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Abstract: This research explores the use of Q-Learning for real-time swarm (Q-RTS) multi-agent
reinforcement learning (MARL) algorithm for robotic applications. This study investigates the
efficacy of Q-RTS in the reducing convergence time to a satisfactory movement policy through the
successful implementation of four and eight trained agents. Q-RTS has been shown to significantly
reduce search time in terms of training iterations, from almost a million iterations with one agent
to 650,000 iterations with four agents and 500,000 iterations with eight agents. The scalability of
the algorithm was addressed by testing it on several agents’ configurations. A central focus was
placed on the design of a sophisticated reward function, considering various postures of the agents
and their critical role in optimizing the Q-learning algorithm. Additionally, this study delved
into the robustness of trained agents, revealing their ability to adapt to dynamic environmental
changes. The findings have broad implications for improving the efficiency and adaptability of
robotic systems in various applications such as IoT and embedded systems. The algorithm was
tested and implemented using the Georgia Tech Robotarium platform, showing its feasibility for the
above-mentioned applications.

Keywords: reinforcement learning; Q-learning; multi-agent; Q-RTS; real-time swarm algorithm;
robotics; IoT; embedded systems

1. Introduction

It has been more than half a century since machine learning (ML) first captivated
the attention of scientists, and the significance of ML applications cannot be overstated.
In recent years, the remarkable availability of data made possible by the widespread use of
the internet and the computational power offered by modern devices have further facilitated
the proliferation of machine learning in several fields [1–8]. In recent years, reinforcement
learning (RL) [9], a sub-field of ML, has gained significant popularity among researchers.
This surge in interest is due to RL’s ability to tackle tasks in a manner akin to human
cognitive processes. Currently, RL has found diverse applications across domains such as
finance, robotics [10], natural language processing, and telecommunications [11–14]. In RL,
the agent’s performance is evaluated through a feedback mechanism called a reward (Rt).
Consequently, when pursuing a specific task, the agent strives to maximize its cumulative
rewards to achieve the completion of the task [12,15].

The two major elements of RL are the agent (decision maker) and the environment,
which should be considered a Markov decision process (MDP). The Markov property
requires that the actions chosen by the agent in a particular state only influence the im-
mediate reward and the subsequent next state, and this allows formalizing sequential
decision making [15–17]. This model of the environment consists of states (S), actions
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(A), and the probability of being in the next state (S′), which is denoted as P(S′|S, A).
Moreover, when the agent selects an action (a) in the state (s), the transition probability
function P(s′|s, a) describes the likelihood of transitioning to the next state (s′), and the
associated reward function, denoted as R(s, s′, a), calculates the expected reward for this
transition with respect to the discount factor γ. All these values are considered a tuple
[S, A, P(S′|S, A), R(s, s′, a), γ] [11,12,15].

RL stands out from the crowd because it does not require prior knowledge of envi-
ronmental dynamics. Instead, it learns through trial and error, exploring various actions
to discover the best course of action to solve a problem without the need to solve the full
complexity of the problem [15,17]. The agent or decision maker relies on a set of specific
rules known as the policy (π) to select an action from the available actions (At) in the
current state (st). Subsequently, the environment provides feedback in the form of a re-
ward (rt) and the next state (st+1), allowing the agent to refine its decision-making process.
Through numerous iterations, this iterative state-action procedure ultimately leads to the
discovery of a transition that maps states to optimal actions, referred to as the state-value
function V(s, a), with the goal of maximizing cumulative rewards. Initially, a random
policy is assigned to the agent, and then the agent engages in a process of policy evaluation
and improvement, culminating in determining an optimal policy for the desired behavior.
On the other hand, the policy that maximizes the long-term reward is extracted from the
optimal actions in each state recorded in the value function [12,15].

1.1. Related Works

Previously, engineers designed and fine-tuned robot controllers through a tedious
manual procedure. However, in recent years, RL has gained widespread adoption in
various robotic applications, including autonomous helicopters [18]; disaster management,
such as fighting forest fires with a network of aerial robots [19]; surgery and medical assis-
tant robots; pancake-flipping robots; space rovers; and more [20–22]. Ref. [23] conducted
an investigation into the use of RL methods in robotics, where trained robots autonomously
navigate to avoid obstacles and find the most efficient route to their goal. Furthermore,
Ref. [12] emphasized that RL in robotics presents unique challenges, particularly due to
the complex interactions between mechanical systems and their environments, especially
when robots operate in close proximity to humans. Ref. [24] introduced a combination
of Convolutional Neural Networks (CNNs) with RL to map raw image observations to
control motor torque in robots. Ref. [20] categorized the applications of RL in robotics into
three groups: underwater-based robots, air-based robots, and land-based robots. They high-
lighted that implementing RL in robotics involves various challenges, including defining
the reward function, handling sensitive parameters, and dealing with high-dimensional
continuous actions.

In many RL tasks, the model of the environment is unavailable, necessitating agents to
acquire knowledge about it through experience. However, Q-learning, introduced in [16],
is a prominent model-free RL algorithm. Unlike the direct bootstrapping approach of
Temporal Difference, Q-learning employs a unique method by estimating the maximum
discounted value for the next state-action pair, aiding the agent in making decisions aimed
at maximizing anticipated future rewards. One of the Q-learning applications is path
planning, which poses a significant challenge in mobile robot navigation and addresses the
slow convergence of RL [22]; hence, the authors of [23] proposed “forgetting Q-learning”,
which considers navigation paths that might have been considered unacceptable through
conventional Q-learning. This innovation fosters a greater inclination toward exploration.
Moreover, Q-learning finds applications in robotic systems for tasks such as environment
exploration and obstacle avoidance. For example, Ref. [25] employed a pre-developed deep
Q-learning algorithm known as CNN-Q-Learning on the Turtlebot in a Gazebo simulation.
This approach transformed raw sensor input from an RGB-D sensor into specific robot
actions, enabling the Turtlebot to master obstacle avoidance in an unknown environment.
The results demonstrated the robot’s remarkable ability to learn effective strategies for
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navigating and avoiding obstacles. However, modifications often prove to be the most
effective strategy for enhancing a robot’s performance in dynamic environments. In a
related development, Ref. [22] proposed an Improved Q-Learning (IQL) method. Their
work encompassed three key modifications to traditional Q-learning: the addition of a
target distance measurement component, adjustments to Q-values to handle situations with
no immediate reward or dead ends, and the introduction of a virtual target to circumvent
dead-end states.

Using single-agent RL to solve a task can be cumbersome and time consuming when
defining an optimal policy and evaluating an appropriate set of state-action pairs. Conse-
quently, multi-agent reinforcement learning (MARL) has emerged as a solution to address
this challenge. In MARL systems, multiple agents interact with the same environment
simultaneously, reducing the time required to find the optimal policy and facilitating a
more comprehensive exploration of the environment. However, managing interactions
between agents in MARL poses its own challenges, leading various researchers to pro-
pose different algorithms to overcome the difficulties encountered in traditional RL. These
systems have found applications in diverse domains, including traffic control, network
packet routing, and robotics, where effective communication between agents is paramount
to prevent potential calamities. For example, Ref. [19] introduced a Multi-Agent Deep
Q-Network (MADQN) strategy for a fleet of Unmanned Aerial Vehicles (UAVs) aimed
at autonomously combating forest fires. Furthermore, adaptability and stability among
agents are fundamental characteristics of MARL. These traits are crucial as they facilitate
continuous policy improvement through the exchange of data between agents [20].

In response to these challenges, Matta et al. [13] introduced an iteration-based Q-learning
real-time swarm intelligence algorithm known as Q-RTS, which aims to use a technique
to share knowledge between agents. This method not only addresses issues in MARL but
also overcomes the timing limitations of traditional Q-learning and has proven effective
in the field of robotics. In the Q-RTS algorithm, two types of data are utilized: local Q-
values (Qi), which are collected by each agent, and global Q-values (Qsw), which are shared
among all agents. During each iteration, the local Q-values are linearly combined with the
global values, and the state-action pairs with the highest value are updated with the global
Q-values. The independence factor, denoted as β, assesses the influence of the local and
global Q-values using the agents during each iteration. Canese et al., in [11], identified
key features of recent MARL algorithms. It is important to consider the non-stationarity
of the environment when multiple agents are present in the same setting. Additionally,
the scalability of these algorithms is often limited to a specific number of agents within
the same environment [11]. Furthermore, Ref. [14]’s exploration of MARL led to the
development of a novel approach, Decentralized Q-RTS, aimed at addressing challenges
such as hardware implementation and achieving fully decentralized agent behavior. This
innovative framework is particularly adept at handling scenarios where data transmission
between agents fails or the number of available agents fluctuates, thereby ensuring robust
operation in dynamic environments while facilitating the dissemination of knowledge
among agents.

In the context of MARL, one common challenge is defining an appropriate reward
function [17] The reward function is a crucial element of RL and Q-learning, as it guides the
learning process and can significantly impact convergence. Designing an effective reward
function often requires a deep understanding of the problem domain and can be a complex
task. To address this, the authors initially establish a successful reward function for a single
agent and then extend its use to multi-agent scenarios for further exploration.

1.2. Scope and Paper Organization

In this study, we implemented Q-RTS within a MARL system using Matlab. The Q-RTS
method has emerged as one of the renowned techniques that theoretically demonstrate
immense potential in MARL systems. However, this study primarily focused on finding
an optimal policy and value function. Therefore, to enable further practical experiments,
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it was imperative to devise a suitable reward function for the proposed robotic applica-
tion. Moreover, addressing the issue of convergence time in MARL systems was a key
concern in this research, and the results reveal significantly faster convergence through
Q-value sharing among all available agents in the MARL system. Finally, the robustness of
this approach concerning a rigorous reward function was tested by simulating dynamic
environments. Despite the numerous potential applications of Q-RTS in robotics, partic-
ularly in path-finding and mapping robots, practical results are needed to demonstrate
the algorithm’s effectiveness in multi-agent reinforcement learning (MARL). Therefore,
practical experiments were carried out on the Robotarium platform [26], offered by the
Georgia Institute of Technology (Georgia Tech), which is a laboratory accessible worldwide.
Robotarium features 20 unicycle robots known as GRITSBot-X, which are well suited for
these experiments. Notably, this study marks the first instance of testing Q-RTS within
this platform.

However, our focus was to evaluate the suitability of this algorithm for IoT and
embedded system applications. Through analyzing the results, our goal was to validate all
the aforementioned approaches.

The rest of this study is organized as follows. Section 2 outlines the methods used
to evaluate the effectiveness of the techniques mentioned, the results will be discussed in
Section 3, and Section 4 wraps up the article.

2. Methodology

The primary objective of this article was to present a Q-learning-based algorithm
designed for an agent to initially locate a predefined track and maintain its position at
the center. Furthermore, in a multi-agent implementation employing Q-RTS, multiple
robots can communicate and exchange search information, aiming to minimize the overall
search time. The Q-learning concept, as represented in Equation (1), involves adjustable
parameters denoted as α and γ:

Q(S, A)←− Q(S, A) + α[R + γ max
a

Q(S′, a)−Q(S, A)] (1)

The learning rate, represented by alpha (α), typically falls between 0 (indicating no
learning) and 1 (indicating fast learning). In this study, it was set to 0.2 to promote slow
and consistent learning. Furthermore, the discount factor, denoted as gamma (γ), ranges
from 0 to 1 and models the significance of future rewards relative to immediate rewards.
A gamma of 1 implies that the agent values future rewards as much as current rewards,
while a gamma of 0 suggests that the agent prioritizes only immediate rewards. For this
study, γ = 0.8 was chosen, indicating that the value function relies predominantly on the
subsequent state value.

To proceed with this investigation, it was vital to ensure that sensory and environmen-
tal factors remained quantifiable for the RL algorithm to compute the reward. Therefore,
before progressing in the methodology, it was essential to incorporate certain configuration
elements, including sensor and action settings, reward function specifications, the Q-RTS
method, and the collision control algorithm.

2.1. Sensor Configurations

In this research, four ultrasonic sensors were used in the robots: three were located in
the front and one in the back. In particular, these sensors measured the distance between
the robot and the track border, irrespective of the robot’s position inside or outside the track.
These raw distance measurements, referred to as the sensor status, underwent conversion
into distinguishable state criteria for utilization in the Q-learning. Consequently, at each
time step, the sensor signal was transformed into a sensor state using the conversion
method described in Table 1, supplemented by Figure 1.

Each crescent shape surrounding the robot in Figure 1 corresponds to a specific status
and its equivalent state. Specifically, state-1 encompasses distances up to 0.2, state-2 ranges
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from 0.2 to 0.5, and state-3 applies to distances greater than 0.5. It is noteworthy that
distances beyond 0.5 were of lesser interest, as the primary focus was on proximity to the
track, particularly for scenarios within the track, aiming for the middle.

Table 1. Sensor status and their related state configurations.

Status State

d ≤ 0.2 1
0.2 < d ≤ 0.5 2

d > 0.S5 3

Figure 1. Schematic of equivalent sensor status and state.

2.2. Action Configurations

The robot decision-making process involves three distinct actions: turning right (action-
1), turning left (action-2), and going straight (action-3). These actions are translated into
motor commands by adjusting the rotational speed of the robot while maintaining a
constant linear speed. Since the robot is omnidirectional, changing the speed of one wheel
with respect to the opposite one will lead to a change in the angular direction of the robot,
while the overall linear speed remains constant. In particular, changes in the rotational
angle around the vertical axis result in directional adjustments.

In the context of Q-learning, the epsilon (ϵ) coefficient plays a crucial role in balanc-
ing exploration and exploitation. A higher ϵ value encourages random action selection,
fostering exploration, while a lower ϵ value promotes the selection of actions with the
highest known rewards, facilitating exploitation. The optimal strategy involves initiating
the learning process with exploratory training and gradually reducing ϵ. This transition
allows the agent to evolve from exploring various actions to favoring the most rewarding
choices in each state.

In this study, a deliberate choice was made to set ϵ = 0.8 during the learning phase,
emphasizing exploration, and subsequently shift to ϵ = 0 during the experimental phase to
prioritize exploitation.

2.3. Reward Function

It has been emphasized that the reward function is central to RL as it serves as the
primary means for the robot to interact with its environment, comprehend the outcomes
of its actions, and subsequently make informed decisions. Consequently, establishing an
accurate reward function based on the available sensor and actuator information in relation
to the robot’s goals is of paramount importance. It is worth noting that robot positioning is
categorized into two distinct regions: inside the track and outside the track. As a result,



Electronics 2024, 13, 1819 6 of 19

reward functions are defined on the basis of different sensor reading approaches in these
two regions.

In this research, the environment was also partitioned into two segments, each requir-
ing distinct reward scenarios. The first scenario entailed the robot being inside the track,
with the goal of maintaining a middle pathway within it. The second scenario involved the
robot being outside the track, with the objective of locating the track and navigating toward
it. To design effective reward functions, a comprehensive analysis of all possible states
and poses for the robot was performed, both inside and outside the track. For each pose,
rewards were assigned as a constant value or, in certain cases, determined by a reward
function based on the minimum distance between the robot and the track borders. To aid
in understanding the agent’s behavior in various scenarios, a schematic representation of
the robot in different situations is provided graphically in Figure 2.

Figure 2. Different robot positions inside and outside of the track.

Inside the track scenario. In these cases, the agent will receive a general reward
for being inside the track. Moreover, positions 1, 2, 3, 4, and 5 are considered the inside-
track modes of the robot, which are the straight in the middle (cases 1 and 2, the highest
rewards); turning to the borders (cases 3 and 4, low reward); and, finally, straight, heading
to the border, which may consequently go outside the track (case 5, the lowest reward).
The check for being in the middle path is performed by comparing the status of two-sided
sensors, and returning to the track or heading to the borders can be distinguished using
the statuses of the two front and back sensors. Therefore, assigning different rewards for
each position provides more intuitions about the agent’s behavior. The green box in the
flowchart depicted in Figure 3 signifies this aspect of the reward function.

Outside the track scenario. An overall penalty is assigned for being outside the track.
This penalty will persuade the robot to seek the track. However, 6 to 13 positions in Figure 2
are outside the track modes. In addition, for a better understanding of the robot’s behavior,
four different positions are considered: just comes outside the track (cases 6 and 7), passes
by the track (case 8), heads to the track (cases 9 and 10), and, finally, does not see the track
or is far away from the track (case 11, the highest penalty). This section of the reward
function is indicated by the red box in Figure 3. Additionally, the remaining instances
(12 and 13) represent modes classified as outside-in-the-middle, where all sensors can see
the track, and their statuses are all-sensor ̸= inf, but their differences reveal the robot’s
situation. In mode-12, the robot is in the process of exiting the track, while in mode-13, it is
heading toward the track. The rewards assigned for these cases are illustrated by the black
box in Figure 3. However, in every scenario, the sensor status distinguishes the modes,
and in each mode, a different reward has been allocated. For example, the status of the
back sensor shows if the robot just comes out of the track (back sensor ̸= inf) or is heading
toward the track (back sensor = inf), or the combination of front and side sensors reveals if
the track is on the left or right of the robot.
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Given the primary goal of the robot, which is to stay on the track and return if it
deviates, the agent requires a higher level of intuition to initiate a turn back before it reaches
a critical point. Consequently, the utilization of a combination of sensor states and statuses
not only addresses the challenge of diverse positional situations but also ensures that the
distribution of the state-action value function is effectively organized.

Figure 3 illustrates the reward distribution flowchart.

Figure 3. Reward distribution flowchart.
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As mentioned above, the reward function is divided into two distinct areas, and the
robot must navigate back to the track, especially at the beginning of the exit. The green box
in the flowchart represents the reward distribution for the inside-the-track scenario, while
the red box represents the reward function for the outside-of-the-track scenario. The black
box corresponds to the case of a somewhat-outside-the-track-area scenario on the map,
where all sensors can detect the track, but the robot is not on the track itself.

In instances where the agent has moved far away from the track, a strategy is employed
to influence the agent’s actions even when facing an infinite direction. In such cases,
the robot selects different actions in each iteration compared to the previous one. This
strategy ensures that the agent avoids deviating too far from the optimal return path,
forcing it to turn around and head back towards the track. It is important to note that
this method does not halt the Q-learning process; instead, it compels the agent to choose
different available actions randomly. Subsequently, in the next iteration, the previous action
is disabled. In this manner, the robot engages in a pure searching process to rediscover the
track while enhancing its learning capabilities and updating Q-values.

2.4. Q-RTS

One of the main goals of this research was to implement a state-of-the-art Q-RTS
algorithm into the robot. This method collects the highest returned state-action pairs
and shares them among multi-agents to reduce the time needed to train agents in the
environment. The Q-RTS algorithm consists of two primary components: the update
process and global matrix computation.

The update process was facilitated using a local combination (linear) function
(Equation (2)) to create the updated local matrix Q′i. During each environmental search
time interval, each agent leverages two Q-values, the individual local Qi and the shared
swarm Qsw in a linear function with an independent factor β = 0.1. This process enables the
agent to estimate the updated local matrix Q′i and select a higher-valued state-action pair
from it. Consequently, the agent’s decision-making process in its current state is primarily
influenced by the shared swarm Q-value using a factor of 0.9. This independent factor can
take values between 0 and 1, and for this research, it was set to 0.1. Consequently, the agent
relies more on the shared knowledge than on its individual research efforts. The rationale
behind selecting this value stems from the intrinsic characteristics of Q-learning and its
bootstrapping technique. Consequently, within the same state, different agents may opt
for distinct actions, resulting in subsequent transitions to future states with associated
state values. This consequential value has the potential to influence the current estimated
state-action pair. Through simulation, the interaction of these states with diverse agents
accelerates the updating process, leading to quicker convergence toward an optimal value.
On the other hand, by setting the independent factor β = 0.1, we introduced a kind of new
degree of exploration–exploitation trade-off within a system of multiple agents, allowing
them to balance between exploiting their own high-value actions and exploring potentially
better alternatives shared by the other agents.

Qi(st, at)← (1− α)Q′i(st, at) + α[(rt + γ max
a

Q′i(st+1, at)]

Q′i(st, at) = βQi(st, at) + (1− β)Qsw(st, at)

(2)

Moreover, in MARL, different agents may choose different actions in the same state,
leading to diverse trajectories and state-value estimates. By incorporating β = 0.1, we
encourage agents to leverage shared knowledge from the swarm while still maintaining
individual exploration. This facilitates faster updates and convergence to an optimal policy
by leveraging insights from multiple agents’ experiences. Therefore, it reduces the need to
search the environment for each agent individually.

The global matrix computation (Equation (3)) is achieved through an aggregation
non-linear function that merges the agents’ knowledge for updating the shared swarm
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matrix Qsw. This means that, prior to reaching the successful state, the algorithm evaluates
all agents and their current states, updating the shared swarm matrix Qsw by comparing it
with the current estimated Qi (available on the set ∏ of all the local matrices Qi) to select
the highest state-action value.

max
Qiϵ ∏

Qi(st, at), if|max
Qiϵ ∏

Qi(st, at)| ≥ |min
Qiϵ ∏

Qi(st, at)|

min
Qiϵ ∏

Qi(st, at), otherwise

(3)

This aggregation process occurs sequentially after each agent’s decision-making phase,
ensuring that the Qsw is continually updated throughout each episode.

2.5. Collision Control Algorithm

The agent’s collision avoidance algorithm is of great importance in our system. Since
collision avoidance is not part of the decision-making algorithm, it is crucial to pause the
agent training process during collision avoidance. In each iteration, the distances between
agents are calculated to assess the likelihood of collision between two adjacent agents
within a range of 0.3.

As depicted in Figure 4, the 6th state (used to identify the presence of another robot
nearby) serves as a condition to halt the training and activate the collision avoidance
algorithm. Based on the position and orientation of each pair of adjacent agents, a goal
position is assigned to each agent within a range of 0.3 ahead of their current position
and in the same direction as their last movement. To achieve these new goals while
avoiding collisions, three predefined Robotarium certificates (create-si-position-controller(),
create-si-to-uni-dynamics(), and create-uni-barrier-certificate2()) are employed.

Figure 4. Collision avoidance flowchart.
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While the collision avoidance algorithm utilizes the goal position of potential collision
partners, it also considers the real-time positions of other agents. As a result, Robotarium
certificates automatically determine optimal linear and angular velocities for agents at risk
of collision. This not only ensures the avoidance of collision, but also prevents interference
with other agents. The pseudocode that describes the collision avoidance algorithm is
provided in Aglorithm 1.

Algorithm 1 Pseudocode for collision avoidance algorithm.

procedure COLLISION AVOIDANCE(agents position, x, y, θ, state(6))
while state(6)=2 do ▷ Loop for each step until goal is reached

Goal← (x + ∆x · cos θ, y + ∆y · sin θ)
Check the current position and goal position
Transform the position command to unicycle dynamics
Check the barrier between two adjacent agents
V(agent)← (vlinear, vangular)

end while
end procedure

The first certificate computes the distance between the current position and the goal
position for each agent, determining the linear and angular velocity in each iteration.
Subsequently, the second certificate transforms the agent’s position control into the unicy-
cle dynamic signal, regulating the acceleration and speed of the agents’ wheels. Finally,
the third certificate manages the safe barrier between two agents to ensure effective colli-
sion avoidance.

2.6. Simulation and Experimental Design for Result Discussion

This study encompassed both computational and experimental outcomes, specifi-
cally focusing on the cumulative rewards obtained in each iteration by 1, 4, and 8 agents.
Although RL typically employs the same training environment for testing (a static envi-
ronment), delving into dynamic environments ensures robust performances by trained
agents. It is crucial to note that the results are based on 200 simulations, each comprising
5000 iterations, resulting in a total of one million recorded rewards.

2.6.1. Reward as a Figure of Merit to Compare and Mean Cumulative Reward

In the initial phase, the algorithm was tested with a single agent, recording rewards
for each iteration for subsequent analysis. Once robust behavior was established in a
single-agent scenario, the agent count was increased to 4 and 8, employing the Q-RTS
method. Notably, in multi-agent simulations, agents collaborate by sharing environmental
knowledge, aiming to optimize the search process. To facilitate a meaningful comparison
between single- and multi-agent simulations, the Mean Cumulative Reward (MCR) was
calculated using the recorded rewards for each agent in every iteration.

MCR =
∑n

N=i RN

n
(4)

This rigorous experimental design allowed for a comprehensive algorithm perfor-
mance assessment across various agent scenarios.

2.6.2. Movmean Function

To mitigate the impact of noise inherent in the simulation, the movmean function,
available in the Matlab package, was employed. The function, M = movmean(A,k), calcu-
lates the mean value of neighboring elements within a matrix A and stores them in a new
matrix (M) of the same size as A. As illustrated in Figure 5, a moving window traverses the
k-adjacent neighbors, computing the mean value over this window.
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k

A 0 2 4
︷ ︸︸ ︷
1 3 5 7

k = 3

M 0 2 4 1 3 5 7

Figure 5. Movmean function in Matlab package. A window (k) reveals the number of arrays that
were taken to calculate the average neighboring elements.

However, a distinction arises between odd and even windows. In the case of an odd-
numbered window (k), it centers on the element at the current position. On the contrary,
for an even-numbered window, the center is shared between the current and previous
elements. If the window centers on the first element, the preceding sub-windows are treated
as zero. At the matrix’s end, right-sided sub-windows are truncated, and the average is
computed over the elements within the window.

It should be noted that when a single agent navigates the environment independently,
its allocated reward exhibits considerable variability, leading to inevitable fluctuations
in the MCR over iterations. Consequently, a larger movmean window is necessary (e.g.,
k = 50,000). On the contrary, when multiple agents are involved, the observed fluctuation is
less due to collaborative environment exploration and information sharing among agents.
This cooperative behavior leads to the use of prior knowledge, emphasizing exploitation
over exploration, and ultimately allows a smaller window size (for example, k = 15,000) in
the reward analysis.

2.6.3. Step Delay

Another facet of this study involved introducing delays in the Q-learning process
during simulations. This means that in every iteration where Q-learning was applied,
the agent subsequently employed identical action and velocity vectors for a certain number
of iterations, without receiving additional rewards. Here are some reasons why step delays
can be beneficial:

• Exploration–Exploitation Balance: Q-learning involves a trade-off between explo-
ration and exploitation; therefore, introducing step delays can encourage the agent to
explore different actions for a longer duration before updating its Q-values, potentially
leading to a better balance between exploration and exploitation.

• Stability and Consistency: Delaying the application of Q-learning for a certain number
of iterations can provide stability and consistency in the agent’s decision-making
process. This could be particularly useful in dynamic environments where rapid
changes may lead to suboptimal decision making if the agent updates its Q-values too
frequently.

• Memory and Learning Efficiency: In holding the agent’s action and velocity vectors
constant for a certain number of iterations, the agent effectively “memorizes” its cur-
rent strategy. This can be advantageous in situations where maintaining a consistent
strategy over a short period is beneficial for learning more complex patterns in the
environment.

• Simulation Realism: In some scenarios, introducing delays might align more closely
with real-world situations. For example, if an agent in the real world cannot update
its strategy instantaneously, introducing delays in the simulation could mimic this
real-world constraint.

• Comparative Analysis: This strategy facilitates a comparative analysis between simu-
lations with step delays and no-delay simulations across varying numbers of agent
setups. This comparative analysis aims to gain insights into the impact of delays on
the agent’s accumulated reward, providing valuable information on whether delayed
Q-learning results in an improved or diminished performance.



Electronics 2024, 13, 1819 12 of 19

However, within the scope of this research, simulation step delays ranging from 1 to 5
were implemented and compared with simulations without delays in terms of the agent’s
accumulated reward. As a result, the recorded rewards remained unchanged, consistent
with the rewards earned in the previous Q-learning execution.

Considering the benefits of accounting for step delays, limiting the step delays to
5 steps was primarily due to the higher amount of time needed to complete the simulation.
Although there may be slight improvements in cumulative rewards with higher step delays,
some state-action values remained unchanged and were not updated through the step-
delay times. This issue is mostly addressed in multi-agent simulations, where one-step
delay outperforms the other step delays. On the other hand, in the case of being outside of
the track, this causes the agents to go farther away from the track (since the agent uses the
previous action for further consecutive states) and reduces their chance to correctly find
their path to go back to the track, as mentioned in the dynamic environment experiment.

2.7. Robotarium

The Robotarium is a global, freely accessible testbed for swarm robotics provided by
the Georgia Institute of Technology (GeorgiaTech) for both experimental and educational
purposes. Within this facility, there are 20 remotely accessible unicycle robots known as
GRITSBot-X. We chose to conduct the experimental aspect of our research using this platform.

To incorporate our data into the designated robots, the Robotarium has an established
Matlab simulation platform. This platform allowed us to evaluate our concepts before sub-
mitting the files through the Robotarium website. Subsequently, our scripts and simulations
were validated by the Robotarium team, following which the experiment was conducted
on the Robotarium platform. The resulting data, along with a video documenting the
experiment, were then sent and made accessible through the user profile.

3. Results

After analyzing the data from a single-agent simulation, the program incorporates
the step-delay notion. Additionally, four agents were used in the simulation, each with
a different step delay. The influence of the Q-RTS approach with respect to the number
of agents was then determined by examining the best step-delay case in the eight-agent
simulation and comparing it to the same step delay in all agent case scenarios. The best-case
situation was ultimately sent to Robotarium for experimental examination.

3.1. One-Agent Simulation

The simulation started with one agent with no step delay, and the study was completed
by increasing the step delay to five. Figure 6 shows the agent’s reward for each iteration,
which was recorded for every simulation.

As mentioned above, our simulations involved recording 1 million rewards for each
simulation. To facilitate a more nuanced comparison, we segmented the performance
graph into three distinct phases: a black box for the initial phase (up to 200,000 iterations),
a red box for the middle phase (200,000 to 800,000 iterations), and the final phase, which
is in green (more than 800,000 iterations). In the initial phase, the no-step-delay agent
exhibited a better performance. However, throughout the simulation, the other agents
demonstrated comparable performances. In particular, the agent with a one-step delay
displayed significant fluctuations in the middle phase, leading to slower convergence
compared to the agent with a five-step delay, which exhibited greater stability and achieved
fast convergence within 700,000 iterations. Surprisingly, in the final phase, despite its
fluctuating reward distribution, the one-step delay agent achieved the highest total reward,
while the other agents obtained comparatively lower rewards. This can be attributed to the
one-step delay agent’s ability to navigate its environment more freely, benefiting from an
additional step in its decision-making process. However, the no-delay agent maintained a
middle-ground position in reward allocation, which is indicative of its inherent balance
in searching principles. However, as the delay step increased, the performances of the
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other agents in the final phase decreased, with the five-step delay agent demonstrating less
fluctuation and faster convergence, albeit with a lower total reward.

Figure 6. Cumulative reward for one agent with different numbers of step delays.

3.2. Four-Agent Simulation

The Q-RTS method was employed in multi-agent simulations to expedite search times
through collaborative information sharing among agents. Given the effective performance
of the reward function in single-agent simulations, the four-agent Q-RTS simulation utilized
the same reward function, and the outcomes, as indicated by the MCR, shed light on the al-
gorithm’s efficacy. In Figure 7, the MCR graph for the four-agent scenario is partitioned into
three distinctive windows. These windows demarcate the initial phase in the black box (up
to 200,000 iterations), the red middle-phase box (from 200,000 to 600,000 iterations), and the
final phase in green (exceeding 600,000 iterations). Specifically, the middle-phase window
encapsulates the MCR results from the conclusion of the initial phase until convergence in
the MCR was attained.

Figure 7. Average cumulative reward for four agents with different numbers of delays.
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Similar to the single-agent scenario, multi-agent simulations commenced with low
MCR values, resulting in closely aligned graphs for various step delays. However, dur-
ing the middle iteration in the red window, the distinctions in the accumulated reward
graphs become evident due to differing step delays. Notably, the no-delay agent exhibits
a substantial upward trajectory during this phase, showcasing faster convergence to the
final MCR, particularly after 450,000 iterations. Despite the rapid ascent, this agent’s
graph displays minimal fluctuations, and the early plateau observed until the conclusion
of the simulation underscores the robustness of the Q-RTS method, leading to improved
convergence without any delay.

Although the presence of delays in the simulation adversely affects the MCR and
the overall performance of the Q-learning algorithm, a notable similarity emerged with
the one-agent simulations. Specifically, a one-step delay in the four-agent simulations
demonstrates a performance comparable to that of the no-delay scenario. The diminished
performance in simulations with delays can be attributed to the improved coverage of the
environment by multi-agents, resulting in the reduced necessity to bypass the Q-learning
process and, consequently, the Q-RTS method.

3.3. Single-Agent vs. Multi-Agents with One-Step Delay

The choice of a one-step delay was made for the eight-agent simulation employing
Q-RTS. The subsequent comparison, varying the number of agents, provides insights into
the performance of Q-RTS relative to the agent count. Notably, despite an initial phase
where all simulations exhibit similar performances, as shown in Figure 8, the utilization of
eight agents illustrates an expedited convergence, depicted by a sharply ascending graph
up to 400,000 iterations, where the MCR convergence initiates and persists to a plateau at
500,000 iterations until the conclusion of the simulation.

Figure 8. Average cumulative reward comparison for one, four, and eight agents with one-step delay.

However, the simulation with four agents exhibits a similar pattern but converges
to the same MCR value within 600,000 to 650,000 iterations. In contrast, the single-agent
scenario requires an extended duration to converge, and even at the end of the simulation,
full MCR convergence was not attained.

As the simulations progressed to the final stage, convergence to a nearly identical
MCR was observed across all scenarios. Intriguingly, the single-agent simulation lagged
in terms of convergence speed. The incorporation of eight agents in Q-learning, coupled
with Q-RTS, showcases a superior performance among all simulations, achieving a quicker
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convergence and better-accumulated rewards. This outcome underscores the efficacy of
Q-RTS within the Q-learning framework.

3.4. Success Rate

The success rate serves as a metric for comparing different scenarios and assessing
whether the proposed algorithms and methods enhance results. In this study, the one-
step delay scenario was utilized across three agent setups (one, four, and eight agents),
encompassing 100 training simulations with 5000 iterations each.

SRP =
Number of successful iterations

Total iterations
× 100 (5)

The success rate percentage (SRP) shown in Equation (5) is calculated by dividing the
number of iterations in which the agent remained inside the track by the total number of
iterations within each simulation. The results of this comparison are illustrated in Figure 9.

Figure 9. Success rate percentage comparison for one, four, and eight agents with one-step delay,
over 100 simulations with 5000 iterations each.

As shown in Figure 9, the single-agent approach requires more simulations to train
the agent to navigate the track and maintain its position within it. Initially, its success
rate is low, but after 30 epochs, it begins to improve, reaching a 90% success rate after
95 consecutive epochs.

In contrast, the shared knowledge method employed in the Q-RTS algorithm for four
and eight agents demonstrates exceptional performance in terms of success rate percentage
and learning time. The four-agent configuration begins to enhance its performance after
15 epochs, ultimately achieving a 93% success rate. However, the eight-agent configuration
surpasses both setups with a 98% success rate. Notably, success rate improvement starts
early in this setup, reaching its peak after 45 epochs. This early progress can be attributed
to the collaborative nature of the Q-RTS algorithm, which accelerates the search for an
optimal performance within the environment.

In Table 2, the success rate measured after training is presented along with the standard
deviation over 50 simulations. For all the configurations, the rate is over 90%. We can notice
that the success rate decreases as the number of agents grows; this is due to the fact that if
more agents are in the track, they will need to avoid collision more often. Since the collision
avoidance algorithm has a higher priority than being on the track for some iterations, the
agents will exit the track to avoid collision and re-enter after.
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Table 2. Final success rates after training for one-, four-, and eight-agent configurations. Percentage
and standard deviation for 100 simulations with 5000 iterations each.

Number of Agents Success Rate

1 92.66± 1.83%
4 98.29± 1.12%
8 99.63± 0.49%

3.5. Dynamic Track

The other aspect of this research focused on changing the track in the middle of the
simulation process. For this purpose, the scenario with four agents and a one-step delay
was chosen. The following wo different implementations were considered:

1. Two tracks far away from each other ((a1) and (a2) in Figure 10);
2. Two tracks in the same area but with different shapes ((b1) and (b2) in Figure 10).

Figure 10 depicts the setup for these two experiments. In this scenario, the simulation
begins with (a1), and in the middle of the simulation, the track position changes to (a2).
This demonstrates that the robots are unable to locate the track because the new position is
beyond their sensor range, resulting in the apparent loss of the track from their reach.

Figure 10. Dynamic track simulation: (a) tracks are simulated far away from each other, from the
start (a1) to the final (a2) situation; (b) two different tracks are simulated in the center, for which
(b1) shows the beginning and (b2) shows the middle of the simulation.

On the contrary, in Figure 10(b1,b2), when the track changes shape but remains within
the range of the robot sensor, the agents can easily adapt to the new situation, find the track,
and stay in the middle of it. This experiment demonstrated the stability and robustness of
the algorithm in response to environmental changes. It highlights the algorithm’s excellent
compatibility with dynamic environments, showcasing a high likelihood of trained agents
successfully seeking out a new track.

3.6. Robotarium Implementation

In the final stage of this investigation, the Q-values of four trained agents were sent to
the Robotarium testbed provided by Georgia Tech to examine the efficiency of the reward
function and Q-RTS in practice. The results were obtained in terms of a recorded video
by the laboratory, with Figure 11 illustrating key moments in the experiment. Initially,
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all the agents were positioned on the platform (a), and then the track was projected onto
the field (b). The robots began to move randomly (c), signaling an imminent collision,
prompting the collision avoidance algorithm to activate (d). After a while, the robots
successfully located the center of the track and started following each other at a safe
distance to prevent possible further collisions (e). The provided video and the returned
data show a high correlation with our simulations, as expected.

Figure 11. Robotarium experimental simulation, implemented into GRITSBot-X: (a) start of the
experiment, (b) positioning of robots, (c) start of collision avoidance algorithm, (d) collision avoidance
procedure, and (e) robots are in the middle of the track and follow each other.

4. Conclusions

This study reveals that the Q-RTS method is highly effective in reducing the search
time of robots, resulting in a more efficient achievement of the environmental objectives.
The significance of this finding lies in its potential to enhance the real-world applicability of
robotic systems, where efficiency is paramount. This research underscores the critical role of
a well-designed reward function in the success of the Q-learning algorithm. By considering
diverse agent postures, the algorithm becomes more nuanced and able to adapt to complex
scenarios. This finding has broad implications for the development of future robotic
systems that rely on RL. The scalability of the Q-RTS method was demonstrated through
the successful implementation with four and eight trained agents. This scalability is
pivotal for scenarios where a team of robots is required to work collaboratively on tasks,
showcasing the method’s adaptability to different team sizes. This is a crucial feature if the
algorithm should be applied to applications of IoT and embedded systems. Furthermore,
this study highlights the robustness of trained agents in adapting to dynamic environmental
changes. This implies that robotic systems can maintain performance and adaptability
even when faced with unforeseen alterations in their operating environment. However,
this research implies the following insights as well:

1. Real-World Applicability: The Q-RTS method’s efficiency suggests its potential ap-
plication in real-world scenarios, such as search-and-rescue missions or autonomous
exploration, where quick decision making is crucial;

2. Enhanced Learning Algorithms: The emphasis on the reward function design implies
that future developments in robotic learning algorithms should prioritize a nuanced
understanding of environmental cues, leading to more adaptable and intelligent
robotic systems;

3. Flexible Team Deployment: The scalability of the Q-RTS method allows for the flexi-
ble deployment of robotic teams, making it suitable for various scenarios, from small-
scale tasks to more extensive collaborative efforts;

4. Adaptive Systems: The demonstrated robustness in the face of dynamic changes sug-
gests that robotic systems equipped with Q-RTS can operate in environments where
conditions might change unexpectedly, increasing the reliability of these systems.
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Finally, this research marks a novel implementation of artificial intelligence, specifically
using RL and the innovative Q-RTS as a MARL technique, successfully integrated into the
Robotarium platform. To the best of the authors’ knowledge, this study represents the first
instance of such an implementation, contributing to the advancement of AI methodologies
in the Robotarium environment.
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