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Abstract: Video object detection (VOD) is a sophisticated visual task. It is a consensus that is used to
find effective supportive information from correlation frames to boost the performance of the model
in VOD tasks. In this paper, we not only improve the method of finding supportive information
from correlation frames but also strengthen the quality of the features extracted from the correlation
frames to further strengthen the fusion of correlation frames so that the model can achieve better
performance. The feature refinement module FRM in our model refines the features through the
key–value encoding dictionary based on the even-order Taylor series, and the refined features are
used to guide the fusion of features at different stages. In the stage of correlation frame fusion, the
generative MLP is applied in the feature aggregation module DFAM to fuse the refined features
extracted from the correlation frames. Experiments adequately demonstrate the effectiveness of our
proposed approach. Our YOLOX-based model can achieve 83.3% AP50 on the ImageNet VID dataset.

Keywords: video object detection; feature refinement; feature aggregation; Taylor series

1. Introduction

Object detection is a fundamental and challenging task in many computer vision
applications, which aims to localize and classify objects in images. Remarkable progress
in object detection has been witnessed in the past few years. Object detectors based on
convolutional neural networks (CNN) [1] are constantly evolving. Existing object detection
models based on convolutional neural networks can be divided into two categories: one-
stage and two-stage detectors. The YOLO series [2–5] and SSD [6] are representative works
of one-stage detectors based on convolutional neural networks. One-stage detectors are
powerful due to excellent accuracy and speed trade-off, so they are suitable for scenarios
where real-time performance is required. Two-stage detectors focus more on accuracy and
are therefore more complex in terms of processing than one-stage detectors. Two-stage
detectors first select possible regions where objects may be present and then classify the
targets in the regions. The difference between the two is whether or not there is an explicit
process of extracting RoI features. In the absence of an explicit RoI feature-extraction step,
one-stage detectors produce the location and classification directly from the feature map.
This approach has led to the diversity of features but also to a low quality of features.
A large number of low-quality features are discarded by post-processing to achieve the
purpose of screening features. But the quality of the features that were preserved did not
improve, while high-quality features are key to dense prediction tasks [7,8]. Thus, one aim
of this work is to boost the performance of the model by improving the quality of features.
In the pursuit of superior feature quality, series expansion instead of the softmax function
is employed to mitigate computational overhead. The even-order Taylor series is utilized,
specifically aiming to enhance the inter-cluster distance while simultaneously reducing the
intra-cluster distance. The eventual acquisition of more refined classification boundaries
is attainable.
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Video Object Detection (VOD) is a high-level version of still image object detection.
The two have the same task, namely location and classification, but the difference is that
VOD can make use of the temporal information of videos. When a target object appears in
several different video frames, the relationship between the frames can be used to refine
the detection. Therefore, incorporating temporal information into the detectors is the key to
enhancing confidence and eliminating ambiguity in the case of image degradation. Figure 1
shows the motion blur and the rare pose of objects that appear in the videos.
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Existing VOD methods fuse the temporal information from two perspectives: one cor-
relates the detection results of the underlying detectors through post-processing to produce
coherent results, and the other one directly improves the detection accuracy of the detectors by
aggregating temporal information at the feature level. Post-processing methods usually apply
still image detectors, especially two-stage detectors, to obtain detection results. After obtaining
the detection results, the bounding boxes are linked to form a tubelet, and then the results
in the same tubelet are refined. Methods that aggregate temporal information directly at the
feature level typically utilize features in reference frames to refine the features of the current
frame. It is worth mentioning that due to the characteristics of the region proposal networks
(RPN) [9], proposals are given explicit representation, so two-stage detectors can more easily
migrate to the task of video object detection. However, most of the video object detection
methods based on two-stage detectors are overly sophisticated and inherit the defects of still
image detectors, such as the low quality of features aforementioned, which do not meet the
needs of real-time applications and can have higher accuracy on an image sequence. Thus,
a real-time one-stage video object detection method with improved features refining and
aggregating is built.

Contribution. In this work, we propose an FRM block based on multi-layer percep-
trons (MLPs) and a key–value encoding pattern that is based on even-order Taylor series
approximation to refine features. This block guides and improves the quality of features at
each scale by extracting the deepest features rich in semantics with the following aggre-
gating global and local features. The channel MLP is adopted to capture the long-range
dependencies when the learnable key–value encoder is adopted to enhance the detail of
local features. In the experiments, this block is validated as having the ability to improve
the feature quality. Then, we propose a DFAM block based on MLP to aggregate features
from reference frames to the current frame. This block can generate aggregating matrices
for different sets of features selected from video frames. The proposed approach can be
applied in the field of autonomous driving, such as enhancing the existing perception
algorithm [10,11].

Performance. The proposed method can achieve a promising accuracy of 83.3% AP50
on the ImageNet VID dataset without post-processing. Based on YOLOX-M, FRM gains 2.4%
in AP50, and DFAM gains 4.6% in AP50, which fully proves the effectiveness of the method.
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2. Related Work
2.1. MLP-Based Network

Recently, MLP-Mixer [12], a completely MLP-based architecture, proposed the use
of linear layers for simple token-mixing and channel-mixing to replace the self-attention
mechanism [13] and achieve competitive results with faster inference speed in image-
classification tasks. Specifically, token-mixing encodes spatial information by interacting
between all tokens, while channel-mixing features interact between all channels within
each token. The success of MLP-Mixer brought multilayer perceptron architecture back to
the fore. At the same time, gMLP [14] uses multiplication gating-based MLP to prove that
MLP-based methods can also be a good alternative to self-attention mechanisms in natural
language processing tasks. Subsequently, research on the application of MLP to computer
vision tasks continued to emerge, and ViP [15] proposed independent modeling along the
horizontal and vertical directions to solve the problem of spatial information loss. AS-
MLP [16] introduces local token-mixing based on global token-mixing and uses horizontal
and vertical space movement to solve the problem of lack of local information exchange.
This enables us to pay more attention to the characteristics of the local area. S2-MLP [17]
further adopts spatial displacement in four directions to collect local area information more
fully. CycleMLP [18] adopts a pseudo-kernel structure to solve the problem wherein MLP
architecture is sensitive to the size of the input image. MAXIM [19] uses cross-gating blocks
and multi-axis gating blocks to mix local and global information, further improving the
performance and computational efficiency of MLP architectures.

2.2. Still-Image Object Detection

In the task of object detection, some representative work in the past, such as the two-stage
detector RCNN [20], applied CNNs to object detection for the first time. Fast-RCNN [21]
introduced RoI projection to reduce the amount of computation. Faster-RCNN [9] then
proposed RPN networks for generating candidate boxes. Cascade-RCNN [22] proposed a
multi-stage architecture to address the mismatch problem with different IoU thresholds and the
overfitting problem with increasing IoU thresholds. Sparse-RCNN [23] introduced learnable
proposals for end-to-end detection. In the one-stage detectors, the YOLO series [2–5], as well
as SSD [6], RetinaNet [24], FCOS [25], etc., no longer explicitly extract RoIs, but directly predict
from the feature map. Compared with the two-stage detectors, it has a greater advantage in
detection speed and competitive detection accuracy. At the same time, with the widespread
application of the attention mechanism in visual tasks, some work based on the attention
mechanism has also been proposed, such as DETR [26], introducing query to abstract the
object detection into a set prediction. Deformable DETR [27], Sparse DETR [28], Conditional
DETR [29], DAB-DETR [30], and DINO [31] mainly focus on solving the problems of slow
convergence and high computational complexity.

2.3. Video Object Detection

Video object detection tasks have richer information than still-image object detection
tasks, but due to the movement of the object and the change of scene, it inevitably introduces
the problem of image degradation, such as occlusion, camera defocus, and rare poses.
Moreover, video object detection tasks also require spatial and temporal consistency while
detecting objects. Most of the existing video object detection methods are based on two-
stage detectors, which pay more attention to improving accuracy, and some work has made
efforts to improve the inference speed under the premise of ensuring accuracy as much
as possible; we divide the existing methods into two directions: focusing on improving
accuracy by aggregating temporal information and improving inference speed without
significantly losing accuracy.

With regard to the first aspect, D&T [32] proposed introducing the object-tracking task
into video object detection, learning the similarity between features in different frames
by tracking, and obtaining the displacement of targets between frames to assist detection.
MEGA [33] integrates the global and local information to enhance the candidate box
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features in the keyframe and store the enhanced features in an external memory bank.
FGFA [34] proposed the concept of temporal features aggregation for the first time in the
field of video object detection, which produces detection results for non-key frames by
fusing and weighting the optical flow features between the current frame and adjacent
frames. Similarly, MA-Net [35] first extracts the features of the current frames and adjacent
frames and the optical flow information between them, corrects and fuses them at the
pixel level and instance levels, and uses the fused features for training. Other optical flow-
based algorithms, SELSA [36] and OGEMN [37], further improve the detection accuracy.
RDN [38] captures the interactions across the objects in both the spatial and temporal
context. HVRNet [39] integrates intra-video and inter-video proposal relations, respectively,
to exploit intra and inter-contexts. STSN [40] proposes learning spatial sample features
from neighboring frames of the current frame and aggregates the learned features into
the features of the current frame for detection. STMM [41] models long-term temporal
appearance and motion dynamics to boost detection accuracy. TransVOD [42] introduces
the transformer structure to the video object detection task and proposes a temporal
transformer to aggregate both the spatial object queries and the feature memories of each
frame, which effectively eliminates the need for many hand-crafted components and
complicated post-processing steps.

In terms of the second aspect, DFF [43] first proposed the concept of keyframes,
which improves the speed of inference by distinguishing between key keyframes and non-
keyframes, using keyframes directly for detection while extracting optical flow information
from non-keyframes and fusing them into key features. THP [44] achieves the purpose
of accelerating inference by extracting features of sparsely distributed keyframes and
propagating the features to other non-keyframes in the form of flow fields, and the method
has been tested on mobile devices for the first time. LSTM-SSD [45] adopts bottleneck-LSTM
to refine and propagate features across frames, which significantly reduces computational
cost. ST-Lattice [46] performs detection on sparse keyframes and uses temporal information
to assist in the detection of non-keyframes at different spatial scales. CHP [47] propagates
previous reliable detection in the form of a heatmap to boost the results of current images.
YOLOV [48] integrates the post-processing step into the detection head, selects the features
with high confidence in different video frames, and aggregates the features through the
multi-head self-attention mechanism to achieve the purpose of refining the features in the
current frame. These approaches have made efforts and attempts from various perspectives,
but there can be more effective improvements in improving the quality of features and
the aggregation of features. Our model first starts from the feature itself, strengthens the
feature by key–value coding based on even-order Taylor series, and then fuses the features
between frames on this basis. The fusion method uses MLP, which fuses the features in a
generative way.

3. Methodology

Following the insight that collecting supportive information from reference frames to
enhance the detection of the keyframes is critical to improving the video object detection
methods’ performance, our work boosts accuracy by improving the quality of features
and aggregating the features from multiple frames of a video clip with a confidence level
above a preset threshold. Previous work [33,36,38] has focused on how to effectively find
and save supportive information from reference frames and use it for the detection of the
current frame. While this is important, the quality of features from the reference frame is
not paid attention to, whereas high-quality features can further improve the accuracy of
detection. Considering that the deepest features have the richest semantic information [49],
we use the deepest features to adjust the shallow features. Through specific design, we
can make the deepest features retain as much local information as possible, which is quite
critical for dense prediction tasks. After collecting a certain number of high-quality features
from multiple reference frames, how to effectively aggregate these features is what we
will focus on next. Due to the high computational cost of Transformers and the limited
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receptive fields of convolutional neural networks, MLP is adopted to aggregate features from
reference frames. Different from the traditional MLP linear mapping operation in the spatial
dimension or channel dimension, we construct the weights in a generative way—that is,
dynamically generate feature aggregation weights in the space-time dimension and channel
dimension through linear mapping. The detailed descriptions of our proposed work are
given below. Based on YOLOX [5], our work integrates two key components: Feature Refine
Module (FRM) and Dynamic Feature Aggregation Module (DFAM). Our proposed method
is schematically depicted in Figure 2.
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Figure 2. Illustration of the whole architecture of our proposed network. FRM and DFAM are
integrated into the model’s FPN and detection head, respectively. FRM refines the deepest feature
and guides the shallow feature. The detection head selects features by top-k, inputs them into the
DFAM module, and calculates the loss after feature aggregation.

FRM: Feature Refining Module. As illustrated in Figure 3, FRM achieves the purpose
of improving feature quality through feature interaction between layers, which is realized
by an endogenous learnable key–value parameter. This learnable key–value parameter
adjusts the multi-scale features of FPN [50] through a special weighted-average method so
that the originally ignored local information is strengthened by intra-layer interaction. This
module consists of CBR blocks (a 3× 3 convolution with a BN layer and ReLU activation
function), learnable key–value parameters (a matrix that participates in derivation), and
channel MLPs. In forward propagation, this module first uses a 3× 3 convolution operation
to downsample the input feature map to reduce the cost of the calculation, and the result
of downsampling is used as the pyramid input of the two branches. The first branch
encodes features using a CBR block with the encoded feature size N × C×W × H, where
N denotes the batch size, C denotes the channel size, and H and W denote the feature map
spatial size in height and width. The size of the learnable key–value parameters is K× C,
where K denotes the number of key–value pairs, and C denotes the number of channels.
The learnable key–value parameters are defined as Pkey–value = {v1, v2, . . . , vK}, and the
encoded features are defined as Xin = {x1, x2, . . . , xL}, where L = H×W is the total spatial
number of the input features. The query values of xi in the learnable key–value parameters
in the feature map are as follows:

R f
(

xi, Pkey–value

)
=

K

∑
k=1

f n(‖xi − vk‖2)
∑K

j=1 f n
(
‖xi − vj‖2

) (xi − vk) (1)

Therefore, the query value of the encoded feature map in the learnable key–value
parameter is as follows:

R f
(

Xin, Pkey–value

)
=

L

∑
i=1

K

∑
k=1

f n(‖xi − vk‖2)
∑K

j=1 f n
(
‖xi − vj‖2

) (xi − vk) (2)
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It is important to note that f n is a higher-order Taylor series approximation of ex,
where the orders n are even. The

f n(z) =
n

∑
i=0

zi

i!
(3)

The features encoded by the learnable key–value parameters are then entered into an
activation function and a linear layer, and the output of the first branch rXin1 is obtained by
multiplying and then adding the features (the feature before being encoded by key–value
parameters and the feature entered into the first branch) in the form of residual linkage. σ
in Equation (4) denotes the ReLU activation function.

rXin1 = σ
(

Linear
(

R f
(

Xin, Pkey–value

)))
� Xin + Xin (4)

The second branch contains 1× 1 depth-wise convolution and 1× 1 convolution, and
the operation of this branch is defined by the following formulas:

Xin2 = DConv(GN(Xin)) + Xin (5)

rXin2 = σ(Conv1×1(Xin2)) + Xin (6)

GN in Equation (5) denotes group normalization, where the group number is 1. σ in
Equation (6) denotes the GeLU activation function. The features of the two branch outputs
are concatenated in the channel dimension, and then the features are entered into a 1× 1
convolution layer to restore the number of channels.

rX f inal = Conv1×1(Concat(rXin1, rXin2)) (7)

DFAM: Dynamic Feature Aggregation Module. As illustrated in Figure 4, DFAM
completes the aggregation of the features of the reference frame and the current frame
by dynamically generating and redistributing the weights. This module contains three
branches corresponding to the temporal, spatial, and channel dimensions, each imple-
mented by multiple linear layers for feature encoding, weight generation, and weight
redistribution. The dimension of the feature that entered into three branches is F× C× T,
where F denotes the spatial dimension size, C denotes the channel size, and T denotes
the temporal dimension size. Corresponding to spatial and temporal dimensions, we first
reshape the input features into shape F× TC (TC equals T× C), and the obtained features
X are entered into the linear layers to generate weights corresponding to this dimension
(W f corresponds to the spatial dimension and Wt corresponds to the temporal dimension).
It should be noted that ⊗ in the following equations stands for the matrix product, and
� stands for Hadamard product. The weight and the feature entered into this branch are
multiplied as the output of this branch, which can be denoted as

Wt = So f tmax(Lineart(X)) (8)



Electronics 2023, 12, 4305 7 of 14

W f = So f tmax(Linear f (X)) (9)

Xt = Wt ⊗ X (10)

X f = W f ⊗ X (11)
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Corresponding to the channel dimension, the output of this branch is generated directly
by mapping in the channel dimension using linear layers, defined by the following formula:

Xc = Linear(X) (12)

We add the outputs of the three branches and calculate the mean for each channel.
The result is fed into a linear layer that redistributes the weights. After the redistribution,
the number of channels of the feature is tripled, corresponding to three branches, and the
reassignment of weights is defined by the following formula:[

reWt, reW f , reWc

]
= Linear

(
Mean

(
Xt + X f + Xc

))
(13)

Xt f c = Linear
(

reWt � Xt + reW f � X f + reWc � Xc

)
(14)

The weights and outputs corresponding to the three branches are multiplied, the
obtained output features and the features entered into the DFAM are concatenated along
the channel dimension as the input of two linear layers, and then these two layers output
the aggregated features aggX of DFAM.

aggX = Linear
(

Concat
(

Xt f c, X
))

(15)

Loss Function. The loss function is Equation (16). We use BCE Loss for training the
classification branch (Lcls), refined classification branch (Lrcls), and object branch (Lobj), and
IoU Loss for training the regression branch (Liou). λrcls and λiou are the corresponding
weight coefficients.

Loss = Lcls + λrcls · Lrcls + λiou · Liou + Lobj (16)

4. Experiment
4.1. Experimental Setup

Datasets and Evaluation. Following [34,36,44,46], experiments were performed on
videos in the ImageNet VID [51] and images in the ImageNet DET [51] with the same
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classes. The ImageNet VID contains 4416 videos, among which there are 3862 videos for
training and 555 videos for validation. The ImageNet VID dataset has 30 categories, which
is a subset of the 200 categories of ImageNet DET. Following protocols widely adopted
in [32,34,35,42,46], the method proposed is evaluated on the validation set using the mean
average precision (mAP) metric.

Network architectures. YOLOX is adopted as our base detector. Following [46,48],
the base detector is pretrained on the COCO dataset [52]. It should be clarified that the
feature extractor of the base detector is Modified CSPDarknet [53], and the three deepest
features are adopted for the detection task. The Feature Refining Module is integrated
into the FPN [50], and the Dynamic Feature Aggregation Module is integrated into the
YOLOX Head.

Training details. The training procedure is divided into three stages. In the first
training stage, the pre-trained base detector YOLOX with backbone MCSP [53] is finetuned
on the combination of the ImageNet VID dataset and the ImageNet DET dataset with the
same categories. To eliminate redundancy of the video frames, 1/10 frames are sampled
in the VID training set. Most training configuration in YOLOX is carried over, except
for epochs, which is set to 15, and the learning rate per batch is set to 0.002. While the
training epochs number 15, the warmup epochs are decreased to 2, and the number of
no-augmentation epochs is 3. In the second training stage, the detection head is integrated
with FRM. Then, the detector is trained for 7 epochs by an SGD optimizer with a batch
size of 16. A total of 7 training epochs are divided in an orderly fashion into 3 groups: a
first epoch for warming up with a learning rate increasing from 0 to 0.01; second to fifth
epochs for training with strong augmentation, and a learning rate decreasing from 0.01 to
0.002; and sixth to seventh epochs for training, with strong augmentation disabled and the
learning rate remaining unchanged. In the third training stage, DFAM is integrated into the
backbone MCSP. Most of the former training configuration is adopted, while the backbone
parameters are frozen. Only the linear projection and the DFAM in the detection head
are fine-tuned. The proposed approach is implemented using the Pytorch [54] framework.
All experiments are performed on 2GPUs RTX A5000 with FP16-precision enabled. In the
training phase, the size of input images ranges from 352× 352 to 672× 672 with a stride
of 32× 32. In the testing phase, the size of input images is set to 512× 512. The inference
performance of the model is tested on an RTX GeForce 3090 with FP16-precision enabled.

4.2. Main Results

Comparison with base detector. Our proposed method is first compared with the
base detector YOLOX in Table 1. Our proposed methods outperform their respective base
detectors by over 5% in AP50. As for the inference time, our proposed method has a small
increase, which is within a tolerated range.

Comparison with existing VOD methods. Table 2 shows the detailed comparison
information between our proposed method and existing VOD methods. It can be seen from
the results that our method achieves 83.3% in AP50. Our proposed method exceeds most
two-stage detector-based VOD methods, such as SELSA (+3.0%) and ST-Lattice (+4.3%).
Our proposed method also exhibits better performance than the one-stage detector-based
VOD method in accuracy. Our proposed method shows better performance when compared
with optical flow estimation methods, such as FGFA (+7.0%) and OGEMN (+3.3%). Thanks
to feature-refining, our proposed method overcomes the influence of low feature quality
on dense prediction tasks to a certain extent. Dynamic feature aggregation also effectively
aggregates the temporal features and improves the detection of the current frame in a
targeted manner. Figures 5–8 show a comparison between the proposed method and the
base detector.
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Table 1. Comparison with the base detector YOLOX.

Model Params GFLOPs Time (ms) AP50 (%)

YOLOX-S 8.95 M 17.58 4.3 68.2
Ours-S 14.40 M 29.53 8.2 75.5

YOLOX-M 25.30 M 48.38 5.4 71.2
Ours-M 37.46 M 75.26 11.7 77.2

YOLOX-L 54.17 M 102.10 9.5 74.8
Ours-L 75.73 M 149.88 15.3 80.9

YOLOX-X 99.02 M 184.93 15.2 77.0
Ours-X 132.66 M 259.57 32.3 83.3

Table 2. Comparison with existing video object detection methods.

Base Detector Methods mAP (%)

R-FCN [8]

DFF [43] 73.0
D&T [32] 75.8
FGFA [34] 76.3
THP [42] 78.6
STSN [38] 78.9

OGEMN [35] 80.0
STMM [41] 80.5

Faster-RCNN [9]

ST-Lattice [44] 79.0
SELSA [34] 80.3
RDN [36] 81.8

MEGA [31] 82.9
HVRNet [37] 83.2

CenterNet [55] CHP [45] 76.7

Deformable DETR [25] TransVOD [40] 81.9

YOLOX [5] Ours 83.3
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4.3. Ablation Study and Analysis

On the effectiveness of FRM and DFAM. To validate the effectiveness of FRM and
DFAM, the experiments were performed with YOLOX-M. Table 3 summarizes the effects
of FRM and DFAM on the ImageNet VID dataset. As can be observed, YOLOX-M armed
with FRM gains 2.4% in AP50. YOLOX-M armed with both FRM and DFAM gains 6.0% in
AP50. This ablation study shows the effects of FRM and DFAM.

Table 3. Ablation study with or without FRM and DFAM.

Methods FRM DFAM AP50 (%)

YOLOX-M - - 71.2
Ours-M 3 - 73.6
Ours-M 3 3 77.2

On the order of the Taylor series. Table 4 illustrates the effectiveness of the order of
the Taylor series. The ablation experiments are performed on YOLOX-S integrated with
FRM. While the order is less than 6, AP50 is higher than 70.0%. As can be observed, when
the order is 4, our proposed method achieves the best AP50, at 71.0%. But the AP50 drops
to 69.7% when the order is 8. It can be seen that the Taylor series of different orders has
a certain influence on the performance of the method. It is better to dynamically adjust
the order of the Taylor series according to the needs of the actual task. And how the order
affects the model’s performance on specific tasks is left for our future work.

Table 4. Ablation study on the order of Taylor series.

Order 2 4 6 8

AP50 (%) 70.7 71.0 70.5 69.7

On the contribution of each path in DFAM. Table 5 illustrates the contribution of
each path in DFAM. The ablation experiments are performed on YOLOX-S integrated with
FRM and DFAM. The specific branch in DFAM is disabled in each experiment. While the
temporal branch is disabled, AP50 is 71.1%. It can be observed that disabling the temporal
branch decreases the AP50 most. This is followed by the channel branch, which has an
AP50 of 72.5% when the channel branch is disabled. The spatial branch contributes the
least to DFAM, and the AP50 is 73.3% when the spatial branch is disabled.

Table 5. Ablation study on the contribution of each path in DFAM.

Path Temporal Channel Spatial Original

AP50 (%) 71.1 72.5 73.3 75.5

5. Conclusions

In this paper, a new video object detection framework is proposed, starting from
feature quality, which is critical to dense prediction tasks. This framework refines features
through learnable key–value parameters to improve the quality of features for the DFAM,
which aggregates temporal features by dynamically generating weights. Experiments and
ablation studies have shown the effectiveness and practicality of both modules. This paper
improves video object detection from two novel perspectives, hoping to provide some
enlightenment for related work.
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