted 3D landmarks with speech content features,
and synthesized talking-head videos with a UNet-style generator.

3.2.2. Coefficients-Based Method

2D Coefficient based. The active appearance model (AAM) is one of the most com-
monly used facial coefficient models and represents the variation in shape, texture, and their
correlations. Fan et al. [47] used overlapping triphones as the data input for a two-layer
Bi-LSTM model to learn AAM coefficients in the lip region and then mapped the learned
data to face images to synthesize talking-head videos. However, AAM coefficients lead to
potential errors and limited flexibility when transferring reference faces to new objects.

3D Coefficient based. In addition to 2D facial coefficient models, [48,49] proposed
CNN+RNN-based models to map low-dimensional speech signals to blendshape coeffi-
cients of 3D faces. Thies et al. [23] proposed a CNN-based Audio2Expression network and
a content-aware filtering network, which can map any person’s speaking-voice sequence
to a 3D blendshape that can represent a specific person’s speaking style. Meanwhile, the
method of NVP [23] is first to infer emotion from voice, thereby rendering high-quality
speaking-heads video.

Many methods just control and generate lip movements and facial expressions, but
these methods cannot synthesize full talking-head videos under full 3D head control. Kim
et al. [13] introduced the 3D Morphable Model (3DMM, a denser representation of 3D
face parameters) [50] to talking-head generation, and the method can completely control
the action parameters, such as facial movements, expressions, and eyes, or only adjust
the facial expression parameters and keep the others unchanged. The 3DMM coefficients
include rigid head pose parameters, facial recognition coefficients, expression coefficients,
binocular gaze direction parameters, and spherical harmonic illumination coefficients.
Zhang et al. [51] proposed a framework with a style-specific animation generator and
flow-guided video generator to synthesize high-visual quality videos. Among them, a
style-specific animation generator can successfully separate lip movements from eyebrow
and head poses. Since the method does not consider temporal coherence, the lips in the
generated talking-head video may be disturbed. Simultaneously, the regularized head-pose
and eye-movement parameters limit the motion space of the entire 3D head. Ji et al. [52]
proposed an emotional video portrait (EVP) to achieve speech-driven video synthesis that
can control the emotions of talking heads and faces.

3.2.3. Vertex-Based Method

3D facial vertices are other commonly used 3D models for talking-head video synthesis.
For example, Karras et al. [10] used a deep neural network to learn a nonlinear mapping
from input audio to 3D vertex coordinates corresponding to a fixed topology mesh. At the
same time, an additional emotional code is designed to learn the corresponding emotional
state from the training data to control the facial expressions of the talking head. However,
many proposed models are mainly for speaker audio with specific identities. To solve
this problem, Cudeiro et al. [19] proposed a VOCA model, which fuses the audio features
extracted by DeepSpeech with the feature vectors of different speakers and outputs the
displacement data of 3D vertices. The main contribution of VOCA is to solve the coupling
problem of facial identity and facial motion, using identity control parameters to change its
visual dynamics. Since the method uses a high-definition 4D dataset in the laboratory, it
cannot be trained with wild videos. Fan et al. [28] proposed a FaceFormer model based
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on Transformer, which encodes the context information of long-term audio and predicts a
series of animated 3D face meshes by autoregression.

Richard et al. [37] proposed a latent space for facial animation classification based on a
cross-modal loss that not only disentangles audio-related and audio-unrelated information,
such as facial actions (blinking and movement of the eyebrows). However, some researchers
introduced the neural network architecture of the UNet-style decoder with additive skip
connections. The method can predict 3D vertex coordinates, disentangle the motion of
the lower and upper surface regions, and prevent over-smoothing, synthesizing a more
plausible, realistic talking-head video. To guarantee high-fidelity video quality, the model
requires a large-scale high-definition 3D training dataset.

3.3. End-to-End

Before 2018, the pipeline methods of talking-head video generation were a major
research direction. However, this pipeline-based method has a complex processing flow,
expensive and time-consuming facial parameter annotation, and additional auxiliary tech-
niques, such as facial landmark detection and 3D/4D/5D face reconstruction. Therefore,
many researchers began to explore the end-to-end talking-head video synthesis method.
The end-to-end approach refers to an architecture that generates talking-lip (face) videos di-
rectly from the driving source without involving the facial parameters of any intermediate
links.

Specch2vid, proposed by Chung et al. [9], is one of the earliest frameworks to explore
end-to-end synthetic talking-face videos. As shown in Figure 4, it consists of four modules:
an audio encoder, an identity image encoder, a speaker face image decoder, and a deblurring
module. The voice encoder is designed to extract speech features from raw audio; the
identity image encoder is designed to extract identity features from the input image; the
speaker face image decoder takes the speech and identity features as input through a
transposed convolution and up-sampling method to perform feature fusion and output
the synthesized image. However, in the above process to obtain high-quality images, the
model replaces the L2 loss function commonly used in image generation and autoencoders
with an L1 loss function. In addition, a CNN-based deblurring module is separately
trained to improve the quality of the output images. However, the shortcomings of this
model are also obvious: (1) Since Specch2vid does not consider the continuity in the time
series, it will produce incoherent video sequences with skipped frames or jitters; (2) The L1
reconstruction loss is performed on the whole face, and it is difficult to infer multiple facial
expressions of a person from single audio. Note: the images of the political figure Obama
used for academic research in this article are mainly derived from the dataset.
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To overcome the above limitations of Speech2Vid, many researchers have proposed
new solutions [16,53–55] by utilizing generative adversarial training strategies [56]. Taking
the audio-driven talking-head video generation model as an example, a piece of audio con-
tains various information such as speech, emotion, and speaking style. Hence, decoupling
the complex audio information is a significant problem in the talking-head video generation
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task. To alleviate this problem, Zhou et al. [16] proposed the detachable Audio-visual Sys-
tem (DAVS). The supervised adversarial training model focused more on extracting speech
and identity feature information than previous methods. However, such methods were too
reliant on extra Word-ID and Person-ID tags in the training phase. This method ignored
the correlation between head pose and audio [57]. Si et al. [53] used knowledge distillation
to separate emotional, identity, and speech features from audio input with the help of a
pre-trained emotion-recognition teacher network and a pre-trained face-recognition teacher
network. Recently, many researchers introduced coded attributes, such as facial expression,
head posture, and blink frequency, into the model to generate a more natural talking head.
For example, ref [58,59] introduced the emotion encoder into the model, and [60] designed
an implicit pose encoding module into the generation pipeline. Ji et al. [61] designed
an Audio2Facial-Dynamics module to learn the movement of facial key points and the
displacement of implicit emotions from audio. Biswas et al. [62] proposed a speech-driven
method for synthesizing speaking faces, which can achieve coherent head movement,
accurate lip-shape synchronization, natural blinking, and high-fidelity texture. Waibel
et al. [63] proposed an end-to-end neural system for the lip-synchronous translation of
videos for videos in another language.

GAN-based methods focus on tailoring more efficient learning objectives for the
talking-head video generation model to avoid the disadvantage of using only image re-
construction loss. Prajwal et al. [22,42] introduced a simple audio-visual synchronization
discriminator for synthesizing speech and lip-synced talking-head videos. In addition,
Chen et al. [12] proposed an audio-visual derivative correlation loss to optimize the con-
sistency of the two modalities in the feature space. They proposed a three-stream GAN
discriminator to force generation from the input audio signal Talking Mouth Video. Biswas
et al. [62] propose an attention-based GAN network to identify audio features related to
head movement and can also learn the important correlation between the prosodic features
of speech and lip synchronization, blinking, and head movement.

In addition to the GAN-based end-to-end approach, the researchers were inspired by
the neural radiation field (NeRF) [38]. Guo et al. [25] proposed the audio-driven neural
radiation field (AD-NeRF) model. AD-NeRF-integrated DeepSpeech Audio features are
used as conditional input to learn an implicit neural scene representation function that
maps audio features to dynamic neural radiation fields for speaker-face rendering. AD-
NeRF can model the head and upper body by learning two separate neural radiation fields
and can also manipulate attributes such as action pose and background replacement, but
this method cannot generalize the mismatched driving speech and speaker. However, AD-
NeRF often suffers from head and torso separation during the rendering stage, resulting in
unnature synthesized video. Therefore, Liu et al. [27] proposed a method called semantic-
aware speak portrait NeRF (SSP-NeRF), which uses the semantic awareness of speech
to address the problem of incongruity between local facial dynamics and global head–
torso. Meanwhile, the problem cannot be ignored by the slow rendering speed of NeRF.
These methods [41,64–66] improve the rendering speed of NeRF. Different from the fusion
strategy of the previous pipeline method, Ye et al. [6] proposed a fully convolutional neural
network with a dynamic convolution kernel (DCK) for cross-modal feature fusion and
audio-driven face video generation for multimodal tasks and is robust to different identities,
head poses, and audio. The real-time performance of the talking-head video generation
model is significantly improved due to the simple and efficient network architecture. Yao
et al. [67] proposed a novel framework based on the neural radiation field. Among them,
lip movement is predicted directly from the input audio to achieve the synchronization
of sound and picture. A transformer variational automatic encoder based on Gaussian
process sampling is also designed to learn reasonable and natural personalized attributes,
such as head posture and blinking.
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4. Datasets and Evaluation Metrics
4.1. Datasets

In the era of artificial intelligence, the dataset is an important part of the deep learning
model. At the same time, data sets also promote the solution of complex problems in the
field of virtual human synthesis. However, in practical applications, there are few high-
quality annotation data sets that cannot meet the training needs of the speech synthesis
model. Moreover, many institutions/researchers are affected by the deepfake technical
ethics issues, which increase the difficulty of obtaining some data sets. For example, only
researchers, teachers, and engineers from universities, research institutions, and enterprises
are allowed to apply, and students are prohibited from applying. In Table 2, we briefly
highlighted the data sets commonly used by most researchers, including statistics and
download links.

Table 2. Summary of talking-head video datasets.

Dataset
Name Year Hours Image Size

FPS Speaker Sentence Head
Movement Envir.

GRID 2006 27.5 720 × 576, 25 33 33 k N Lab
LRW 2017 173 256 × 256, 25 1 k+ 539 K N TV

ObamaSet 2017 14 N/A 1 N/A Y TV
VoxCeleb2 2018 2.4 k N/A, 25 6.1 k+ 153.5 K Y TV
LRW-1000 2019 57 N/A 2 K+ 718 K Y TV
VOCASET 2019 N/A 5023 vertices, 60 12 255 Y Lab

MEAD 2020 39 1920 × 1080, 30 60 20 Y Lab
HDTF 2021 15.8 N/A 362 10 K Y TV

The GRID [68] dataset was recorded in a laboratory setting with 34 volunteers, which
is relatively small in a large dataset, but each volunteer spoke 1000 phrases for a total of
34,000 utterance instances. The phrase composition of the dataset conforms to certain rules.
Each phrase contains six words, randomly selected from each of the six types of words to
form a random phrase. The six categories of words are “command”, “color”, “preposition”,
“letter”, “number”, and “adverb”. Dataset is available at https://spandh.dcs.shef.ac.uk/
/gridcorpus/, accessed on 30 December 2022.

LRW [69], known for various speaking styles and head poses, is an English-speaking
video dataset collected from the BBC program with over 1000 speakers. The vocabulary
size is 500 words, and each video is 1.16 s long (29 frames), involving the target word and
a context. Dataset is available at https://www.robots.ox.ac.uk/~vgg/data/lip_reading/
lrw1.html, accessed on 30 December 2022.

LRW-1000 [70] is a Mandarin video dataset collected from over 2000 vocabulary
subjects. The purpose of the dataset is to cover the natural variation of different speech
modalities and imaging conditions to incorporate the challenges encountered in real-
world applications. There are large variations in the number of samples in each category,
video resolution, lighting conditions, and attributes such as speaker pose, age, gender,
and makeup. Note: the official URL (http://vipl.ict.ac.cn/en/view_database.php?id=13,
accessed on 30 December 2022.) is no longer available, you can go to the paper page for
details about the data and download the agreement file here (https://github.com/VIPL-
Audio-Visual-Speech-Understanding/AVSU-VIPL, accessed on 30 December 2022.) if you
plan to use this dataset for your research.

ObamaSet [8] is a specific audio-visual dataset that focuses on analyzing the visual
speech of former US President Barack Obama. All video samples are collected from his
weekly address footage. Unlike previous datasets, it only focuses on Barack Obama and
does not provide any human annotations. Dataset is available at https://github.com/
supasorn/synthesizing_obama_network_training, accessed on 30 December 2022.

VoxCeleb2 [71] is extracted from YouTube videos, including the video URL and dis-
course timestamp. At the same time, it is currently the largest public audio-visual data

https://spandh.dcs.shef.ac.uk//gridcorpus/
https://spandh.dcs.shef.ac.uk//gridcorpus/
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
http://vipl.ict.ac.cn/en/view_database.php?id=13
https://github.com/VIPL-Audio-Visual-Speech-Understanding/AVSU-VIPL
https://github.com/VIPL-Audio-Visual-Speech-Understanding/AVSU-VIPL
https://github.com/supasorn/synthesizing_obama_network_training
https://github.com/supasorn/synthesizing_obama_network_training
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set. Although this dataset is used for speaker recognition tasks, it can also be used to
train a talking-head generation model. However, the dataset needs to apply to obtain the
download permission to prevent misuse of the dataset. The URL for the permit application
is https://www.robots.ox.ac.uk/~vgg/data/voxceleb/, accessed on 30 December 2022.
Because the dataset is huge, it requires 300 G+ storage space and supporting download
tools. The download method is available at https://github.com/walkoncross/voxceleb2
-download, accessed on 30 December 2022.

VOCASET [19] is a 4D-face dataset with approximately 29 min of 4D face scans,
synchronized audio from 12-bit speakers (six women and six men), and recorded 4D-face
scans at 60 fps. As a representative high-quality 4D face-to-face audio-visual dataset,
Vocaset greatly facilitates the research of 3D VSG. Dataset is available at https://voca.is.
tue.mpg.de/, accessed on 30 December 2022.

MEAD [44], the Multi-View Emotional Audio-Visual Dataset, is a large-scale, high-
quality emotional audio-video dataset. Unlike previous datasets, it focuses on facial
generation for natural emotional speech and takes into account multiple emotional states
(eight different emotions on three intensity levels). Dataset is available at https://wywu.
github.io/projects/MEAD/MEAD.html, accessed on 30 December 2022.

HDTF [51], a large in-the-wild high-resolution audio-visual dataset, stands for the
High-definition Talking-Face Dataset. The HDTF dataset consists of approximately 362
different videos of 15.8 h. The resolution of the original video is 720 P or 1080 P. Each
cropped video is resized to 512 × 512. Dataset is available at https://github.com/MRzzm/
HDTF, accessed on 30 December 2022.

4.2. Evaluation Metrics

The evaluation task of talking-head video generation is an open problem that requires
the evaluation of generation results from both objective and subjective aspects. Chen
et al. [72] reviewed several state-of-the-art talking-head generation methods. They designed
a unified benchmark based on their properties. Subjective evaluation is often used to
compare the generated content’s visual quality and sensory effects, such as whether lip-
sync audio is in sync with the picture. Due to the high cost of subjective factors in the
evaluation process, many researchers have attempted to quantitatively evaluate generated
content using objective metrics [22,28,29,52]. These metrics can be classified into three
types: visual quality, audio-visual semantic consistency, and real time based on quantitative
model performance evaluations.

Visual Quality. Reconstruction error measures (e.g., mean squared error) are a natural
way to evaluate the quality of generated video frames. However, the reconstruction
error only focuses on the pixel alignment, ignoring the global visual quality. Therefore,
existing works typically employ the peak signal-to-noise ratio (PSNR), structural similarity
index metric (SSIM) [29,73], and learned perceptual image patch similarity (LPIPS) [74] to
evaluate the global vision of generated image quality. Since metrics, such as PSNR and
SSIM, cannot explain human perception well, and LPIPS is closer to human perception in
visual similarity judgment, it is recommended to use LPIPS to evaluate the visual quality of
generated content quantitatively. More recently, Prajwal et al. [22] introduced the Fréchet
inception distance (FID) [75] to measure the distance between synthetic and real data
distributions, as FID is more consistent with human perception assessments.

Audio-visual semantic consistency. The semantic consistency of the generated video
and the driving source mainly includes audio-visual synchronization and speech consis-
tency. For audio-visual synchronization, the landmark distance (LMD) [12] computes the
Euclidean distance of lip region landmarks between the synthetic video frame and the
ground truth frame. Another synchronization evaluation metric uses SyncNet [7] to predict
the offset of generated frames and ground truth. For phonetic coherence, Chen et al. [74]
proposed a synchronization evaluation metric, the Lip-Reading Similarity Distance (LRSD),
which can evaluate semantically synchronized lip movements.

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/
https://github.com/walkoncross/voxceleb2-download
https://github.com/walkoncross/voxceleb2-download
https://voca.is.tue.mpg.de/
https://voca.is.tue.mpg.de/
https://wywu.github.io/projects/MEAD/MEAD.html
https://wywu.github.io/projects/MEAD/MEAD.html
https://github.com/MRzzm/HDTF
https://github.com/MRzzm/HDTF
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Real-time performance. The length of time to generate the talking-head video is an
important indicator for existing models. In the practical application of human–computer
interaction, people are very sensitive to factors such as waiting time and video quality.
Therefore, the model should generate the video as quickly as possible without sacrificing
visual quality or the coherence of audio-visual semantics. NVIDIA [10] uses a deep neural
network to map low-dimensional speech waveform data to high-dimensional facial 3D
vertex coordinates and uses traditional motion capture technology to obtain high-quality
video animation data to train the model.

Delayed Talking-Head Synthesis Model. Ye et al. [6] presented a novel, fully convolu-
tional network with DCKs for the multimodal task of audio-driven talking-face video gen-
eration. Due to the simple yet effective network architecture and the video pre-processing,
there is a significant improvement in the real-time performance of talking-head generation.
Lu et al. [76] present a live system that generates personalized photorealistic talking-head
animation only driven by audio signals at over 30 fps. However, many studies ignore
real-time performance, and we should consider it as a critical evaluation metric in the
future.

Human–computer interaction is a method for the future development of virtual
humans. Unlike one-way information output, digital human needs to have multimodal
information such as natural language, facial expression, and natural human-like gestures.
Meanwhile, it also needs to be able to feedback on high-quality video in a short time after a
given voice request [33,77].

However, in generating high-quality and low-latency digital human video, many
researchers do not take real time as the evaluation index of the model. Hence, many
models generate videos too slowly to cover the application requirements. For example, to
generate 256 × 256 resolution facial video without background, ATVGnet [17] takes 1.07 s,
You Said That [35] takes 14.13 s, X2Face [78] takes 15.10 s, DAVS [16] takes 17.05 s, and
1280 × 720 resolution video with background takes longer. Although it only takes 3.83 s
for Wav2lip [22] to synthesize a video with a background, the definition of the lower part
of the face is lower than that of other areas [6].

Many studies have attempted to establish a new evaluation benchmark and proposed
more than a dozen evaluation metrics for virtual human video generation. Therefore, the
existing evaluation metrics for virtual human video generation are not uniform. In addition
to objective indicators, there are also subjective indicators, such as user research.

5. Future Directions

Dataset construction and methods for learning with fewer samples. A high-quality
dataset is beneficial for the model to generate realistic, vivid, and human-like videos of
talking heads. Existing open-source datasets are mainly composed of wild videos, and some
are used for visual speech recognition tasks. In addition, a limitation of current methods is
that deep-learning-based talking-head video generation methods mainly depend on labeled
data. Recently, some work has begun to explore other effective learning paradigms, such
as knowledge distillation and few-shot learning, to study the value of talking-head video
generation tasks. At the same time, some researchers have begun to build high-quality
visual-speech datasets with hidden features such as semantic and emotional annotations.

The realistic talking-head video generation with spontaneous movement. Humans are
sensitive to any motion changes in synthetic videos, and they unconsciously pay attention
to lip, eye, eyebrow, and spontaneous talking-head movements. Lip movement with
audiovisual consistency is an indispensable part of the talking-head video generation, and
implicit features, such as eye and head movements and emotional features, can rarely be
inferred from audio. Recently, based on the study of lip movement, many works have
begun to explore the application of implicit features, such as eye blinking and head pose,
in the generation of talking-head videos. Introducing these implicit features in the research
can make the video more realistic. Especially in the human–computer dialogue system, the
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speech synthesized by the TTS module is not as rich as the information contained in the
wild audio.

Talking-head video generation detection. The development of talking-head video
generation technology has greatly threatened social development. Misusing talking-head
video generation technology and pictures or videos of people may reduce the production
cost of false information, facilitate its dissemination, and cause severe ethical and legal
issues, especially for celebrities or politicians. Talking-head video generation, fake video
recognition, and detection are natural symbiotic tasks. At the same time, the natural and
realistic content output by the talking-head video generation model has brought great
difficulties and challenges to related forensic work, which has attracted the attention of
many researchers. However, many existing methods focus on improving the model’s
performance, thus ignoring the problem of poor model interpretability. In addition, most
of the methods are only optimized on a fixed data set, and the effect on wild data is
negative. Interpretable and robust video generation detection of talking heads is important
in accelerating technology development and preventing technology abuse.

Multi-person talking-head video generation. In the speech recognition task, the ASR
model can recognize the number of speakers according to the difference in the voiceprint of
the input voice and divide the speaker and the speech content. Multi-person talking-head
video generation, mapping a piece of speech with different voiceprints to facial key point
information of different talking heads, is a challenging task. It can be applied to many
scenarios in life, such as the news connection when broadcasting news. However, it may
not be optimal to transfer the single talking-head video generation method to multiple
talking-head video generation tasks. Recently, the task has begun to attract the attention
of researchers. Considering that the real-time problem of the talking-head generation
model based on deep learning cannot be solved, there is still a lot of research space in this
area. Below we provide some ideas and discuss potential approaches to address the poor
real-time performance of talking-head generation models.

CG-based talking-head generation method. With the introduction of the metaverse
concept, computational graphics (CG) companies used to create virtual characters in games,
movies, and other scenes have launched virtual human generation programs. Currently,
programs that can be used to create virtual human talking heads, including Audio2Face
(https://www.nvidia.cn/omniverse/apps/audio2face/, accessed on 30 December 2022.)
in Nvidia Omniverse, Meta-Human Creator (https://www.unrealengine.com/zh-CN/
metahuman, accessed on 30 December 2022.) in Epic’s Unreal Engine, digital humans
(https://unity.com/demos/enemies#digital-humans, accessed on 30 December 2022.) in
Unity 3D, and 3D Engine (https://developer.huawei.com/consumer/cn/hms/3d-engine/,
accessed on 30 December 2022.) in Huawei’s HMS Core. Now, the real-time rendering
of the virtual human talking-head based on the CG program has a way of combining
Audio2Face and Meta-Human Creator to output the rendered video. Meanwhile, some
researchers have learned speech, lip, and expression parameters by letting the model
learn. It combines the action generation algorithm of the virtual human with the 3D
Engine and outputs the rendered cartoon image video in real time, such as Huawei’s
sign language digitizers and pose-guided generation based on 3D human meshes [79].
For the depth generation of the talking head, combining the deep learning method with
the CG program ensures the real-time performance of video rendering. Although it has
tremendous application potential, the high expense is a disadvantage with the output of the
virtual human talking-head video. Speech-to-animation (S2A) technology is a method that
automatically estimates synchronized facial animation parameters from given speech and
generates the final animated avatar with these predicted parameters based on a rendering
engine such as Unreal Engine 4 (UE4). Based on S2A, Chen et al. [31] combined the MOE
transformer to model the context, which improved the inference speed of the model.

A method based on NeRF (Neural Radiance Fields) rendering. In the field of computer
vision, the use of deep neural networks to encode objects and scenes is a new research
direction. NeRF is an implicit neural representation that can render sharp photos of any

https://www.nvidia.cn/omniverse/apps/audio2face/
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https://unity.com/demos/enemies#digital-humans
https://developer.huawei.com/consumer/cn/hms/3d-engine/
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viewing angle from images from multiple angles. Among them, AD-NeRF introduces NeRF
to talking-head video generation. Although the native NeRF algorithm’s slow rendering
speed prevents it from generating talking-head videos in real time, many researchers have
proposed numerous methods to increase NeRF’s rendering speed [64–66,80]. For example,
DONeRF Can render 20 frames per second on a single GPU, and Plenoctrees [66] is over
3000 times faster than traditional NeRFs.

A method for fusing speech recognition (ASR) and computer vision. With the con-
tinuous increase of input speech data, Streaming ASR outputs the text results of speech
recognition in real time. Among them, the development of streaming decoders CTC [81],
RNN-T [82], and LAC [83] has promoted the rapid development of Streaming ASR. In
contrast, in the computer vision field of deep generation, no model can output talking-head
video in real time. Therefore, in the real-time talking-head video generation study, the
streaming decoder in the ASR field can be introduced into the talking-head video genera-
tion model to reduce the real-time rate of video generation. Among them, the real-time rate
(RTF) is the ratio between the model processing time and the audio. For example, it takes 6
s to process 3 s of audio, RTF = 6 s/3 s = 2. Since the model is modeling historical input, the
historical input will continue to grow over time, doubling the model’s computational load,
and the RTF will also increase accordingly. If RTF > 1.0, the model is too late to process the
audio buffer. Therefore, it is possible to achieve real-time streaming output by reducing the
RTF of the video generated by the talking head to less than 1.0.

6. Conclusions

This paper presents a systematic framework for multimodal human–computer interac-
tion, which provides a new idea for applying talking-head generation models. It reviews
talking-head generation models based on deep learning, including datasets, evaluation
protocols, representative methods, etc. We analyze the strengths and weaknesses of repre-
sentative methods and their potential connections. Thanks to the amazing development of
deep learning, we have witnessed the rapid development of talking-head video models,
from generating low-resolution and coarse images to high-resolution, detailed, and realistic
images. However, talking-head video generation methods’ real-time performance still
needs improvement.

It is impossible to dismiss the possibility that malevolent activities, such as fraud,
defamation, and malicious dissemination, may be carried out using the virtual human
voice head synthesis technology. We vehemently oppose misusing this technology. This
essay primarily reviews the study done in this area to further technological advancement
and improve people’s quality of life.
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