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Abstract: Federated learning (FL) is considered a promising machine learning technique that has
attracted increasing attention in recent years. Instead of centralizing data in one location for training
a global model, FL allows the model training to occur on user devices, such as smartphones, IoT
devices, or local servers, thereby respecting data privacy and security. However, implementing FL
in wireless communication faces a significant challenge due to the inherent unpredictability and
constant fluctuations in channel characteristics. A key challenge in implementing FL over wireless
communication lies in optimizing energy efficiency. This holds significant importance, especially
considering user devices with restricted power resources. On the other hand, unmanned aerial vehicle
(UAV) technologies present a cost-effective solution owing to flexibility and mobility compared to
terrestrial base stations. Consequently, the deployment of UAV communication in FL is viewed as a
potential approach to deal with the energy efficiency challenge. In this paper, we address the problem
of minimizing the total energy consumption of all user equipment (UE) during the training phase of
FL over a UAV communication network. Our proposed system facilitates UE to operate concurrently
at the same time and frequency, thereby improving bandwidth utilization efficiently. In this paper,
we address the problem of minimizing the total energy consumption during the training phase of FL
over a UAV communication network. To deal with the proposed nonconvex problem, we propose
a novel alternating optimization approach by dividing the problem into two suboptimal problems.
We then develop iterative algorithms based on the inner approximation method, yielding at least
one locally optimal solution. The numerical results demonstrate the superiority of the proposed
algorithm in solving the proposed problem compared to other benchmark algorithms, particularly
in determining the optimal trajectory of the UAVs. In addition, we conduct extensive experiments
to evaluate how different parameter settings affect performance after implementing the proposed
optimization approaches for deploying FL within the UAV communication system. These analyses
yield valuable insights into the comparative effectiveness of the proposed optimization algorithms
concerning overall energy consumption reduction.

Keywords: unmanned aerial vehicle; federated learning; convex optimization

1. Introduction

With the rapid expansion of Internet of Things (IoT) applications and the increased
computational and storage capabilities of smart devices such as mobile devices, wearables,
and self-driving vehicles, a substantial volume of data is generated daily within modern
distributed networks [1]. Consequently, data-driven machine learning techniques have
garnered substantial attention in recent years. They contribute to the modernization of hu-
man life across diverse applications such as smart cities, smart healthcare, and autonomous
cars [2,3]. The explosive growth in IoT data, estimated at 850 ZB generated by smart devices
in 2021 alone, poses a challenge to traditional artificial intelligence (AI)-based learning
algorithm deployments [4]. Conventional methods predominantly rely on centralized
cloud servers for data storage and training, assuming seamless accessibility of all data at a
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central location. However, these methods struggle with the huge volume of data. The trans-
fer of extensive data to remote servers leads to bottlenecks, excessive costs, and latency
issues, rendering them unsuitable for real-time applications [5]. Furthermore, the transfer
of data from UE to third-party cloud locations raises significant privacy concerns. This is
because sensitive data from UE in the training dataset are vulnerable to theft for malicious
purposes [3,6]. To address these challenges, federated learning (FL) has been introduced,
wherein a learning model is trained across remote devices under the supervision of a
centralized location known as the server [2,7].

In FL, the server disseminates the global model parameters to remote devices. Each re-
mote device utilizes its local dataset to update the global model and subsequently transmits
the updated local model back to the server. After aggregating the local models, the server
updates the global model. This iterative process continues until a predefined level of
learning accuracy is achieved. Notably, the size of the model updates transmitted over
the network is significantly smaller compared to the raw data, resulting in a substantial
improvement in communication efficiency. While wired networks offer a stable and reli-
able connection, wireless communication unlocks unique advantages that make FL more
efficient and scalable in the context of IoT. Wireless networks boast superior flexibility
and scalability, seamlessly integrating new devices within their coverage area. This is
crucial for FL due to the participation of a large and diverse set of devices in the training
process [8]. Furthermore, wireless networks provide connectivity in remote locations or for
mobile devices, enriching the training dataset with a wider range of data and potentially
leading to more generalizable models [9]. Additionally, wireless communication protocols
can be optimized for low power consumption, critical for battery-powered IoT devices,
minimizing the burden on device batteries [10]. Hence, FL presents a compelling approach
for training machine learning models on the data generated by a multitude of IoT devices,
particularly when implemented over wireless communication networks.

While FL technology fulfills the requirement of privacy protection in IoT, the commu-
nication over wireless networks still faces several significant challenges, including latency,
reliability, scalability, and particularly energy efficiency issues at edge UE. Latency in FL
encompasses delays in local iterations of edge devices, uplink communication, aggregation,
and downlink transmission [11]. The unreliability of FL arises from the unpredictable
nature of wireless channels, while limited resources can also impact the performance and
success rate of FL iterations [12]. The scalability of FL refers to its ability to handle in-
creasing amounts of data and user devices participating without significant performance
degradation or resource limitations. However, the traditional interference avoidance chan-
nel access schemes become impractical due to the large number of devices, resulting in
excessive delays [13]. Moreover, FL necessitates periodic exchange of large user model
parameters, posing significant communication challenges for real-world implementation,
particularly for bandwidth-limited UEs [14]. For instance, transmitting the VGGNet ar-
chitecture, with approximately 138 million parameters (4264 Mb) [15], during each FL
iteration over a long-term evolution (LTE) network could take around a minute under
ideal conditions, given the maximum LTE uplink rate of 75 Mb/s. Eventually, one of
the key challenges of implementing FL over wireless networks is the limitation of energy
in UE, which is typically mobile and IoT devices with constrained batteries [14]. Hence,
efficient energy management for UE in local computation and model transmission becomes
increasingly crucial for deploying FL over wireless networks.

Next-generation wireless networks, such as 6G, are expected to address these chal-
lenges by supporting data-intensive tasks, including high-speed internet and streaming of
high-definition videos [16]. However, the limited availability of radio spectrum for wireless
communication is a significant concern in the development of 6G systems. To address this
issue, 6G systems are expected to leverage additional options. For example, non-orthogonal
multiple access (NOMA) can be applied either in the power domain [17,18] or code do-
main [19] to overcome this limitation. Furthermore, in the space domain, techniques such
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as massive multiple-input multiple-output (MIMO) [20], intelligent reflecting surfaces
(IRS) [21], and especially UAVs [22] may be integrated.

UAVs, commonly known as drones, play a crucial role in wireless communication [23].
In the envisioned landscape of 6G space–air–ground–sea integrated networks, UAVs have
the potential to significantly expand the technical frontiers of mobile wireless communi-
cations [24,25]. Their importance lies in the facilitation of rapid and efficient deployment
of communication equipment, particularly in emergency situations or areas with limited
infrastructure. Equipped with diverse communication technologies, UAVs contribute to a
spectrum of applications, spanning from internet access to surveillance [26]. The adaptabil-
ity of UAVs, characterized by dynamic coverage, scalability, and autonomous capabilities,
renders them highly effective in meeting the evolving demands of wireless communica-
tion [27]. Furthermore, UAVs serve as temporary communication infrastructure in regions
where traditional methods encounter challenges.

1.1. Related Work and Motivation

The implementation of FL over wireless networks presents distinct challenges. On one
hand, most of the mobile user devices rely on lithium batteries with constrained energy
storage. To ensure the convergence of the global model, it is necessary for devices to
frequently conduct local model training and update model parameters over wireless links,
leading to substantial energy consumption for UE. Hence, optimizing the energy efficiency
in FL over wireless networks becomes an urgent and critical concern for practical FL
implementation on IoT user devices. This issue has attracted significant attention in recent
studies [28–32].

In [28], a multiple IRS-assisted multi-user communication system was considered.
An algorithm based on federated deep learning was devised to determine the optimal
reflection configurations of all IRSs in parallel, thereby minimizing the total energy con-
sumption during the training process. An edge intelligence-aided IoT network with FL
integration was proposed in [29]. The authors focused on efficiently integrating joint edge
intelligence nodes. This involved investigating energy-efficient bandwidth allocation and
optimizing CPU frequency, transmission power, and learning accuracy levels to minimize
energy consumption and meet FL time requirements for all IoT devices. In [30], traditional
IoT networks were extended to advanced cell-free massive MIMO (CFMM) IoT networks
supporting FL. The limited power resources of IoT devices posed a critical factor that
affects the FL performance. The authors proposed an energy efficient FL scheme in a
CFMM IoT network by formulating an optimization problem to minimize the total energy
consumption of IoT devices.

Recognizing the flexibility and mobility advantages of UAVs over terrestrial base
stations, the authors in [31] introduced an air–ground integrated FL system using UAVs.
The authors addressed a scenario where eavesdroppers could access raw data based on
shared parameters. They proposed a distributed proximal policy optimization-based
approach to optimize the trajectory, artificial noise transmitting power of the UAVs, CPU
frequency, and particularly bandwidth allocation for UE operating in orthogonal frequency
division multiple access (OFDMA) mode. This aimed to strike a balance between security
and training cost. However, the computational burden of the proposed approach posed a
significant challenge for practical implementation. In contrast to [31], ref. [32] enabled UE
to operate in time-division multiple access (TDMA) during FL over UAV communication
systems. By jointly optimizing UAV location and resource allocation, the authors addressed
the minimization of terrestrial UE energy consumption. However, there was an omission
of factors, including uplink transmission power at UE and learning accuracy levels, which
are crucial in determining the trade-off between communication and computation energy
consumption. Moreover, each piece of UE in [32] is allocated specific time slots to transmit
its updates to the central server in a wireless FL setup using TDMA. Coordinating these
time slots across numerous devices distributed over a wireless network can be complex
and prone to latency and synchronization issues. Therefore, these challenges motivated our
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exploration of a new concept: designing a UAV communication network with FL support,
wherein UE operates at the same time and frequency. This approach allows us to utilize the
full potential of limited bandwidth efficiently. Additionally, by allowing adjustments to
the transmit power level at the UE and the accuracy of the learning process, the proposed
system achieves significant energy efficiency compared to other benchmark approaches.

1.2. Contribution and Outline

This study addresses the challenging task of optimizing energy efficiency during the
FL training process within a proposed UAV communication network. The complexity of
this challenge necessitates a joint optimization approach for computation and communica-
tion energy consumption across all UE in the system. Therefore, efficient resource allocation,
with a particular emphasis on determining the UAV trajectory, becomes important in opti-
mizing energy consumption. The resulting problem, minimizing total energy consumption,
inherently poses a nonconvex programming challenge, presenting inherent difficulties in
direct resolution. To overcome this challenge and achieve at least a locally optimal solution,
we introduce novel approaches founded on successive convex approximation techniques,
employing the inner approximation (IA) method. The noteworthy contributions of this
study can be summarized as follows:

• First, we present the computing model for the FL training process within the proposed
UAV communication system, wherein all UE operates at the same time and frequency.

• To devise an energy-efficient FL scheme tailored to the proposed system, we formulate
an optimization problem aimed at minimizing the total energy consumption of all
UE during the FL training process. This problem encompasses the challenges of
computation and communication energy consumption, corresponding to the local
model training and uplink data transmission in FL. By solving this optimization
problem, we achieve efficient resource allocation for the proposed system, especially
in obtaining the optimal UAV trajectory.

• The proposed optimization problem is intractable due to its nonconvex nature. There-
fore, we propose a novel alternating optimization algorithm by decomposing the
original problem into three suboptimal, more tractable, nonconvex problems. Subse-
quently, an IA scheme is proposed to transform these problems into successive convex
sub-programs. By alternately optimizing the resulting convex sub-programs, we attain
at least a local optimization point for resource allocation.

• Simulation results are presented to demonstrate the efficiency of our proposed algo-
rithm in solving the given problem and determining the optimal UAV position. These
numerical outcomes show that the proposed algorithm significantly reduces the total
energy consumption of all UE during the FL training process compared to benchmark
approaches.

• Numerical outcomes show that the proposed algorithm significantly reduces the
total energy consumption of all UE during the FL training process compared to
benchmark approaches. In addition, the proposed alternating optimization approach
demonstrates potential in dealing with the scalability challenge posed inherent in FL
over UAV communication systems.

• Finally, we conduct a detailed complexity analysis of the proposed algorithm, estab-
lishing its feasibility and acceptable complexity cost.

The remainder of this paper is organized as follows. Section 2 describes the FL training
process within the proposed UAV communication system, followed by the formulation
of the energy consumption minimization problem during the training phase. Section 3
introduces the proposed alternating algorithm and provides the detailed computational
complexity analysis. Section 4 presents and discusses the numerical results, while Section 5
draws the conclusions.

Notation: Lowercase boldface letters denote column vectors (e.g., x, y), while lower-
case italic letters denote scalars (e.g., x, y). xH and x∗ represent the Hermitian transpose
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and conjugate operators of the vector x, respectively. | · |, E[·], and Var[·] denote the norm,
expectation, and variance, respectively.

2. System Model and Problem Formulation

As illustrated in Figure 1, we consider a UAV communication system composed of
a single-antenna UAV serving K pieces of single-antenna UE. It is assumed that the UAV
hovers within a confined area of dimensions L × L and that all UE is uniformly distributed
within this region and falls under the coverage of the UAV. For simplicity, we denote the
set of UE as K ≜ {1, 2, . . . , K} with UEk, k ∈ K representing the k-th user.

Figure 1. FL over a UAV communication system.

2.1. Signal and Channel Models

Considering the data transmission process from all UE to the UAV, the uplink transmit
signal at UEk is expressed as

xk =
√

pmaxwksk, (1)

where sk, with E
{
∥sk∥2} = 1, represents the desired data symbol, and pmax corresponds

to the maximum transmit power budget at UEk. The power control coefficient of UEk is
denoted as wk, with values in the range from 0 to 1. In the uplink, all K pieces of UE
simultaneously transmit their data to the UAV. As a result, the received signal at the UAV
through K pieces of UE is expressed as

y =
K

∑
k=1

Hkxk + n, (2)

where Hk denotes the channel between the UAV and UEk, and n denotes the additive noise
at the CPU, which is a complex Gaussian random variable with zero mean and variance σ2,
i.e., n ∼ CN (0, σ2). Consequently, the uplink rate of UEk (bps) is given as

Rk(w) = B log2

1 +
|Hkwk|2

∑K
k′=1,k′ ̸=k |Hk′wk′ |2 + σ2

pmax

, (3)

where B represents the uplink bandwidth in this system. Due to the flexible movement and
vertical height of the UAV, we assume that the channel between the UAV and all UEs is
unobstructed by any obstacles blocking the signal, such as buildings or trees. Consequently,
we assume that the channel between the UAV and all UEs is dominated by line-of-sight
(LoS) links. Given the single antenna equipped at the UAV, the channel Hk between the
UAV and UEk is modeled as Hk = (C0d−α

k )1/2 based on [33], where C0 denotes the path loss
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at the reference distance D0 = 1 m. Additionally, dk and α correspond to the distance and
the path loss exponent between the UAV and UEk, with α set to 2 in this paper. We assume
the coordinates of the UAV as u = (xu, yu, zu), where the altitude of the UAV is constrained
within the range hmin ≤ zu ≤ hmax. Furthermore, the coordinates of UEk are denoted as
ak = (xk, yk, zk), where zk = 0, ∀k ∈ K since the UE is located on the ground. Based on the
coordinates of the UAV and UE, the distance dk is calculated as

dk = |u − ak|. (4)

2.2. FL Model

In this subsection, we integrate the FL model into the network. Initially, we designate
the model derived from the UE computation of their sample data as the local model, and the
model obtained through the UAV is referred to as the global model. Following convention,
we employ a vector q to represent the relevant parameters of the global model, and the loss
function is defined as f(q, xk,i, yk,i), where the pair (xk,i, yk,i) represents a sample data point
of UEk from the local dataset Dk. Notably, the loss function originates from a single sample
of data from UEk. Therefore, the overall loss function Fk(q) over a local dataset Dk with a
size of Dk at UEk can be expressed as

Fk(q) =
Dk

∑
i=1

f(q, xk,i, yk,i). (5)

To consolidate a global FL model for all UEs that do not exchange datasets, FL lever-
ages sample data to train the underlying model. The objective of the FL learning model is
to determine the optimal parameters q that minimize the global loss function as

min F(q)
q

≜
K

∑
k=1

Dk
D

Fk(q) =
K

∑
k=1

Dk

∑
i=1

f(q, xk,i, yk,i). (6)

To solve the optimization problem in (6), the iterative FL procedure is conducted through
three steps such as local computation, communication, and global computation. At the j-th
global iteration, the FL process is executed as follows:

Step 1, Local computation: Every UE retrieves the initial global model from the UAV
before locally computing the sample dataset. At the j-th global iteration, UAV broadcasts
both the global model q(j) and the global gradient ∇F(q(j)). Meanwhile, UEk calculates its
local gradient ∇Fk(q(j)) using its local dataset with the received q(j) and then send it to the
UAV. On the local side, UEk addresses the following minimization problem:

min
dk

ck

(
q(j), dk

)
≜−

(
∇Fk(q

(j))− µ∇F(q(j))
)T

dk + Fk

(
q(j) + dk

)
, (7)

where µ functions as a tunable parameter, and dk measures the dissimilarity between the
local model at UEk and the global model. The computational challenge resides in minimizing
the local loss function ck

(
q(j), dk

)
. Nevertheless, it is viable to obtain a precise approximate

solution. As outlined in [29], the optimal feasible solution must adhere to the following
criterion:

ck

(
q(j), d(j)

k

)
− ck

(
q(j), d(j)∗

k

)
≤ η

[
ck

(
q(j), 0

)
− ck

(
q(j), d(j)∗

k

)]
, (8)

where d(j)∗
k represents the optimal solution to the problem (7). According to the condition

(8), the disparity between the parameters of the optimal solution and the j-th local model
must not exceed the local accuracy η, relative to the difference between the parameters of
the optimal solution and the original local model.
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Step 2, Communication: After completing the local computation process, all UEs
employ the wireless environment to transmit their updated local model including the
obtained optimal solution d(i)k and the local gradient ∇Fk(q(j)) to the UAV.

Step 3, Global computation: Subsequently, the UAV aggregates these individual
models to generate a new global model q(j+1) with new global gradient ∇F(q(j+1)) aiming
to broadcast to UEs, which is calculated as follows:

q(j+1) = q(j) +
1
K

K

∑
k=1

d(i)k , (9)

∇F(q(j+1)) =
1
K

K

∑
k=1

∇Fk(q
(j)). (10)

According to [29], the FL process is iterative until the given global accuracy ϵ0 is satisfied,
i.e.,

F
(

q(j)
)
− F(q∗) ≤ ϵ0

[
F
(

q(0)
)
− F(q∗)

]
, (11)

which ensures that the relative difference between the parameters of the optimal solution
and those of the j-th global model, divided by the difference between the parameters of the
optimal solution and the parameters of the original global model, cannot exceed the global
accuracy ϵ0.

In this study, the global accuracy ϵ0 remains a fixed constant value. Moreover, the rela-
tionship between the number of global iteration rounds and accuracy must comply with
the following constraints, as outlined in existing studies [34]:

N(η) ≥
2l2

γ2ξ
ln 1

ϵ0

1 − η
, (12)

where l, γ, and ξ take constant values. By using the normalization method [29], the number
of global iteration rounds N(η) is normalized to 1

1−η in this paper.

2.3. Energy Consumption Model

This subsection delves into the energy consumption model, focusing on the computa-
tion and uplink communication time in each global iteration. Given the larger downlink
bandwidth and significantly higher power of the UAV compared to the UE transmit power,
we can neglect the downlink time in contrast to the uplink time. Examining the FL training
process in the UAV communication system allows us to express the total latency in each
global iteration as

T(η, Tcom, Tcmp) = Tcom + v log2(1/η)Tcmp, (13)

where Tcmp represents the time needed for all UE to compute the local model in an iteration,
while Tcom denotes the time required for all UE to upload model parameters in an iteration.
The term v log(1/η) signifies the number of rounds for local computation, with v being a
positive constant dependent on the local data size. Our objective is to minimize overall
UE energy consumption, which comprises two categories: computation consumption and
communication consumption.

2.3.1. Computation Energy Consumption

We define the number of CPU cycles needed to solve one sample of data for UEk as
Nc,k. This value can be measured offline as it is a priori or predetermined [29]. Since all
samples have different sizes, the number of CPU cycles required for UEk to execute a round
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of local computation is Nc,kDk. Consequently, the time for a computation round for UEk can
be expressed as

tcmp
k =

Nc,kDk

fk
. (14)

The CPU frequency utilized at UEk, denoted as fk, can be optimized based on specific
optimization goals. Consequently, the computation energy consumption at UEk for a
computation round is obtained as [35]

Ecmp
k ( fk) = ζk Nc,kDk f 2

k , (15)

where ζk represents the effective capacitance coefficient of the computation chipset at UEk.

2.3.2. Communication Energy Consumption

We assume that the data size of the model parameters to be uploaded in each round is
denoted as γ. Therefore, the transmission delay time between UEk and the UAV is computed
as

tcom
k =

γ

Rk(w, u)
. (16)

As a result, the total communication energy consumption required for FL in a round
at UEk is expressed as

Ecom
k (w, u) = E{||xk||2} × tcom

k =
Pmaxw2

kγ

Rk(w, u)
. (17)

Hence, the overall energy consumption at all UE throughout the FL training process
in a round is calculated as

E(w, u, f, η) =
K

∑
k=1

(
Ecom

k + v log2(1/η)Ecmp
k

)
. (18)

2.4. Problem Formulation

The sum energy consumption minimization problem of all UE in the proposed UAV
communication system can be formulated as follows:

P : min
w,u,f,η,Tcom,Tcmp

N(η)E(w, u, f, η) (19a)

s.t. 0 ≤ wk ≤ 1, ∀k ∈ K, (19b)

0 ≤ xu, yu ≤ L, (19c)

hmin ≤ zu ≤ hmax, (19d)

N(η)T(η, Tcom, Tcmp) ≤ τ, (19e)

tcom
k ≤ Tcom, ∀k ∈ K, (19f)
Nc,kDk

fk
≤ Tcmp, ∀k ∈ K, (19g)

fmin ≤ fk ≤ fmax, ∀k ∈ K, (19h)

0 ≤ η ≤ 1, (19i)

where constraint (19b) ensures that the transmit power at the UAV cannot exceed the
maximum power budget ρmax. Constraints (19c) and (19d) restrict the movement of the
UAV within a specific area. Constraint (19e) guarantees the completion of global training
within the given deadline τ. Constraint (19f) ensures that every UE finishes communication
with the UAV at the same time. Constraint (19g) assures that the time for a computation
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round at each UE cannot exceed the time required for all UE to calculate the local model.
Constraint (19h) guarantees that the calculation frequency at each piece of UE is within a
certain range. Finally, constraint (19i) imposes a necessary condition for the local accuracy
η.

3. Proposed Alternating Optimization Algorithm

As seen in the previous section, the proposed problem (19) presents significant com-
plexity due to nonconvex constraints (19a), (19e), (19f), and (19g). To deal with this chal-
lenge, we propose decomposing the optimization problem into several constrained sub-
optimization problems over individual parameter subsets. These parameters are alternately
optimized in two consecutive steps to achieve the optimal solution for the given global
problem. In addition, to solve these sub-optimization problems, we propose leveraging
the IA method to obtain successive convex programming, which can be readily solved
using convex solvers [36]. Consequently, we can achieve at least a locally optimal solution
for the proposed problem (19). Before proceeding with the optimization steps, we will
transform the proposed problem (19) into a more tractable form by introducing a new
auxiliary positive variable set λ ≜ {λk}, ∀k ∈ K. Thus, the proposed optimization problem
is rewritten as follows:

min
w,u,λ,f,η,
Tcom,Tcmp

K

∑
k=1

λk (20a)

s.t. 0 ≤ wk ≤ 1, ∀k ∈ K, (20b)

N(η)
(

Ecom
k + v log2(1/η)Ecmp

k

)
≤ λk, ∀k ∈ K, (20c)

λk > 0, ∀k ∈ K, (20d)

(19c) − (19i).

3.1. Step 1: Optimizing Power Control Coefficient w, the Trajectory of the UAV u, and Other
Resource Allocations with a Given Local Accuracy η

With a given local accuracy η, the optimization problem (20) is rephrased as

min
w,u,λ,f,

Tcom,Tcmp

K

∑
k=1

λk (21a)

s.t. 0 ≤ wk ≤ 1, ∀k ∈ K, (21b)

N(η)
(

Ecom
k + v log2(1/η)Ecmp

k

)
≤ λk, (21c)

∀k ∈ K,

λk > 0, ∀k ∈ K, (21d)

(19c) − (19h).

Obviously, constraints (21a), (21b), (21d), (19e), (19g), and (19h) are simply convex.
However, (19f) and (21c) remain nonconvex. Therefore, we will convexify them into a more
tractable form.

Convexifying constraint (19f): From (16), we express the constraint (19f) in a tractable
form as

γ

Rk(w, u)
≤ Tcom ⇒ Rk(w, u) ≥ 1

Tcom
× γ. (22)
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A new positive variable T̂com is introduced to satisfy the following relationship:

1
Tcom

≤ T̂com. (23)

As a result, the constraint (22) is rewritten as

B ln

1 +
|Hk(u)wk|2

∑K
k′=1,k′ ̸=k |Hk′(u)wk′ |2 + σ2

pmax

 ≥ ln(2)γT̂com. (24)

⇒B ln

1 +
d−2

k (u)w2
k

∑K
k′=1,k′ ̸=k(d

−2
k′ (u)w

2
k′) +

σ2

C0 pmax

 ≥ ln(2)γT̂com. (25)

We introduce a new set of positive variables e ≜ {ek}, ∀k ∈ K satisfying the following
second-order cone (SOC) constraint:

d2
k(u) = |u − ak|2 ≤ ek, ∀k ∈ K, (26)

⇒ d−2
k (u)w2

k ≥
w2

k
ek

. (27)

An auxiliary lower bound on the right-hand side of (27) at iteration (i + 1) is achieved
by introducing a new set of positive variables ρ ≜ {ρk}, ∀k ∈ K as [37]

w2
k

ek
≥

2w(i)
k wk

e(i)k

−
(w(i)

k )2

(e(i)k )2
ek ≥ ρ2

k , ∀k ∈ K. (28)

Next, we introduce a new set of positive variables b ≜ {bk}, ∀k ∈ K to obtain the a
lower bound of the quadratic function d2

k(u) at iteration (i + 1) as

d2
k(u) ≥ 2(u(i) − ak)

H(u − ak)− |u(i) − ak|2 ≥ bk, ∀k ∈ K. (29)

⇒d−2
k (u)w2

k ≤
w2

k
bk

. (30)

To convexify (30), a new variable set o ≜ {ok}, ∀k ∈ K is given to satisfy the following
rotated cone constraint:

d−2
k (u)w2

k ≤
w2

k
bk

≤ ok, k ∈ K. (31)

From (28) and (31), we obtain a lower bound on the left-hand side of (25) and rewrite
this constraint as

B ln

1 +
ρ2

k

∑K
k′=1,k′ ̸=k ok +

σ2

C0 pmax

 ≥ ln(2)γT̂com. (32)

At iteration (i + 1), a lower bound on the left-hand side of (24) around feasible points
(ρ(i), b(i)) is given by [37]

ln(1 + ∆k(ρ, b)) ≥ F(i)
0,k + 2F(i)

1,k (ρ, b)− F(i)
2,k (ρ, b) ≜ F̂k(ρ, b), (33)
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where

∆k(ρ, b) =
ρ2

k

∑K
k′=1,k′ ̸=k ok +

σ2

C0 pmax

,

F(i)
0,k (ρ, o) ≜ ln

(
1 + ∆k(ρ

(i), o(i))
)
− ∆k(ρ

(i), o(i)),

F(i)
1,k (ρ, o) ≜

ρ
(i)
k ρk

Ψk
(
o(i)

) ,

F(i)
2,k (ρ, o) ≜

(
ρ2

k + Ψk(ρ, o)
)

Ξ(i)
k ,

with

Ψk(o
(i)) =

K

∑
k′=1|k′ ̸=k

o(i)k +
σ2

C0 pmax
,

Ξ(i)
k ≜ Ψk(o

(i))−1 −
(

Ψk(o
(i)) + (ρ

(i)
k )2

)−1
.

It is observed that F(i)
0,k is a constant and F(i)

1,k (w) is a concave function. In fact, F(i)
1,k (w)

is the square of the summation of the M square-root functions, which can be expanded into
the summation of linear functions and concave square-root products. Similarly, F(i)

2,k (w) is
also a convex function. Hence, the constraint (24) is eventually convexified as

F(i)
0,k + 2F(i)

1,k (w)− F(i)
2,k (w) ≥ ln(2)γT̂com

B
, ∀k ∈ K. (34)

Convexifying constraint (21c): From (15) and (17), the constraint (21c) can be expressed
as

Pmax||wk||2γ

Rk(w, u)
+ v log2(1/η)ζk Nc,kDk f 2

k ≤ λk
N(η)

, ∀k ∈ K. (35)

To address the nonconvexity of constraint (35), we initially focus on the first terms
of the left-hand side of this constraint. A new set of positive variables is introduced as
ϱ ≜ {ϱk}, ∀k ∈ K, which satisfies the following conditions:

Pmaxw2
kγ

Rk(w, u)
≤ ϱk (36)

⇒ Pmaxγ
w2

k
ϱk

≤ Rk(w, u), ∀k ∈ K. (37)

To convexify (37), we introduce a new variable set ξ ≜ {ξk}, ∀k ∈ K to satisfy the
following rotated cone constraint:

w2
k

ϱk
≤ ξk (38)

⇒ Pmaxγ
w2

k
ϱk

≤ Pmaxγξk, ∀k ∈ K. (39)

From (33), the constraint (37) is convexified as

F̂k(ρ, o) ≥ ln(2)Pmaxγξk
B

, ∀k ∈ K. (40)
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Hence, the constraint (21c) can be converted into a convex form as

ϱk + v log2(1/η)ζk Nc,kDk f 2
k ≤ λk

N(η)
, ∀k ∈ K. (41)

Consequently, the problem formulation for optimizing the problem (21) is transformed
into a convex and tractable form as

min
w,u,λ,f,ϱ,ξ,e,b,o,ρ,

T̂com,Tcom,Tcmp

K

∑
k=1

λk (42a)

s.t. 0 ≤ wk ≤ 1, ∀k ∈ K, (42b)

λk, ϱk, ξk, T̂com > 0, ∀k ∈ K, (42c)

ek, bk, ok, ρk > 0, ∀k ∈ K, (42d)

(19c), (19d), (19e), (19g), (19h), (23), (26),

(28), (29), (31), (34), (39), (40), (41).

The optimal solution obtained for the problem (42) is a converged stationary point
satisfying the Karush–Kuhn–Tucker (KKT) conditions [38] with a finite number of iterations
using a solver [36]. The optimization steps for this solution are summarized in Algorithm 1.

Algorithm 1 Proposed Iterative Algorithm to Solve (42)

1: Initialization: Set i = 0 and generate feasible initial points (w, u, λ, f, ϱ, ξ, e, b, o,
ρ, T̂com, Tcom, Tcmp)(0)

2: Repeat:
3: Solve the convex program (42) to obtain the optimal solution

(w, u, λ, f, ϱ, ξ, e, b, o, ρ, T̂com, Tcom, Tcmp)∗

4: Update (w, u, λ, f, ϱ, ξ, e, b, o, ρ, T̂com, Tcom, Tcmp)(i+1) =(w, u, λ, f, ϱ, ξ, e, b, o, ρ,
T̂com, Tcom, Tcmp)∗

5: Set i = i + 1
6: Until Convergence
7: Output: Optimal values (w, u, λ, f, Tcom, Tcmp)

3.2. Step 2: Optimizing the Local Accuracy η and Resource Allocations with Given Power Control
Coefficients w and a Fixed Location of UAV u

With given power control coefficients w and fixed location of UAV u, the value of Rk
is calculated owing to (3), which leads to the value of Tcom becoming constant. Therefore,
the constraint (19f) is in a convex form. Thus, the optimization problem (20) is rewritten as

min
η,λ,f,

Tcom,Tcmp

K

∑
k=1

λk (43a)

s.t. N(η)
(

Ecom
k + v log2(1/η)Ecmp

k

)
≤ λk, ∀k ∈ K, (43b)

λk > 0, ∀k ∈ K, (43c)

(19e) − (19i).

Obviously, constraints (43a), (19f), (19g), (19h) and (19i) are simply convex. However,
(19e) and (43b) are still nonconvex. Thus, we will convexify them into a more tractable form.
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Convexifying constraint (19e): From (13), the constraint (19e) is rewritten as

1
1 − η

(
Tcom + v log2(1/η)Tcmp

)
≤ τ, (44)

⇒ 1
1 − η

Tcom +
1

1 − η
v log2(1/η)Tcmp ≤ τ. (45)

We can see that 1
1−η is a simple convex form within the range of η ∈ [0, 1]. Therefore,

a positive new variable η̂ is introduced to satisfy the following constraint:

1
1 − η

≤ η̂, (46)

⇒
{

1
1−η Tcom ≤ η̂Tcom,

1
1−η Tcmp,≤ η̂Tcmp.

(47)

Before handling constraint (45), an approximation of the square-root product is intro-
duced as follows. Considering a concave function χ(x, y) =

√
xy, x > 0, y > 0, an auxiliary

upper bound of χ(x, y) around a feasible point (x(i), y(i)) given by the IA method is ex-
pressed as [39]

χ(x, y) ≤
√

x(i)

2
√

y(i)
y +

√
y(i)

2
√

x(i)
x ≜ χ̂(x, y), (48)

⇒
{

η̂Tcom ≤ χ̂(η̂, Tcom),
η̂Tcmp ≤ χ̂(η̂, Tcmp).

(49)

Because of η within the range of [0, 1], a positive new variable ε is introduced to satisfy
the following constraint:

1
η
≤ 1 + ε, ∀ε > 0, (50)

⇒ ln(
1
η
) ≤ ln(1 + ε). (51)

Next, we leverage the first-order Taylor approximation to obtain the upper bound of
the function ln(1 + ε) for a given feasible point ε(i) at the iteration (i + 1) as

ln(1 + ε) ≤ ln(1 + ε(i)) +
1

1 + ε(i)
(ε − ε(i)). (52)

Hence, we obtain the upper bound of the function log(1/η) at the iteration (i + 1) as

ln(
1
η
) ≤ ln(1 + ε(i)) +

1
1 + ε(i)

(ε − ε(i)), (53)

⇒ log2(
1
η
) ≤

(
ln(1 + ε(i)) +

1
1 + ε(i)

(ε − ε(i))

)
/ ln(2), (54)

≜ ω(ε). (55)

From constraints (48), (49), and (55), we achieve the convex form of the constraint (45)
at the iteration (i + 1) as

χ̂(η̂, Tcom) + vχ̂
(
χ̂(η̂, Tcmp), ω(ε)

)
≤ τ. (56)
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Convexifying constraint (43b): It can be seen that Ecom
k is constant due to the determined

power control coefficient w. Based on (15) and constraints (46) and (55), the upper bound
of the left-hand side term of the constraint (43b) is obtained as

N(η)
(

Ecom
k + v log2(1/η)Ecmp

k

)
≤ vζk Nc,kDkη̂ω(ε) f 2

k + Ecom
k η̂, ∀k ∈ K. (57)

Obviously, the second term of the right-hand side of constraint (57) is nonconvex.
Hence, we introduce the variable set Λ = {Λk}, ∀k ∈ K satisfying the following constraint:

f 2
k ≤ Λk, ∀k ∈ K. (58)

Based on constraints (48) and (58), we easily achieve the upper bound for the second
term of the right-hand side in (57) as

vζk Nc,kDkη̂ω(ε) f 2
k ≤ vζk Nc,kDkχ̂(χ̂(ω(ε), Λk), η̂), ∀k ∈ K. (59)

Eventually, the constraint (43b) is convexified under the convex form at the iteration
(i + 1) as

Ecom
k η̂ + vζk Nc,kDkχ̂(χ̂(ω(ε), Λk), η̂) ≤ λk, k ∈ K. (60)

As a result, the problem formulation for optimizing the problem (43) with given power
control w and location of UAV u is rewritten into a convex and tractable form as

min
η,η̂,λ,Λ,f,
Tcom,Tcmp

K

∑
k=1

λk (61a)

s.t. λk, η̂, Λk > 0, ∀k ∈ K, (61b)

(19f) − (19i),

(46), (56), (58), (60).

Similarly, we solve problem (61) using the optimization solver [36] under KKT condi-
tions [38] with a finite number of iterations, as summarized in Algorithm 2.

Algorithm 2 Proposed Iterative Algorithm to Solve (61)

1: Initialization: Set i = 0 and generate feasible initial points (η, η̂, λ, Λ, f, Tcom, Tcmp)(0)

2: Repeat:
3: Solve the convex program (61) to obtain the optimal solution

(η, η̂, λ, Λ, f, Tcom, Tcmp)∗

4: Update (η, η̂, λ, Λ, f, Tcom, Tcmp)(i+1) = (η, η̂, λ, Λ, f, Tcom, Tcmp)∗

5: Set i = i + 1
6: Until Convergence
7: Output: Optimal values (η, λ, f, Tcom, Tcmp)

Eventually, to solve the original problem (20), an iterative algorithm is proposed by
alternately running three suboptimal algorithms, which correspond to the three previously
presented optimizing steps. The optimization procedure of this algorithm is illustrated in
Algorithm 3.
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Algorithm 3 Proposed Alternating Algorithm to Solve (20)

1: Initialization: Set i = 0 and generate feasible initial points (w, u, η, λ, f, Tcom, Tcmp)(0)

2: Repeat:
3: Use Algorithm 1 with a given η(i) to obtain (w, u, λ, f, Tcom, Tcmp)(i+1)

4: Use Algorithm 2 with a given (w(i+1), u(i+1)) to obtain (η, λ, f, Tcom, Tcmp)(i+1)

5: Set i = i + 1.
6: Until Convergence
7: Output: Optimal values (w, u, η, λ, f, Tcom, Tcmp)

3.3. Computational Complexity Analysis

As shown in Algorithm 3, the computational complexity in solving the problem (20)
can be analyzed through two main steps:

• Step 1: Running Algorithm 1 to solve the successive convex program (42) using a
convex solver [36]:

– According to [36], the complexity for solving a convex problem at each iteration
is determined by the number of quadratic/linear constraints, x1, and that of
variables, y1, in problem (42). As a result, the complexity is determined as
O
(

x2.5
1 (y2

1 + x1)
)
.

– The algorithm converges when the difference between the objective values of
two consecutive iterations does not exceed a predefined small value, ϵ = 10−3.
Therefore, the number of iterations is estimated in the numerical implementation.
Assuming that Algorithm 1 requires κ1 iterations to reach convergence, then the
total complexity of this step is O

(
κ1x2.5

1 (y2
1 + x1)

)
.

• Step 2: Running Algorithm 2 to solve the successive convex program (61) using a
convex solver [36]:

– Similarly, the overall complexity needed to run the iteration and solve the convex
program (61) is calculated as O

(
κ2x2.5

2 (y2
2 + x2)

)
. Here, κ2, x2, and y2 represent

the number of iterations, constraints, and variables in (61), respectively.

The proposed iterative Algorithm 3 alternately runs two optimization steps. Therefore,
the computational complexity of Algorithm 3 at each iteration is calculated as the linear sum
of two suboptimal algorithms in two steps, which is obtained as O

(
∑2

j=1 κjx2.5
j (y2

j + xj)
)
.

Assuming Algorithm 3 takes κ3 iterations to reach the convergence, the total complexity
of this algorithm is achieved as O

(
κ3 ∑2

j=1 κjx2.5
j (y2

j + xj)
)
. Finally, we provide a detailed

complexity analysis of the steps in the proposed alternating algorithm in Table 1.

Table 1. Computational complexity analysis.

Metrics Algorithm Step 1 Algorithm Step 2

No. Constraints x1 = 16K + 6 x2 = 6K + 5

No. Variables y1 = 9K + 6 y2 = 3K + 4

Complexity O
(
κ1x2.5

1 (y2
1 + x1)

)
O
(
κ2x2.5

2 (y2
2 + x2)

)
4. Numerical Results
4.1. Simulation Setup

In this paper, we assume that the UAV and K pieces of UE are located within a square
area with dimensions of L × L. The concept of supporting FL in the UAV communication
system enables multiple models for various applications to be learned at the same time by
adjusting the dataset size as the input parameter of the proposed algorithm and sending
the parameters of these models between the UAV and all UE. For simulations, we utilize
a publicly available MNIST dataset with the size D = 100 MB. Each piece of UE uses
its local dataset from the overall MNIST dataset for training to achieve high accuracy in
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its local model and then uploads these parameters to the CPU for calculating the global
model. For simplicity, we assume that all UE has the same size of the local dataset,
i.e., Dk = D/K, ∀k ∈ K. The constant v to control the local calculation turns is set to 4,
and the maximum time limit τ is set to 1000 s. Furthermore, the minimum CPU frequency
fmin, maximum CPU frequency fmax, and the CPU cycles Nc,k needed for each user are
set to 0.1 GHz, 0.5 GHz, and 1000 cycles/bits, respectively. Based on [29], the effective
capacitance coefficient of each user is set as ζ = 10−28. The remaining parameters used
for simulations are tabulated in Table 2. The simulations were conducted on a desktop
computer equipped with an Intel Core i9-13900KF CPU running at 3.40 GHz and with
32 GB of memory. The simulation environment used was Matlab R2023b.

Table 2. Simulation parameters for UAV communication systems with FL support.

Parameter Value

Carrier frequency 1.9 GHz
Uplink bandwidth 0.5 MHz

Path loss at reference distance (C0) −30 dB
Path loss exponent (α) 2

Noise power at CPU (σ2) −80 dBm
Maximum transmit power budget (pmax) 26 dBm

L 200 m
hmin, hmax 50, 100 m
fmin, fmax 0.1, 0.5 GHz

v 4
The maximum time limit (τ) 1000 s

The effective capacitance coefficient (ζ) 10−28

CPU cycle (Nc,k), ∀k ∈ K 1000 cycles/bits
Size of model parameters (γ) 200 KB

The following four benchmark algorithms are introduced to facilitate a comprehensive
performance comparison:

(1) Optimizing the resource allocation with given local accuracy η and fixed location of
UAV u (Algorithm I (w/o η and u)): In this algorithm, the position of UAV u is randomly
fixed satisfying the constraints (19c) and (19d), while the local accuracy η is randomly
fixed according to (19i). The remaining resource parameters are optimized by running
Algorithm 1.

(2) Optimizing the resource allocation with a fixed position of UAV u (Algorithm
II (w/o u)): In this algorithm, the position of UAV u is randomly fixed satisfying the
constraint (19c) and (19d). Afterwards, the remaining resource parameters are optimized
by executing Algorithm 1.

(3) Optimizing the resource allocation with a given local accuracy η (Algorithm III
(w/o η)): In this algorithm, the location of UAV u and the resource parameters are opti-
mized by executing the optimization procedure in Algorithm 1, while the local accuracy η
is randomly fixed in accordance with the constraint (19i).

(4) Proposed alternating optimization algorithm for the efficiency resource allocation
(Algorithm IV): In this algorithm, all of the optimal resource parameters and the position of
UAV u are achieved by utilizing the optimization procedure in Algorithm 3 to solve the
original problem (20).

We notice that the big-O complexity of optimization steps 1 and 2 exhibits the same
order of polynomial expression. In addition, Algorithm IV comprises two steps: steps
1 and 2. Therefore, the total complexity of Algorithm IV is computed from both steps 1
and 2. The complexity of the remaining benchmarks is calculated based solely on step
1. As indicated in Table 1, it consistently holds that x1 > x2 and y1 > y2. Moreover,
the values of κ1, κ2, and κ3 are negligible compared to the polynomial expression. As a
result, the total complexity of Algorithm IV can be approximated as O(x2.5

1 (y2
1 + x1)).

On the other hand, the complexity of the remaining benchmark algorithms can also be



Electronics 2024, 13, 1827 17 of 23

approximated as O(x2.5
1 (y2

1 + x1)). This implies that the complexity of Algorithm IV is
comparable to other benchmarks in terms of big-O.

4.2. Simulation Results

First, Figure 2 presents the simulation results depicting the trajectory of the UAV
following the execution of the proposed alternating optimization algorithm (Algorithm IV).
The visualization reveals the UAV’s initial placement, followed by convergence to the
optimal placement over successive iterations. The optimization process is illustrated in
both 3D and 2D, offering comprehensive insight into the changes in UAV placement.
The UAV is observed to gradually decrease its altitude and hover towards the central
location of all UE. This behavior is reasonable as it brings the UAV into closer proximity of
the UE, mitigating pathloss effects and consequently improving the overall communication
quality between the UAV and the UE.

(a) Trajectory in 3D. (b) Trajectory in 2D.

Figure 2. Optimal trajectory of the UAV after running the proposed algorithm.

Next, we conduct a performance comparison between the proposed alternating algo-
rithms. Figure 3 shows the total energy consumption for the four optimization strategies
as functions of the number of iterations. It can be seen that after a few iterations, all opti-
mization algorithms rapidly reach a saturation value. Specifically, after just 10 iterations,
the proposed optimal approach reaches 95% of the optimal performance. This indicates that
the acceptable complexity of the proposed Algorithm IV is comparable to the remaining
optimization approaches. Furthermore, it is clear that Algorithm IV achieves the best
results in terms of energy consumption among all approaches, while Algorithm I performs
the worst. Notably, Algorithm IV stands out as the most efficient, achieving an impressive
50% reduction in energy usage compared to Algorithm I. This result arises from the fact
that Algorithm IV considers all necessary parameters for optimization, while the remaining
algorithms ignore several of these parameters. Therefore, this result highlights the impor-
tant role of optimizing all parameters that significantly affect overall performance. Notably,
the group of Algorithms III and IV, which optimize the UAV trajectory, significantly out-
performs the group of Algorithms I and II with random UAV placement. Hence, these
findings underscore the pivotal role of optimizing UAV trajectory in addressing the energy
efficiency challenges in FL over wireless communication. Similar behavior is observed in
Figure 4, which displays the cumulative distribution function (CDF) of the total energy
consumption estimated using 300 channel instances. The simulation results reveal that
Algorithm IV outperforms the other approaches in terms of energy efficiency, resulting in a
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remarkable 50% reduction in energy consumption compared to Algorithm I, which yields
the worst results.
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Figure 3. Total energy consumption of different iterative algorithms versus the number of iterations
(K = 10).
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Figure 4. CDF of the total energy consumption with different iterative algorithms (K = 10).

Next, a series of experiments are conducted to evaluate the impact of parameter set-
tings on performance after applying the proposed optimization approaches to deploying FL
in the UAV communication system. This analysis enables us to gain fascinating insights into
comparing the proposed optimization algorithms in terms of overall energy consumption.
Figure 5 shows the results achieved by different optimization strategies versus the uplink
bandwidth B. It is observed that as the value of B increases, all strategies exhibit improved
system performance. That is because the greater the uplink bandwidth, the higher the
uplink rate of all UE, leading to reduced communication energy consumption between the
UE and the UAV when transmitting the trained local models. Furthermore, Algorithm IV
consistently displays the best performance, followed by the other proposed alternating
algorithms, while Algorithm I continues to show the worst performance among all opti-
mization algorithms. Notably, the gap between Algorithms I and II and the gap between
Algorithms III and IV progressively diminish as the bandwidth B increases. These results
suggest that uplink bandwidth expansion mitigates the effect of optimizing the parameter
η. This is because the larger the value of bandwidth B, the greater its contribution to
the communication phase between the UAV and UE compared to the computation phase
depending on η. This trend is evident as the gap between Algorithms I and II and the gap
between Algorithms III and IV decrease from 323.39 to 73.93 J and from 170.51 to 49.28 J,
respectively, as the value of B increases from 0.3 to 1.2 MHz.



Electronics 2024, 13, 1827 19 of 23

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Bandwidth (MHz)

200

400

600

800

1000

1200

1400

1600

T
o

ta
l E

n
er

g
y 

C
o

n
su

m
p

ti
o

n
 (

J)

Algorithm IV (Proposed Algorithm)
Algorithm III (w/o )
Algorithm II (w/o u)
Algorithm I (w/o  and u)

Gap = 323.39

Gap = 73.93

Gap = 170.51

Gap = 49.28

Figure 5. Total energy consumption of different iterative algorithms versus uplink bandwidth B
(K = 10).

Similar results regarding the performance comparison among different optimization
algorithms are observed in Figure 6. This figure depicts the total energy consumption
versus the maximum uplink power budget pmax at each user in the system. Algorithm IV
consistently demonstrates the best results among the proposed optimization algorithms.
However, the trend of the result lines exhibits some differences compared to those in
Figure 5. In Figure 6, the energy consumption of the proposed optimization approaches
decreases as the value of pmax increases. Moreover, the results reveal that the improved
performance of the proposed algorithms becomes insignificant when the value of pmax
reaches a specific value of 21 dBm. By optimizing the transmit power allocation at the UE,
the proposed approaches address the trade-off between decreasing the communication
time and increasing the transmitted uplink power at the UE. Consequently, the proposed
system with FL support only needs to ensure a sufficient level of transmit power for all
UE to upload their trained local models while guaranteeing acceptable quality of service
without exceeding the deadline τ. As a result, all UE can reduce energy usage and extend
the time that the devices operate, which is a critical issue for mobile devices with limited
battery life.
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Figure 6. Total energy consumption of different iterative algorithms versus maximum transmit power
budget pmax (K = 10).

Figure 7 shows simulation results obtained using the proposed different optimization
strategies versus the data size γ of uploaded model parameters. The observed results
regarding the performance comparison among the proposed optimization strategies mirror
those in Figures 5 and 6. Algorithm IV, by discovering the optimal point of all necessary
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parameters for the original problem in (20), consistently demonstrates the best performance.
However, the trend of the result lines in Figure 7 contrasts with the finding of Figure 5.
All algorithms exhibit a declining system performance as γ increases, attributed to the
longer transmission times resulting from the larger data size of the model parameters.
Consequently, communication energy consumption increases, which leads to an overall
increase in energy consumption. It is notable that Algorithms III and IV exhibit significantly
smaller performance declines compared to Algorithms I and II. In contrast, Algorithm
I exhibits the worst performance, with rapid degradation of system performance as γ
increases. Obviously, optimizing the UAV placement enhances the proposed system’s
adaptability to the varying data sizes of the model parameters. As a result, the proposed
UAV communication system has the potential to broaden its applications by adjusting the
data size of the model parameters to accommodate diverse purposes.
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Figure 7. Total energy consumption of different iterative algorithms versus data size γ of model
parameters (K = 10).

Similar observations are found in Figure 8 when inspecting the change in the number of
pieces of UE K in the system. Undoubtedly, a higher value of K reflects a larger total system
energy consumption for the training process in FL. However, the performance decline
of Algorithm IV is not considerable compared to the remaining benchmark algorithms.
The evidence of these findings is illustrated by the widening performance gap between
Algorithm IV and the other benchmark algorithms as the value of K increases. Particularly,
the gap between Algorithms III and IV increases from 21.51 to 88.84 J, and the gap between
Algorithms I and IV significantly increases from 129.48 to 571.46 J. Thus, effective resource
allocation significantly contributes to improving the system’s performance, particularly in
expanding the number of pieces of UE served for FL. As a result, Algorithm IV demonstrates
its superiority by exhibiting minimal performance degradation with varying data sizes and
UE numbers. This emphasizes the scalability potential of FL within UAV communication
systems owing to the implementation of the proposed alternating optimization approach.
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Figure 8. Total energy consumption of different iterative algorithms versus the number of pieces of
UE K.

5. Conclusions

In this paper, we investigated a UAV communication system integrated with FL,
addressing the optimization of energy efficiency for all UE during the training process.
To tackle this complex problem, we proposed a novel alternating optimization algorithm.
By solving two suboptimal convex problems, we derived an optimal solution for efficient
resource allocation, particularly concerning the UAV trajectory. Extensive simulations
demonstrated the effectiveness of our proposed algorithm, which outperformed the pro-
vided benchmark algorithms. Notably, optimizing UAV positions resulted in a remarkable
enhancement of energy efficiency for all UE, with improvements of up to 50%, attributed
to the improved wireless communication links between the UAV and UE compared to
algorithms with random UAV placements. Furthermore, our analysis revealed minimal per-
formance degradation across varying data sizes and numbers of pieces of UE, underscoring
the scalability potential of the proposed alternating optimization approach for FL over
UAV communication systems. Recognizing the susceptibility of wireless communication
links to failures or disruptions due to factors like interference, obstacles, or environmental
conditions, our future work will incorporate considerations for communication failure to
enhance the practical relevance and applicability of our findings. Moreover, our future
work will extend to incorporate the optimization of energy consumption associated with
UAV movement.
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