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Abstract: Homography estimation is a critical component in many computer-vision tasks. However,
most deep homography methods focus on extracting local features and ignore global features or
the corresponding relationship between features from two images or video frames. These methods
are effective for alignment of image pairs with small displacement. In this paper, we propose an
unsupervised Multi-Scale-Stage Content-Aware Homography Estimation Network (MS2CA-HENet).
In the framework, we use multi-scale input images for different stages to cope with different scales
of transformations. In each stage, we consider local and global features via our Self-Attention-
augmented ConvNet (SAC). Furthermore, feature matching is explicitly enhanced using feature-
matching modules. By shrinking the error residual of each stage, our network achieves coarse-to-fine
results. Experiments show that our MS2CA-HENet achieves better results than other methods.

Keywords: unsupervised; multi-scale; multi-stage; self-attention-augmented ConvNet; feature matching

1. Introduction

Image/video homography estimation is the process of finding corresponding relation-
ships by estimating a projective transformation. It is a basic task in a variety of applications,
including visual SLAM [1,2], image/video stitching [3,4] and augmented reality [5,6]. Most
of the traditional methods for homography estimation [7,8] employ matched features, such
as SIFT [9], SURF [10] and ORB [11], to establish the corresponding relationship. These
methods are highly dependent on the extracted features and can typically provide good
results in scenes with rich features and a uniform distribution of features. In addition,
these steps (feature detection, feature matching and homography estimation) in traditional
methods are performed independently; the total performance of alignment can easily be
limited by the influence of any one step.

Deep homography estimation methods have drawn more attention from researchers
due to their excellent performance in feature representation. These methods usually are
divided into two categories: supervised estimation methods [12–16] and unsupervised
methods [17–20]. These learning-based methods can often outperform traditional methods
in some difficult scenarios, such as images/videos with few features or lacking texture.
However, these methods focus on local features, ignoring long-range relationships and the
corresponding relationship between features from two images or video frames. In addition,
these approaches are effective for image pairs or video frames with small displacements.

Previous research [13,15] has shown that using a multi-stage process to progressively
predict and refine homography can cope with large global displacement between two
images/video frames. In this paper, we extend these methods to an unsupervised method
and propose an unsupervised Multi-Scale-Stage Content-Aware Homography Estimation
Network (MS2CA-HENet). In this framework, images with different resolutions are used as
input at different stages, starting with low-resolution input images and gradually increasing
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the size of input images. Large-scale and global transformations are estimated on low-
resolution input images; small-scale and local transformations are estimated on high-
resolution input images. The homography estimation network of each stage includes a
feature-extraction module, feature-matching module and homography-estimation module.
The feature-extraction module introduces a self-attention mechanism, which can cover a
larger scope in the process of feature extraction to collect feature information, and considers
local and global information for extracted features. The feature-matching module enhances
the matching relationship between features. By shrinking the error residual of each stage,
our network achieves coarse-to-fine results and promotes the performance of alignment.
Compared with previous work, our contributions are listed as follows:

(1) We design a novel unsupervised Multi-Scale-Stage Content-Aware Homography
Estimation Network (MS2CA-HENet), which effectively addresses homography esti-
mation for a pair of images with large displacement.

(2) We propose a Self-Attention-augmented ConvNet (SAC) to capture local and global
features. Moreover, a feature-matching module is introduced into the homography-
estimation network to enhance the long-distance dependencies between two image
feature maps.

(3) We estimate the residual offsets of the displacement instead of the complete offsets,
which estimates the homography from coarse-to-fine via minimizing the error residual
at each stage. Experiments show that our method achieves superior performance
compared to other methods.

2. Related Work
2.1. Supervised Deep Homography Methods

DeTone et al. [12] made the first attempt to propose a deep homography estima-
tion method, which used a deep convolution neural network to estimate homography.
The authors of [13,14,16] utilize a hierarchical architecture that extract features from two
image patches to perform homography estimation. Hierarchical approaches can gradually
reduce estimation error from coarse-to-fine. Le et al. [15] extend this approach to estimate
the motion mask in order to address potentially large dynamic motion. However, these
methods are supervised approaches; they need a large number of ground truth annotations,
which are costly to gather from real-world data.

2.2. Unsupervised Deep Homography Methods

Nguyen et al. [17] propose an unsupervised method via a Spatial Transformation
Layer (STL) [21] to calculate pixel loss between two images/video frames. Their unsu-
pervised method achieves comparable performance to the HomographyNet [12] method.
Wang et al. [18] eliminate the need for ground-truth annotations and use invertibility con-
straints to improve previous unsupervised approaches. Ye et al. [22] use a homography
flow rather than the typically used four-point parameterization to estimate homography.
Koguciuk et al. [19] extend this approach by calculating the perceived loss [23], which
considerably increases the robustness of the model to variations in light. Liu et al. [20]
propose a content-aware homography estimation method that learns a mask to eliminate
the outliers in a manner similar to the RANSAC [24] function.

2.3. Self-Attention

In computer vision, attention mechanisms [25,26] highlight key elements of an image
or feature map while ignoring the rest. Attention is a crucial component of deep convo-
lutional networks owing to its ability to concentrate on important regions within a given
context. Self-attention is described as paying attention to a single context rather than to
several contexts. The advantage of self-attention is the ability to interact remotely; it has
produced cutting-edge models for a variety of tasks [27,28], e.g., image generation [29]
and object detection [30]. It has recently shown benefits in a variety of vision tasks to
complement convolution models with self-attention. Wang et al. [31] demonstrate that
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self-attention is an instance of non-local [32,33] methods and that it can be used to im-
prove video categorization and object recognition. Using a variation of non-local methods,
Chen et al. [34] attain favorable outcomes in image classification and video action identifi-
cation tasks. At the same time, Bello et al. [35] also see big improvements in object detection
and image classification by adding global self-attention features to convolutional features.

3. Our Method
3.1. Overall Architecture

Figure 1 illustrates our overall framework. Our network takes the pyramid pairs
generated by one initial pair of images or video frames as input, and outputs the homog-
raphy transformation between the initial pair of images. Pyramid images are built by the
down-sampling of 2k from original input images. The resolution of the three-layer pyramid
images is 128× 128, 64× 64 and 32× 32 successively.

2 1

1( , ( ) )TI H S

3 1

2( , ( ) )TI H S

1

1( , )RI H 2

2( , )RI H 3

3( , )RI HImage Patches Stage-3 

Stage-1 F(·)
M(·)

H(·)

Stage-1 F(·)
M(·)

H(·)

Stage-2 Stage-2 

1 2
3

1

RI

2

TI

2

RI 3

RI

3

TI

1H
2H

3H

1

TI

2 1

1( , ( ) )TI H S

3 1

2( , ( ) )TI H S

1

1( , )RI H 2

2( , )RI H 3

3( , )RI HImage Patches Stage-3 

Stage-1 F(·)
M(·)

H(·)

Stage-2 

1 2
3

1

RI

2

TI

2

RI 3

RI

3

TI

1H
2H

3H

1

TI

2 1

1( , ( ) )TI H S

3 1

2( , ( ) )TI H S

1

1( , )RI H 2

2( , )RI H 3

3( , )RI HImage Patches Stage-3 

Stage-1 F(·)
M(·)

H(·)

Stage-2 

1 2
3

1

RI

2

TI

2

RI 3

RI

3

TI

1H
2H

3H

1

TI

Figure 1. The proposed MS2CA-HENet architecture. The whole network consists of three parts:
Stage-1, Stage-2 and Stage-3, respectively, for homography estimation. W() is an operation that
performs a homography transformation on the input images.

The overall network model consists of three stages. In the first stage, we input the
smallest-resolution images I1

R, I1
T , and output the displacement D1 of the four image corner

points from I1
R to I1

T . Moreover, a Tensor Direct Linear Transform (Tensor DLT) [36] layer is
applied to compute the differentiable mapping from the four-point parameterization D1 to
the homography matrix of 3× 3 parameterization H1. In the second stage, the reference
image I2

R and the warped target image Î2
T are input to the module similar to the first stage.

The warped target image Î2
T is obtained as follows:

Î2
T =W(I2

T , (H1S)−1) (1)

whereW() warps the target image using the homography transformation in the Spatial
Transformation Layer; S is a scaling matrix at the two scales of the warped target image I1

T
and the warped target image I2

T . More specifically, the relationship of homography offsets
between two adjacent scale images is calculated to scale the homography, and small-scale
offsets are expanded by two times to make them equivalent to the changes on the large-scale
images.

For the output of residual displacement ∆D2 from the reference image I2
R to the warped

target image Î2
T in the second stage, the total displacement D2 between the reference image

I2
R and the warped target image I2

T is obtained by the displacement D1 and the residual
displacement ∆D2:

D2 = D1 × 2 + ∆D2 (2)

Depending on the displacement D2 from the reference image I2
R to the warped target

image I2
T , the homography transformation H2 can be obtained by the DLT method. The
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homography transformation calculated in the second stage is scaled and applied to the
target image I3

T .
Similar to the second stage, the reference image I3

R and the warped target image

Î3
T are inputs to the third stage, and the output is the residual displacement ∆D3. The

displacement D3 from the reference image I3
R to the warped target image I3

T is obtained by
the displacement D2 and ∆D3:

D3 = D2 × 2 + ∆D3 (3)

Based on the displacement D3, the homography transformation H3 can be obtained by
the DLT method.

3.2. Network Modules In Stage 1

In this section, we introduce the modules of our network in Stage 1 (see Figure 2)
in detail.
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Figure 2. The proposed architecture in Stage 1. In the feature-extraction module F(.), the local and
global features are extracted by combining the convolution and self-attention operation. Moreover,
the feature-matching module M(.) is designed to enhance feature-matching explicitly from feature
maps. At last, we estimate the homography matrix by the homography estimation module H(.).

3.2.1. Feature Extractor

In the feature-extraction module F(.), we combine the convolution and self-attention
operation to obtain local and global features. The process is described as :

FR = F(IR), FT = F(IT) (4)

We firstly employ ResNet34 [37] to extract the image features. Due to the limitation of
the receptive field of the convolution kernel, the convolution processes data locally, which
makes it computationally inefficient to predict long-range relationships in images. We
embed a self-attention module into the feature extractor, enabling it to efficiently model
long-distance interactions from the image features, as shown in Figure 3. To be specific, we
use the output of Layer2 in ResNet34 and embed a self-attention module after each layer of
Layer2. For a pair of input images IR and IT of size 1× H ×W, the size of the feature maps
is C× H/8×W/8. The specific network structure of the feature-extraction module F(.) is
shown in Table 1.

Specifically, assume the features of an image extracted by ResNet34 are denoted as
xi. The feature maps xi can be transformed into different feature spaces by different 1× 1
convolutions:

K = Wkxi, Q = Wqxi, V = Wvxi (5)
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where Wk, Wq, Wv are three different 1 × 1 convolutions. The spacial relationship is
calculated by:

βi,j =
exp

(
sij
)

∑N
i=1 exp

(
sij
) , where sij = K2D(:, i)TQ2D(:, j) (6)

where K2D and Q2D denote the flattened results of the tensors K and Q, respectively, in a
sample. The size of K2D (Q2D) is C× N, where N = H ×W. βi,j indicates the correlation
between the ith location and the jth position. The output is z = (z1, z2, . . . , zi, . . . , zN) ∈
RC×N :

zi =
N

∑
j=1

βi,jV2D(:, j) (7)

where V2D ∈ RC×N denotes the flattened matrix of the tensor V in a sample. In addition,
the output result is multiplied by a learnable parameter and the feature maps are added.
Consequently, the ultimate result is determined by:

fi = γzi + xi (8)

where γ is a learnable scalable factor with an initial value of 0. By a learnable γ, the module
first depends on neighborhood cues, and then progressively can be trained to give non-local
evidence more weight.

Table 1. The architecture of feature-extraction module F(.), where ‘Conv1’, ‘Maxpool’, ‘Conv2_x’
and ‘Conv3_x’ are the components of ResNet34, ‘SA1’ and ‘SA2’, respectively, and represent
self-attention modules.

Input Image Size Layer Name Conv1 Maxpool Conv2_x SA1 Conv3_x SA2

128× 128
Kernel Size 7× 7 3× 3 3× 3 1× 1 3× 3 1× 1
Channels 64 64 64 64 128 128

Output Size 64× 64 32× 32 32× 32 32× 32 16× 16 16× 16

64× 64
Kernel Size 7× 7 3× 3 3× 3 1× 1 3× 3 1× 1
Channels 64 64 64 64 128 128

Output Size 32× 32 16× 16 16× 16 16× 16 8× 8 8× 8

32× 32
Kernel Size 7× 7 3× 3 3× 3 1× 1 3× 3 1× 1
Channels 64 64 64 64 128 128

Output Size 16× 16 8× 8 8× 8 8× 8 4× 4 4× 4

 feature map(x)

1×1 conv

1×1 conv

1×1 conv

Wq(x)

Wk(x)

Wv(x)

transpose

softmax attention map

Self-Attention 

feature map(z)

output1×1 conv

Z(x)

Figure 3. The architecture of the self-attention module.
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3.2.2. Feature-Matching Module

Feature matching is an important step in traditional homography estimation methods.
By comparing the distances between the feature-point descriptors on each pair of images,
the feature points with the minimum distance between them are selected as the matching
points. In deep-learning methods, the convolution layer is inefficient at learning the match-
ing relation between features, especially when the displacement between corresponding
points is large—the position of the matched feature is much larger than the receptive field
of the convolution kernel. In the proposed feature-matching module M(.), feature maps FR
and FT are inputs, the output is a cost volume S3D to store the correlation values between
features of the reference image and the target image in spacial position. The process is
presented as follows:

S3D = M(FR, FT) (9)

Specifically, we first reshape the extracted feature maps FR and FT that output from
the feature extractor into corresponding 2D matrices FR2D and FT2D , respectively. Then, the
matching cost S2D(i, j) between the ith feature vector in FR2D and the jth feature vector in
FT2D is implemented as the correlation between the feature vectors:

S2D(i, j) =
1
C
(

FR2D (:, i)
)T � FT2D (:, j) (10)

where S2D ∈ RB×N×N . N denotes the size of spatial resolution, C represents the dimension
of the feature vectors, T stands for the transpose operator, and ’�’ stands for the dot
product. Therefore, the full cost-volume calculation between two different feature maps FR
and FT can be expressed as:

S2D =
1
C
(

FR2D

)T ⊗ FT2D (11)

where ⊗means matrix multiplication. As a result, the total cost volume S3D is converted
by the 2D cost volume S2D. The specific calculation process is shown in Figure 4.

FR

FT

FR2D

FT2D

S2D S3D

Reshape

Reshape

Reshape

C× H×W
C× N(N=H×W)

N×N
N× H×W

C× H×W C× N(N=H×W)

Figure 4. The feature-matching module computes a cost volume between two feature maps, where
C, H and W, respectively, represent the number of channels and the height and width of the feature
maps.

Compared with other parts of the model, the feature-matching module in our model
does not have any trainable parameters. The cost volume may be conceptualized as a 3D
form of a similarity matrix. It keeps track of how much it costs to match two sets of dense
feature vectors.

3.2.3. Homography Estimator

In the homography estimation module H(.), we employ three successive convolutional
layers and two fully connected layers to obtain the displacement D of the four image
corners from reference images to target images. To prevent over-fitting, we use the dropout
method [38] between the last convolutional layer and the first fully connected layer with a
drop probability of 0.5. Our homography estimator function between the cost volume S3D
and the displacement D is described as follow:
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D = H(S3D) (12)

By applying the directly linear transform to D, we can obtain the homography matrix
of 3× 3 parameterization between a pair of images.

3.3. Loss Function

Utilizing the estimated Hk in the kth stage, we warp the patch images Ik
R toW(Ik

R)
via the Spatial Transformation Layer [21] and compute the L1 loss between the warped
target images and the reference images. The network as a whole is differentiable and may
be trained through back propagation.

At each stage, we minimize the average L1 pixel-wise photometric loss during the
training process. According to previous studies [17,39], an L1-type loss function is more
suitable for image alignment problems and the network is more easily trained with an
L1-type loss function, so we choose an L1-type loss function instead of an L2-type loss
function. In addition, the images may contain some artifacts due to the injection of ran-
dom illumination offset and distortion, and the L1-type loss function is more robust to
outliers [40]. The total loss function can be expressed as followed:

L = α1

∥∥∥W(I1
R, H1)− I1

T

∥∥∥
1
+ α2

∥∥∥W(I2
R, H2)− Î2

T

∥∥∥
1
+ α3

∥∥∥W(I3
R, H3)− Î3

T

∥∥∥
1

(13)

where the balancing weights are set to α1 = 0.5, α2 = 0.3 and α3 = 0.2. Our loss function
consists of three parts, which represent the homography estimation network of three stages
and set different weights. W() is an operation that performs the predicted homography
of each stage on the input images using a Spatial Transformation Layer. In Stage 1 of
the loss function, we warp patch images I1

R toW(I1
R, H1) by the predicted homography

transformation H1. The average L1 pixel-wise photometric loss function is used to minimize
the difference in pixel values between the corresponding pixel pointsW(I1

R, H1) and I1
T . In

Stage 2, we minimize the difference betweenW(I2
R, H2) and Î2

T =W(I2
T , (H1S)−1) instead

of the difference betweenW(I2
R, H2) and the original input I2

T . Since the warped Î2
T is closer

to ground truth than I2
T , the loss shrinks the error residual of each stage. The third stage is

similar to the second stage.

4. Experiments
4.1. Dataset and Evaluation Metric

We utilize the method given by Detong et al. [12] for generating datasets on the MS-
COCO [41] dataset due to the lack of publicly available datasets for homography estimation.
We select 82,783 images from MS-COCO train2014 for the training set and 5000 images from
test2014 for the testing set. For each image, a patch with the size of 128× 128 is arbitrarily
cropped, and each corner point then obtains a random disturbance in the range of 45 pixels,
which provides the ground truth four-point corner values to evaluate the proposed method.
Then, the image is warped using the inverse of the homography matrix that is defined
by the four correspondences. We crop out a second patch from the same position in the
warped image. Considering the multi-scale input images of our network, we downsample
the patch pairs of 128× 128 to different resolution sizes of 64× 64 and 32× 32. We use
the Mean Average Corner Error (MACE) [12] as a metric, which computes the L2 distance
between the ground-truth corners and the predicted corners. A lower MACE means better
performance.

4.2. Implementation Details

Our network is implemented in PyTorch. The network is trained using an Adam
Optimizer with the stochastic gradient descent. The initial value of the learning rate is
lr = 5.0× 10−5. We train our homography network for 60 epochs. All of our training and
testing procedures are carried out on a single NVIDIA Titan XP GPU.
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4.3. Comparison

To evaluate the effectiveness of the proposed MS2CA-HENet, we compare the proposed
method with different homography estimation methods, including one traditional method—
ORB+RANSAC—and eight deep homography estimation methods—HomographyNet [12], Hi-
erarchicalNet [13], STN-HomographyNet [14], Self-SupervisedNet [17], SSR-Net [18], SRHEN [16],
biHomE [19] and Content-AwareNet [20].

Figure 5 shows the comparative results for the MACE on the MS-COCO dataset. Specif-
ically, we obtain the following observations: the result of the traditional ORB+RANSAC
method is higher than those learning-based homography estimation methods. The main rea-
son is that deep learning methods can extract more-robust features than traditional methods.

0
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Figure 5. The MACE comparison of different methods. We compare our method with ORB+RANSAC
method, HomographyNet [12], HierarchicalNet [13], STN-HomographyNet [14], Self-SupervisedNet [17],
SSR-Net [18], SRHEN [16], biHomE [19] and Content-AwareNet [20].

Compared with those deep learning models [12–14,17–20] without the feature-matching
module, both SRHEN [16] and our model have the feature-matching module, leading to
better results. This demonstrates the necessity of the feature-matching module in deep
homography estimation models. Compared with other method (i.e., SRHEN [16]) without
the self-attention mechanism, our model adopts a Self-Attention-augmented ConvNet to
extract local and global features and enhance the long-distance reliance of the features.
Moreover, our model adopts a feature-matching module to strengthen the long-distance
reliance of the different feature maps, which can better capture the spatial correspondence
between the reference and target images. Our method reduces the MACE by 10.0% com-
pared to SRHEN. As shown in Figure 5, the proposed MS2CA-HENet achieves the best
performance.

The visual comparative results of different homography estimation methods are illus-
trated in Figure 6. As can be seen from the figure, compared with some related homography
estimation methods [12,16,17,19], the proposed method obtains better alignment results,
which is consistent with the MACE in Figure 5.

In the process of generating the synthetic images, we set different values of point-
perturbation parameter ρ to control the displacement of the four corner points in the image
patches. The positions of the four corner points are disturbed by taking random values
in the range [−ρ, ρ]. As the value of point-perturbation parameter ρ increases, so does
the displacement of the corresponding corner points. The greater the degree of image
distortion transformation, the lower the overlap rate between the input of image patches
intercepted at the same position. The quantitative comparison results and the visual results
are shown in Table 2 and Figure 7. As shown in this table, all methods perform well when
the displacement is small. However, the performance of all methods degrades when the
displacement increases. The approaches detailed in [12,17] take the convolution operator to
obtain features, which can only capture short-range features due to the limit of the receptive
field. Establishing correspondences between features only used by the convolution layer
cannot bridge the gap between feature maps and homography. Hence, the values of MACE
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are higher than those of our proposed method. In contrast, our method still can keep
relatively low values of MACE as the displacement increases. The visual results show the
effectiveness of our method for a pair of images with large displacement.

Original Image DeTone (2016)  Nguyen (2018) Li (2020)  Koguciuk (2021) Ours

Figure 6. Visualization of the test samples. We compare our method with HomographyNet [12],
Self-SupervisedNet [17], SRHEN [16] and biHomE [19]. The red boxes are the ground-truth boxes,
and the yellow boxes are the prediction results.

ρ=10 ρ=20 ρ=30 ρ=40 ρ=50 ρ=60ρ=10 ρ=20 ρ=30 ρ=40 ρ=50 ρ=60

Figure 7. Visualization results for different displacements from 10 to 60. In each example, the first
row represents the target image, and the second row represents the warped target image. The red
boxes are the ground-truth boxes, and the yellow boxes are the prediction results.
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Table 2. The MACEs of different displacements.

Method [12] [17]
MS2CA-HENet

1st Stage 2nd Stage 3rd Stage

ρ = 10 3.19 3.89 1.35 0.70 0.30

ρ = 20 3.71 4.16 1.61 0.77 0.35

ρ = 30 5.88 4.91 2.12 1.01 0.48

ρ = 40 9.58 5.86 2.84 1.48 0.69

ρ = 50 16.18 6.68 4.93 2.92 1.72

ρ = 60 20.78 7.94 7.15 4.88 3.54

Since HierarchicalNet [13] takes a multi-stage network to estimate the homography,
it is compared with the proposed method. As shown in Figure 8, the values of MACE
gradually reduce as the number of stacked models increases, which shows a multi-stage
network can gradually estimate and refine a homography. Because of the Self-Attention-
augmented ConvNet and the global-feature-matching module between two images/video
frames, the result of our MS2CA-HENet is lower than that of HierarchicalNet in each
stage. From this figure, it can also be observed that the value of MACE in our method is
higher when the hierarchy size is 4. Due to the use of multi-scale input, the homography
estimation network in the first stage deals with very small images and the training becomes
unstable. Hence, we take three stages to train our network.
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Figure 8. Hierarchy size evaluation. We compare our method with HierarchicalNet [13].

4.4. Ablation Study

Module Selection: We conduct an ablation study in Table 3 to show the effectiveness
of the local–global feature-extraction module F(.) and feature-matching module M(.). In
the first row of the table, we use ResNet34 instead of the local–global feature-extraction
module and feature-matching module. From the first row, we can see the Mean Average
Corner Error gradually decreases as the scale increases. However, the MACEs in the first
row (only multi-scaled images) are higher than the results of other rows (our designed
module F(.) and M(.)). Especially, it can be observed that the error rate without our F(.) and
M(.) modules (the first row in the table) is higher than our method by 6.28, 3.72 and 2.87,
respectively. This demonstrates the importance of using the local–global feature-extraction
module F(.) and feature-matching module M(.) for homography estimation in our model.

Scale Selection: Our model adopts different scale images as the input of each stage.
To verify this effectiveness, we compare the same-scale images as input with our multi-
scale images. The quantitative comparison and the visual results are shown in Table 4
and Figure 9, respectively. It can be observed that the MACEs of networks with same-
scale images is higher than that of our multi-scale network. It seems obvious that for
homography estimation models with different input sizes, the models can capture the
homography transformation of different input sizes by dividing the transformation space
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into different stages. High resolution images contain more details of the image; low
resolution images focus on the overall information. The visual results (Figure 9) also show
our multi-scale method obtains better results.

Table 3. Ablation study of the module selection.

F(.) M(.) 1st Stage (32 × 32) 2nd Stage (64 × 64) 3rd Stage (128 × 128)

10.01 5.89 4.13

X 3.91 2.46 1.41

X 9.96 6.38 3.02

X X 3.73 2.17 1.26

(a) target (b) 1st-stage (c) 2nd-stage (d) 3rd-stage (e) 1st-stage (f) 2nd-stage (g) 3rd-stage(a) target (b) 1st-stage (c) 2nd-stage (d) 3rd-stage (e) 1st-stage (f) 2nd-stage (g) 3rd-stage

Figure 9. Visualization results with differently scaled images in different stages: (a) represents the
target images; (b–d) represent the warped target images by same-scale images with 128× 128 in
different stages; (e–g) represent the results of different scale image inputs with 32× 32, 64× 64 and
128× 128.
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Table 4. Ablation study of the image scale selection.

Image Scale 1st Stage 2nd Stage 3rd Stage

The same 128× 128 3.95 3.02 1.67

32× 32, 64× 64, 128× 128 3.73 2.17 1.26

5. Conclusions

In this paper, we design a novel unsupervised Multi-Scale-Stage Content-Aware
Homography Estimation Network (MS2CA-HENet), which effectively copes with homog-
raphy estimation for a pair of images with large displacement. In each stage, we consider
local and global features via our Self-Attention-augmented ConvNet (SAC) and strengthen
feature correspondences explicitly by a feature-matching module. The output of the homog-
raphy estimation network in each stage is the residual value of the displacement for a pair
of images. By shrinking the error residual of each stage, our network achieves coarse-to-fine
results and promotes alignment performance. Extensive experiments demonstrate our
method achieves favorable performance compared with other methods.
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