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Abstract: Image steganography is a subfield of pattern recognition. It involves hiding secret data in
a cover image and extracting the secret data from the stego image (described as a container image)
when needed. Existing image steganography methods based on Deep Neural Networks (DNN)
usually have a strong embedding capacity, but the appearance of container images is easily altered by
visual watermarks of secret data. One of the reasons for this is that, during the end-to-end training
process of their Hiding Network, the location information of the visual watermarks has changed. In
this paper, we proposed a layerwise adversarial training method to solve the constraint. Specifically,
unlike other methods, we added a single-layer subnetwork and a discriminator behind each layer
to capture their representational power. The representational power serves two purposes: first, it
can update the weights of each layer which alleviates memory requirements; second, it can update
the weights of the same discriminator which guarantees that the location information of the visual
watermarks remains unchanged. Experiments on two datasets show that the proposed method
significantly outperforms the most advanced methods.

Keywords: image generation; image steganography; layerwise adversarial learning; generative
adversarial networks

1. Introduction

Image steganography belongs to a branch of the pattern recognition field. It is widely
used for covert communication and copyright protection. Image steganography usually
requires both the accurate extraction of hidden information and the perfect restoration of
the container image. DNN-based image steganography usually needs a Hiding Network to
hide secret data in a cover image to generate a container image that has a similar appearance
to the cover image, and it also requires a Reveal Network to extract the secret data from
a container image when needed. Due to the development of DNN in recent years, the
embedding capacity of secret data has made significant progress. However, the challenge of
image steganography arises mainly because some secret data with visual watermarks may
change the appearance and underlying statistics of the container image [1]. For example,
when a container image and a cover image display different colors, it can be considered a
failure of information hiding.

Recently, DNN-based image steganography has attracted prominent attention from
researchers. Of these methods, some practical methods borrow heavily from auto-encoding
networks [1] to directly hide full-size secret data in the cover images. Although the embed-
ding capacity is improved, its training process is more complicated. These methods train
a U-Net architecture generator [2] to further simplify the training process. However, the
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image quality of container images synthesized by most models is poor. To achieve more
visually realistic container images, most algorithms utilize Generative Adversarial Net-
works (GANs) [3] to hide information [4–6]. Although existing DNN-based methods have
a strong capacity for container images when the secret data contain visual watermarks, the
appearance of the container images generated by these methods will change significantly;
this can be considered a failure of information hiding. The Position Encoding Network
(PEN) [7] reveals that position information is implicitly learned from the commonly-used
padding operation (zero-padding). Based on the PEN, we speculated that one of the rea-
sons for this phenomenon is that, during the end-to-end training process of their Hiding
Network, the location information of the visual watermarks has changed.

Inspired by efficient layerwise adversarial training [8], we noticed that existing DNN-
based methods have not fully utilized the expressive power of all layers. As a result, we
proposed a layerwise adversarial training method based on GANs to improve this situation.
Different from the existing auto-encoding networks, the U-Net architecture generator, and
GANs models, the proposed model is a new layerwise GAN. Besides the output layer of
the Hiding Network, we added a single-layer sub-network and a discriminator behind
each layer to capture the representational power of these layers.

The main contributions of the proposed method for image steganography are summa-
rized as follows: Firstly, we proposed a layerwise adversarial training method to address
the question of the location information changed in the end-to-end training process. In
addition, the proposed discriminator of the layerwise adversarial training method can serve
as an improved steganalyzer. Finally, the combination of cosine similarity and GAN loss
effectively captures location information through the layerwise adversarial training approach.

2. Related Works

This section deliberates the literature review of image steganography. Firstly, we
reviewed the traditional image steganography methods and DNN-based image steganog-
raphy methods. Then, the layerwise learning methods were reviewed.

2.1. Traditional Image Steganography Methods

The secret data hiding capacity of the traditional image steganography methods is
usually lower than 0.4 bpp (bits per pixel). They mainly involve image steganography of
the spatial domain and the transform domain. The spatial domain hiding methods include
the Least Significant Bit (LSB)-related hiding method [9]. To improve the robustness of
LSB-related methods, some methods, such as in [10,11], were proposed to embed secret
data in the transform domain. These LSB methods embedded the same payload as the LSB
matching. Then, an improved LSB method [12] was introduced to embed more data in
the noisy or complex texture regions of the cover image. Later, refs. [13,14] successfully
embedded more secret data directly into the image pixel values with more complex rules.
Subsequently, the Wavelet Obtained Weights (WOW) method [15] can embed the payload
into the cover image. Although these spatial domain methods are excellent, they have less
robustness. To improve the robustness of these methods, some methods such as a Discrete
Fourier Transform (DFT)-based [16] method, a Discrete Cosine Transform (DCT)-based [10]
method, and a Discrete Wavelet Transform (DWT)-based [11] method were proposed to
embed secret data in the transform domain. Liu et al. [17] proposed a large feature mining-
based approach to address the highly challenging detection problems. However, these
methods have poor quality and limited embedding capacity for the container images,
which aim to embed secret data by modifying the pixel values of the cover image or the
coefficients of the transformed image.

2.2. DNN-Based Image Steganography Methods

Recently, DNN-based image steganography methods have attracted great attention
from researchers because they can generate a container image rather than modify the
cover image. In the previous pioneer works, Ma et al. [18] proposed a general steganalysis
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feature selection method based on a decision rough set of positive region reduction. In [19],
Ye et al. presented an alternative approach to the steganalysis of digital images based on
a Convolutional Neural Network. Wang et al. [20] presented a novel performance evalu-
ation method of steganalysis based on posterior accuracy. In [21], Qian et al. proposed a
new paradigm for steganalysis to learn features automatically via deep learning models.
Xu et al. [22] reported a Convolutional Neural Network architecture that takes into account
knowledge of steganalysis. In [23], Husien et al. concluded that the TICSS is very rapid in
performing the extraction process, and the size of the embedded text does not affect the
speed of the system very much. Brandao et al. [24] presented a technique for transmitting
information efficiently and securely. In [25], Boroumand et al. describe a deep residual
architecture for both spatial-domain and JPEG steganography. Zeng et al. [26] proposed a
generic hybrid deep-learning framework for JPEG steganalysis incorporating the domain
knowledge behind rich steganalytic models. In [27], Zhang et al. proposed a new strategy
that constructs enhanced covers against neural networks with the technique of adversarial
examples. These models successfully utilized DNN for image steganography or incorpo-
rated DNN into the hidden process. Meanwhile, Hayes et al. [4] and Tang et al. [5] directly
hid full-size images in the cover images by exploiting the GANs model [3]. Other excel-
lent methods [1] (Encode1) built an auto-encoding type Hiding Network and [2] (U-Net1)
designed a U-Net-type [28] Hiding Network followed by a discriminator. Hu et al. [29] pre-
sented a new cover-lossless robust image watermarking method by efficiently embedding
a watermark into low-order Zernike moments and reversibly hiding the distortion due to
the robust watermark as the compensation information for restoration of the cover image.
Tancik et al. [30] presented an architecture, algorithms, and a prototype implementation
addressing this vision. Sua et al. [31] aimed to improve the performance results by using a
novel combination with Convolutional Neural Networks and sequence graph transform.
Pugliese et al. [32] presented a comprehensive view of geo-worldwide trends of ML-based
approaches, highlighting the rapid growth in the last 5 years attributable to the introduction
of related national policies. Kha et al. [33] proposed a novel model constructed on the multi-
scan Convolutional Neural Network and position-specific scoring matrix profiles to address
these limitations. Lu et al. [34] proposed a large-capacity Invertible Steganography Net-
work for image steganography. Mahdy et al. [35] presented the Elzaki transform homotopy
perturbation technique to address the nonlinear Emden–Fowler systems. Ray et al. [36]
used a Convolutional Neural Network with a Deep Supervision-based edge detector, which
can retain more edge pixels over conventional edge detection algorithms. Mahdy et al. [37]
applied fractional order to the glioblastoma multiforme (GBM) and IS interaction models.
Liu et al. [6] proposed the Image DisEntanglement Autoencoder for Steganography as
novel steganography without an embedding technique. Xu et al. [38] presented a novel
flow-based framework for robust invertible image steganography. Although existing meth-
ods have better quality and strong embedding capacity of the container images when the
secret data contain visual watermarks, the appearance of the container images generated
by these methods will change significantly.

2.3. Layerwise Learning Methods

The layerwise learning methods usually take advantage of each layer for local back-
propagation. The layerwise learning methods update the weights before the forward and
backward pass has completed [39–45]. More similar to our method, Efficient Layerwise
Adversarial Training (ELAT) [8] practices adversarial perturbations of intermediate layer
activations to provide a stronger regularization and improves adversarial robustness com-
parable to traditional adversarial training approaches. Another similar method is Greedy
Layerwise Learning (GLL) [46], which employs 1-hidden layer learning problems to se-
quentially build deep networks layer by layer, and is able to inherit properties from shallow
networks. Though layerwise learning methods achieve the better-reported result, they
focus on image classification tasks rather than image generation tasks. In essence, image
steganography belongs to image generation tasks.
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3. Proposed Method

In this section, we introduce the proposed image steganography method based on the
layerwise adversarial training. As shown in Figure 1, the proposed method constructs a
Hiding Network to hide secret data in the cover images and a Reveal Network to extract
the secret data from the container images. We first introduce the Network Architecture of
the proposed method. Then, two objective functions will be presented separately for the
layerwise adversarial training Hiding Network and the Reveal Network.

Figure 1. An overview of the network architecture. The proposed method includes a Hiding Network
and a Reveal Network.

3.1. The Proposed Network Architecture

In this section, we introduce the network architecture of the proposed method shown in
Figure 2. To build the Hiding Network, the single-layer sub-network and the discriminator
network should be introduced first. Then, we present the network architecture of the
Reveal Network.

Figure 2. The proposed layerwise adversarial training network architecture. (a) The Hiding Network
is essentially a layerwise adversarial U-Net type “fountain” architecture. (b) The Reveal Network is
essentially a plain DNN structure. (c) The single-layer sub-network S consists of a deconvolution
layer followed by a ReLU activation layer. (d) The discriminator network D.
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Different from the U-Net type Hiding Network of U-Net1[2], as shown in Figure 2a,
our Hiding Network is essentially a layerwise adversarial U-Net type “fountain” archi-
tecture. Obviously, the “fountain” outputs the activation flow but receives the gradient
flow. Compared with ELAT [8], besides the output layer of the Hiding Network, this paper
also added a single-layer sub-network and a discriminator behind each layer to capture
the representational power of these layers. Therefore, compared to ELAT, the similarity is
that the representational power of both is used to update the weights of each layer, which
alleviates memory requirements, while the difference is that the representational power of
our method is used to update the weights of the same discriminator. It should be noted
that the layerwise adversarial training method only exists in the Hiding Network. More
importantly, all the layers are used to update the weights of the same discriminator. The
discriminator network guarantees that the location information of the visual watermarks
remains unchanged. In the layerwise adversarial training process, the discriminator is
continuously learned to discriminate against the location difference. A better discriminator
enhances the generation ability of the proposed method and it will generate a better-quality
container image. Note, when the proposed method was tested, all the sub-networks and
discriminators were dropped.

3.1.1. The Single-Layer Sub-Network

The single-layer sub-network keeps the output shape of a convolutional unit that
matches the shape of the cover image. As shown in Figure 2c, the single-layer sub-network
consists of a deconvolution layer followed by a ReLU activation layer. The single-layer
sub-network was placed to follow each layer of the Hiding Network. It should be noted
that, since the shape of each layer of the Hiding Network is different, the single-layer
sub-network also contains different parameters to output the same shape.

3.1.2. The Discriminator Network

The discriminator network makes a distinction between the output of the single-layer
sub-network and the cover image. As shown in Figure 2d, D consists of five convolu-
tion layers followed by the IN layer and a ReLU activation layer to downsample the
input features.

3.1.3. The Network Architecture of Hiding Network

The Hiding Network hides secret data in the cover images and generates container
images that have a similar appearance to the cover images. As shown in Figure 2a, the
proposed U-Net architecture consists of six convolution layers followed by a Batch Nor-
malization (BN) layer and a ReLU activation layer [47] to downsample the input features
and five deconvolution layers, followed by a BN layer and a ReLU activation layer to
upsample the features. For the output layer, the ReLU activation function was replaced by
the sigmoid activation function. For each convolution layer and deconvolution layer, 4 × 4
spatial filters were utilized with stride 2. For the Hiding Network, this paper took each
convolutional or deconvolutional layer followed by the BN layer and the ReLU activation
layer as a convolutional unit. Except for the output layer of the Hiding Network, each
convolutional unit was followed by a single-layer sub-network S and a discriminator D.
This paper employed the sigmoid activation function instead of ReLU at the final layer to
output probabilities from the logits.

3.1.4. The Network Architecture of Reveal Network

Similar to the Encode1 method [1], the Reveal Network of this paper was a plain DNN
structure to extract the secret data from the container images. As shown in Figure 2b, this
paper used six convolution layers followed by the BN layer and the ReLU activation layer
to accurately recover information from the container images. For the output layer, this
paper employed the sigmoid activation layer instead of ReLU. For each convolution layer,
3 × 3 spatial filters were employed.
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3.2. The Objective Function

We started by defining some notations. Let {xi}n
i=1 denote the set of cover images,

{yi}n
i=1 denote the set of secret data, and

{
x′i
}n

i=1 denote the set of container images. For
the Hiding Network, this paper took a cover image xi and the secret data yi as inputs and
generated a container image x′i .

3.2.1. The Objective Function of the Layerwise Adversarial Learning Hiding Network

To prevent the location information of the visual watermarks being changed during
the end-to-end training process, we proposed a Hiding Network with layerwise adversarial
learning. In the end-to-end deep training process, the loss function produces a gradient
from the output layer, and this gradient is backpropagated to hidden layers to dictate the
location information of the visual watermarks. Since the loss function does not directly see
the location information of the visual watermarks in each hidden layer, layerwise learning
provides a solution for this. In the layerwise learning process, the loss function produces a
gradient from each hidden layer, and this gradient is backpropagated to itself to dictate the
location information of the visual watermarks.

Besides the output layer, this paper took each convolutional or deconvolutional layer
followed by the BN layer and the ReLU activation layer [47] as a convolutional unit.
We assumed that the Hiding Network with loss function J and parameters θ contains a
convolutional unit C . Here, a convolutional unit followed by a single-layer sub-network
can be seen as a small generator network G. {Gc}C

c=1 store the gradient signal with the
location information P = {pc}C

c=1, initialized with zero. Backward pass is performed using
loss function J. The gradient signal is backpropagated to its layer by:

pc = sign(∇cJ (θ, x + P, y)), ∀c = [1, C],

where sign(·) denotes the signum function and J (·) denotes the loss function. Forward
pass is performed, keeping the location information: Gc storing the gradient signal acts
as follows:

Gc(xc) = xc + ·pc.

Through each single-layer sub-network, this paper obtained the reshaped outputs
of each convolutional unit {li}n

i=1 that should match the shape of the cover images. As
shown in Figure 2a, the L1 loss and the cosine similarity loss between xi and li is calculated
first. Then, D is exploited to discriminate which of them is true. Furthermore, the GAN
loss [3] between xi and li is calculated. Finally, the L1 loss, the cosine similarity loss, and
the GAN loss are utilized to handle local backpropagation and update the weights of
each convolutional unit and the weights of the same discriminator. For the adversarial
learning [3] between G and D of these layers, we train the proposed layer-wise adversarial
process by solving a minimax optimization problem given by:

J = min
G

max
D
LGAN(G, D) + λ1L1(G) + λ2L2(G) (1)

where LGAN , L1, L2 are the GAN loss, the L1 loss and the cosine similarity loss. The L1
loss can be expressed as:

L1(G) =Exi∼pdata(xi),li∼pdata(li)[‖li − xi‖1]. (2)

The L1 loss ensures that the reshaped layer output li of the generator G is close to the
cover image xi. The GAN loss can be expressed as:

LGAN(G, D) =Eli∼pdata(li)
[
log DLi (li)

]
+Exi∼pdata(xi)

[
log(1−DXi (G)

]
. (3)
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The GAN loss guarantees that D is not fooled by the reshaped layer output li of G.
Here, we denote CS(·, ·) as the cosine similarity loss. Then, the cosine similarity loss can be
expressed as:

L2(G) =Exi∼pdata(xi),li∼pdata(li)[CS(li, xi)]. (4)

The combination of cosine similarity loss and the GAN loss can capture the location
information of the layerwise adversarial training method. For the output layer, this paper
takes the deconvolutional layer followed by the BN layer and the sigmoid activation layer
as a convolutional unit. Since the container image x′i from the output layer has the same
shape as the cover image xi, the last convolutional unit is only followed by a discriminator.
Here, a convolutional unit can be seen as a generator network G, and the L2 loss between
x′i and xi is employed to create local backpropagation and update the weights of this
convolutional unit and the weights of the same discriminator. For the output layer, we
trained the proposed layerwise adversarial process by solving a minimax optimization
problem given by:

min
G

max
D
LGAN(G, D) + λ3L2(G), (5)

where LGAN , L2 are the GAN loss and the L2 loss, respectively. The L2 loss can be
expressed as:

L3(G) =Exi ,x′i

[
1
n

n

∑
i=1

∥∥x′i − xi
∥∥2
]

. (6)

The L2 loss ensures that the container image x′i of the generator G has a similar
appearance to the cover image xi. In this way, the layerwise adversarial training method
for the Hiding Network has been completed. Finally, a container image x′i is generated by
hiding the secret data yi in a cover image xi.

3.2.2. The Objective Function of the Reveal Network

The Reveal Network is used to extract the secret data {yi}n
i=1 from the container

images
{

x′i
}n

i=1. Let
{

y′i
}n

i=1 denote the set of extracted secret data; we can obtain the l2
loss for the Reveal Network:

L2 =Eyi ,y′i

[
1
n

n

∑
i=1

∥∥y′i − yi
∥∥2
]

. (7)

The L2 loss ensures that the extracted secret data y′i have a similar appearance to
the secret data yi. In this way, the secret data extracting process of the Reveal Network
was completed.

4. Experiments

To explore the ability of the proposed image steganography method, we trained and
tested the method on two datasets and compared it with the advanced methods. In the
training process, this paper employed Adam with β1 = 0.5 and β2 = 0.999. The batch
size was set to 16, the learning rate was 0.0001, and the employed parameter values were
λ1 = 10, λ2 = 20, λ3 = 10. The entire training procedure took about 12 h on a single
GTX1080Ti GPU for 80 epochs.

4.1. Datasets and Preprocessing

The two datasets of this paper came from COCO [48], which is a large image dataset
designed for object detection, segmentation, and person keypoints detection. Based on
the category id, the dogs and cats images were selected as two datasets for training and
testing. For each dataset, 4000 images were employed to train the model, and 200 images
were employed for model testing. Both the secret data and the cover images were from the
datasets mentioned above, and the selected order of them was randomized. Then, all the



Electronics 2023, 12, 2080 8 of 14

images were further resized to 128 × 128. To compare with existing DNN-based image
steganography methods, the visual watermarks were added to the center of the secret data.

4.2. Baselines

To compare the performance of different methods, we chose Encode1 [1], U-Net1 [2],
GANs1 [4], and GANs2 [6] as our baselines. GANs1 introduces a game between three
parties—Alice, Bob, and Eve—and simultaneously train a steganographic method and a
steganalyzer. GANs2 hides the secret message in a cover image by transforming it into a
synthesized image with a generator and three discriminators. Encode1 borrows heavily
from auto-encoding networks [49] and encodes two images such that the intermediate
representation (the container image) appears as similar as possible to the cover image.
U-Net1 presents a generator with a U-Net architecture to translate a cover image into a
container image, and an enhanced steganalyzer based on a Convolutional Neural Network
together with multiple high pass filters as the discriminator.

4.3. Evaluation Metrics

We compared the proposed method qualitatively and quantitatively with several
baselines using four evaluation metrics. Here, four evaluation indicators (e.g., PSNR, SSIM,
ATS, DLAL) were chosen to compare different methods. The first evaluation indicator was
Peak Signal to Noise Ratio (PSNR) [50]; PSNR evaluates the peak difference of different
images. The unit of PSNR is dB and the larger the value, the smaller the image distortion.
It can be expressed as:

PSNR = 10 log10

(
(2n − 1)2

MSE

)
, (8)

where MSE is the mean square error of the original image and the test image, (2n − 1)2

is the square of the maximum value of the signal, and n is the number of bits of each
sample value.

The second evaluation indicator was Structural Similarity (SSIM) [51], and SSIM is
used to evaluate the structural difference between different images. It measures image
similarity in three ways: brightness, contrast, and structure. The range of SSIM value
is [0, 1]. The closer the SSIM value is to 1, the smaller the distortion effect is. It can be
expressed as:

SSIM(X, Y) = l(X, Y) · c(X, Y) · s(X, Y)

l(X, Y) =
2µXµY + C1

µ2
X + µ2

Y + C1

c(X, Y) =
2σXσY + C2

σ2
X + σ2

Y + C2

s(X, Y) =
2σXY + C3

σXσY + C3
;

among them, in this paper, X is represented as a cover image and an extracted secret image,
respectively; Y is a container image, respectively; µX and µY represent the mean of the
images X and Y, respectively; σX and σY represent the standard deviation of the cover
image and the container image; σXσY denotes the covariance of the cover image and the
container image. The third evaluation indicator is ATS [52]; ATS is used to evaluate the
steganography capacity per cover image. The fourth evaluation indicator was the proposed
discriminator network (short for DLAL); DLAL can be seen as a steganalyzer to make a
distinction between the container image and the cover image.

4.4. Experimental Results

The experimental results of the proposed method on the dogs dataset and the cats
dataset are shown in Figure 3. For the dogs dataset, the image steganography results are
shown in the first two rows. For the cats dataset, the image steganography results are
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shown in the last two rows. It is shown that the proposed method is able to generate
visually realistic container images that have the same appearance as the cover images.
Here, cov-histogram denotes the histogram of cover images and con-histogram denotes
the histogram of container images. It has been observed that our container images have
a similar histogram to that of the cover images. This means that the proposed Hiding
Network successfully hides secret data in the cover images. Additionally, Figure 3 shows
that the Reveal Network of this paper is able to extract the secret data from the container
images, and the extracted secret data are close to the input secret data.

Figure 3. The image steganography results from two datasets. (a) cover images; (b) secret data;
(c) container images; (d) extracted secret data; (e) the histogram of cover images; (f) the histogram of
container images.

Although the proposed method was trained on two small-scale datasets, the trained
model can also be applied to other datasets and generate reasonable results. As displayed
in Figure 4, the reversible image steganography results for the horses dataset are listed in
the first two rows and the reversible image steganography results for the giraffes dataset are
listed in the next two rows. Even if we exchange secret data for cover images, listed in the
last two rows of Figure 4, the model testing results on the dogs dataset are still reasonable.

Figure 4. More image steganography results from horse, giraffe, and dog datasets. (a) cover images;
(b) secret data; (c) container images; (d) extracted secret data.
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4.5. Comparison with Other Methods

In this section, we compared the proposed image steganography method with four
advanced methods.

Qualitative results. The randomly selected image steganography experimental com-
parison results on two datasets are shown in Figure 5. Here, we immediately observe
that the container images of the proposed method (ours C) perform better on the two
datasets than the GANs1 method ( GANs1C), the GANs2 method (GANs2C), the Encode1
method (Encode1C), and the U-Net1 method (U-Net1C). The obvious limitation is that
the appearance difference between their container images and cover images is relatively
large. In general, the appearance difference affected by the visual watermarks of secret
data leads to the unsafe factors of these methods. This is due to the fact that these methods
focus on the representational power of the output layer but ignore the representational
power of other layers. Surprisingly, Figure 5 shows that the extracted secret data from all
the methods are close to the secret data.

Figure 5. The image steganography experiment comparison results. (a) cover images; (b) secret data;
(c) GANs1C denotes the container images of GANs1 method; (d) GANs2C denotes the container
images of GANs2 method; (e) Encode1C denotes the container images of Encode1 method; (f) U-
Net1C denotes the container images of U-Net1 method; (g) our container images; (h) GANs1S denotes
the extracted secret data of GANs1 method; (i) GANs2S denotes the extracted secret data of GANs2
method; (j) Encode1S denotes the extracted secret data of Encode1 method; (k) U-Net1S denotes the
extracted secret data of U-Net1 method; (l) our extracted secret data.

Quantitative evaluations. In addition to the visual results, this paper also performed
a quantitative evaluation using four metrics on two datasets. As listed in Table 1, PSNRC/S
and SSIMC/S denote the average PSNR, SSIM value between 200 cover images and container
images and the average PSNR, SSIM value between 200 secret data and the extracted secret
data. Since the average PSNR, SSIM value is close on two datasets, only one table was
employed to list them.

According to Table 1, the proposed method achieves a leading average PSNR, SSIM
value compared to other methods. For two datasets, the average PSNR and SSIM value
between 200 cover images and container images reached (31.27/0.8002), the average PSNR
and SSIM value between 200 secret data and the extracted secret data reached (41.09/0.9713).
For each steganographic algorithm, we trained both ATS on 800 cover images and 800 con-
tainer images and then reported the accuracy of the steganalyzer on 400 cover images
and 400 container images. For DLAL, we used the trained model to test the accuracy
on the same test set. From Table 1, DLAL performs competitively against the stegana-
lyzer, ATS, and the proposed steganographic algorithm also performs well against other
steganographic methods.
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Table 1. Quantitative evaluations in terms of two datasets.

Method PSNRC/S SSIMC/S ATS DLAL

GANs1 25.13/39.80 0.7612/0.9635 0.58 0.67

GANs2 25.52/39.86 0.7622/0.9645 0.59 0.68

Encode1 26.32/40.34 0.7637/0.9667 0.61 0.70

U-Net1 26.35/40.56 0.7652/0.9705 0.63 0.72

ours 31.27/41.09 0.8002/0.9713 0.70 0.86

4.6. Ablation Study

In this section, this paper will introduce which part has a greater effect on the hiding
secret data with a visual watermark. We defined the layerwise adversarial learning as LAL,
the L1 loss as L1, the cosine similarity loss as CS, and the GAN loss as GAN. For the first
step, we removed LAL and used only L1 + CS + GAN to train the model. The second step
was to remove the CS and use LAL + L1 + GAN to train the model. The third step was
to remove GAN and use L1 + LAL + CS to train the model. Some test results are shown
in Figure 6:

Figure 6. Ablation study. (a) input cover images; (b) input secret data; (c) the container images of L1
+ CS + GAN; (d) the container images of LAL + L1 + GAN; (e) the container images of LAL + L1 +
GAN; (f) the container images by using all of them.

Figure 6 shows that, after removing LAL or removing CS or removing GAN, the
watermark information in the secret data cannot be hidden. Therefore, it can be concluded
that only the combination of LAL + L1 + GAN + CS can achieve reasonable results. The pos-
sible reason is that the combination of GAN + CS can obtain the most accurate watermark
position information.

4.7. Limitation

Although the proposed method is able to eliminate appearance changes, it has some
limitations. First, the average PSNR value is not very high. Second, we noticed some
undesired pixels in the center of the container images. When the color value of a cover
image is relatively single, a container image will have some artifacts in the area where the
digital watermark appears. These limitations will be studied in the next paper.

5. Conclusions

In this paper, we proposed a layerwise adversarial training method to eliminate the
appearance changes caused by the existing DNN-based image steganography. To our
knowledge, it is the first time a layerwise adversarial training U-Net type “fountain”
architecture has been proposed for image steganography tasks. Besides the output layer,
we added a single-layer sub-network and a discriminator behind each layer to capture the
representational power of these layers and exploit this representational power to update
the weights of each layer and update the weights of the same discriminator. Compared
with the most advanced methods, the proposed method has achieved leading scores for
image steganography on two datasets. Paying more attention to the impact of visual
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watermarks on image steganography will further improve the robustness and application
range of image steganography.
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