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Abstract: This research presents a novel approach by applying convolutional neural networks (CNNs)
to enhance optical camera communication (OCC) signal detection under challenging indoor lighting
conditions. The study utilizes a smartphone app to capture images of an LED lamp that emits
25 unique optical codes at distances of up to four meters. The developed CNN model demonstrates
superior accuracy and outperforms traditional methodologies, which often struggle under variable
illumination. This advancement provides a robust solution for reliable OCC detection where previous
methods underperform, particularly in the tourism industry, where it can be used to create a virtual
museum on the Unity platform. This innovation showcases the potential of integrating the application
with a virtual environment to enhance tourist experiences. It also establishes a comprehensive visible
light positioning (VLP) system, marking a significant advance in using CNN for OCC technology in
various lighting conditions. The findings underscore the effectiveness of CNNs in overcoming ambi-
ent lighting challenges, paving the way for new applications in museums and similar environments
and laying the foundation for future OCC system improvements.

Keywords: convolutional neural networks; optical camera communication; indoor positioning;
lighting constraints; simulation

1. Introduction

The integration of communication and detection technologies, known as Joint Com-
munication and Sensing (JCS), is poised to transform spectral efficiency and detection
precision, opening doors to groundbreaking applications in next-generation mobile net-
works and intelligent transportation systems. This fusion, endorsed by the International
Telecommunication Union (ITU) guidelines, supports the development of Optical Camera
Communication (OCC) and Visible Light Positioning (VLP) as innovative solutions for
indoor positioning and data transmission [1,2]. These technologies utilize existing lighting
infrastructure to offer efficient communication, which is particularly impactful in various
sectors including museums and tourism. However, implementing OCC and VLP in envi-
ronments with lighting constraints, such as museums, presents significant challenges due
to ambient light interference and the specific conservation needs of artifacts. This research
tackles these challenges head-on by utilizing Convolutional Neural Networks (CNNs) for
optical code classification under such conditions, based on a dataset comprising images of
optical codes emitted by LED lamps and captured at various distances.

To enhance the discussion on emerging technologies in OCC and VLP systems, it is
crucial to incorporate advanced architectures such as Stacked Intelligent Metasurfaces (SIM).
These architectures have significantly improved light manipulation for signal detection,
offering a new dimension of efficiency in environments with complex lighting conditions.
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Recent advancements in SIM technology demonstrate their potential to seamlessly integrate
into OCC systems, optimizing both the detection and transmission of signals under diverse
environmental conditions [3].

Our methodological approach involves systematically developing and evaluating
various CNN model configurations, ranging from basic to complex, to determine the most
effective model for detecting and classifying OCC signals across different lighting conditions.
Additionally, we simulate a VLP in a virtual 3D museum environment, demonstrating our
proposal’s viability in a controlled setting. This simulation is a solid foundation for future
research and practical applications of OCC and VLP in the tourism sector and beyond.

Incorporating the Social, Contextual, Mobile (SoCoMo) framework [4] into our analy-
sis, which leverages the interplay between social interactions, physical context, and mobility
to enhance technology integration, we illustrate how this synergy can augment OCC and
VLP applications for extracting information from location systems. This approach aims
to improve the accuracy and reliability of indoor positioning systems and explore new
possibilities for these technologies in the tourism industry, aligning with the move towards
more immersive, personalized, and technologically enriched experiences [5]. Museums are
presented as the initial testing grounds for these broader applications.

This document is structured as follows: Section 2 offers a comprehensive literature
review on OCC, VLP, and CNNs. Section 3 details the methodology (data collection, neural
network design, and the VLP simulation setup). Section 4 presents the results obtained,
followed by a discussion in Section 5 on the implications of these findings and directions
for future research.

2. Related Works

Optical Camera Communication (OCC) has emerged as a promising solution for low-
rate applications, lauded for its low power consumption, cost-effectiveness, and enhanced
security. Operating across infrared or visible spectra, OCC leverages image sensors for
signal reception and LEDs for transmission. Despite its potential, the technology faces
limitations such as low data rates, primarily attributed to commercial cameras’ limited
sampling rates and challenges, including out-of-focus effects and inconsistent frame rates.
Camera specifications, LED dimensions, channel properties, synchronization, and modula-
tion techniques determine the efficacy of OCC transmission [6–8]. The last decade has seen
significant advancements in OCC systems, with applications extending to smartphones
and computers. For example, a smartphone-based OCC system achieved a communication
distance of 7.5 m using a large LED, though it was limited to low data rates and did not
support motion capture [9]. Other research has focused on overcoming motion capture
challenges and flickering issues, employing under-sampling and multi-level modulation
methods to achieve flicker-free communication. Notably, integrating OCC systems with
standard lighting sources has been highlighted as a critical advantage for seamless commu-
nication. Recognizing small LEDs in static and dynamic environments poses considerable
challenges, with mobile conditions exacerbating bit-error rates (BER). Research by Ahmed
et al. (2020) introduced an OCC system using a small LED array and a low-frame rate cam-
era as the receiver, significantly enhancing bit-error rates in mobile scenarios by developing
a specialized neural network [10].

Optical Camera Communication (OCC) and Visible Light Positioning (VLP) have been
recognized as pivotal technologies in the advancement of indoor navigation systems. These
technologies not only leverage the existing lighting infrastructure for efficient communica-
tion but also introduce innovative solutions for precise data transmission and localization.

Joint Communication and Sensing systems (JCAS) represent a cutting edge in spectral
efficiency and detection accuracy, crucial for the effective deployment of OCC and VLP
technologies under various lighting conditions. These systems face critical trade-offs
between communication efficiency and detection accuracy, explored within the framework
of JCAS systems [11].
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Following this, several studies have explored the integration of OCC with various
communication protocols, emphasizing the need to enhance both the data transmission
capabilities and the accuracy of the localization features. This integration is crucial for
deploying robust and reliable indoor navigation systems, particularly in environments
such as museums where precision and efficiency are paramount.

Visible Light Positioning (VLP) [12–15], utilizing LED lighting for precise data trans-
mission and localization, represents another frontier in indoor navigation technologies.
Recent studies have focused on improving the integration of optical localization tech-
niques with network infrastructures, enhancing mobility awareness, and refining channel
modeling. The ITU-T G-9991 standard has been instrumental in promoting the develop-
ment of VLP technologies, ensuring their interoperability and efficiency. Innovations in
receiver diversity and computational methods, such as neural networks, have markedly
improved positioning accuracy within Light Positioning Technologies [16]. Recent research
has introduced innovative tracking algorithms and explored the potential of artificial in-
telligence in optimizing VLP signal decoding processes, addressing challenges such as
the need for dense LED distributions [17], line-of-sight constraints [18], and the impact of
environmental factors.

A noteworthy study proposed the pixel-to-bit calculation (PBC) decoding algorithm,
achieving significant decoding rates in practical VLP applications [19]. This advancement
underscores the potential of artificial intelligence in enhancing signal decoding processes
for VLP systems. In Optical Localization Techniques, advances in receiver diversity and
neural networks have markedly improved positioning accuracy, allowing for precise three-
dimensional location tracking. Innovative algorithms employing visible light communica-
tion have been developed to refine indoor positioning precision, attesting to the versatility
of these technologies in complex settings. Additionally, exploring convolutional neural net-
works (CNNs) in optical camera communication has underscored the potential of artificial
intelligence to enhance signal decoding processes. Visible Light Positioning (VLP) systems
also face challenges, including dense LED array requirements, line-of-sight limitations, and
environmental influences such as tilt angles and multipath reflections. These complexities
necessitate significant data inputs, like high-resolution images, for precise positioning
within intricate indoor environments. Current research is directed at overcoming these
hurdles to broaden the applicability of VLP technologies.

Optical positioning systems represent a significant stride in indoor navigation by
utilizing pervasive LED lighting to deliver precise locational data, merging illumination
with data transmission—vital for navigating indoor spaces beyond the reach of GPS signals.
The seamless integration of these positioning systems into existing lighting infrastructures
emphasizes their operational efficiency and straightforward deployment, attributed to
their resistance to electromagnetic interference, presenting a compelling option for indoor
settings requiring minimal infrastructural changes [20]. Advances in accuracy for location
systems have been propelled by enhanced receiver diversity and advanced computational
methods, such as neural networks, instrumental for achieving precise three-dimensional
positioning. These breakthroughs signal a critical shift towards more robust and nuanced
indoor navigation solutions [21].

A novel tracking algorithm that harnesses visible light communication has been in-
troduced to further advance positioning systems’ proficiency, elevating the standard for
indoor positioning precision. This method demonstrates VLP’s adaptability to intricate
indoor landscapes and establishes new benchmarks for overcoming traditional naviga-
tion challenges in such environments [22]. The dynamic nature of indoor spaces poses
significant challenges in decoding VLP signals. Recent research has delved into the capa-
bilities of CNN-based frameworks for optical camera communication [23], illustrating the
considerable role that artificial intelligence and machine learning may play in improving
the decoding processes and, consequently, the performance of VLP systems. Recent en-
hancements in VLP technology have involved varied computational strategies to heighten
system accuracy and dependability. Studies [21,22] have shown the benefits of employing
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sophisticated algorithms and neural networks to refine system precision, even in multi-
faceted indoor scenarios. These methodologies indicate a shift towards advanced decoding
and signal processing techniques designed to navigate environmental variances and the
innate challenges of indoor navigation [24,25].

The burgeoning field of Joint Communication and Sensing (JCAS) holds promise to rev-
olutionize the use of the electromagnetic spectrum, particularly with emerging technologies
such as 6G [26]. Relevant to the Internet of Things (IoT), JCAS combines communication
with environmental sensing [27]. A proof of concept in greenhouse monitoring using
LoRaWAN and a multilayer perceptron neural network has been demonstrated to predict
plant growth effectively [28]. A tutorial on Orthogonal Frequency-Division Multiplexing
(OFDM) [29] sensing in JCAS systems has reviewed the latest advancements, presenting
a novel approach to simplify sensing complexity. Within OCC frameworks, JCAS has the
potential to substantially improve signal detection and classification by utilizing existing
network infrastructure for sensing, providing a more reliable and efficient solution in
environments with complex lighting conditions, such as museums. An evolution towards
an integrated Joint Communication, Sensing, and Localization (JCSL) system is occurring,
which would amalgamate communication, sensing, and precise localization functionalities,
thereby enhancing the system’s utility in IoT applications. The implementation of JCSL is
anticipated to foster richer, context-aware interactions with the environment and introduce
forward-thinking navigation and resource management approaches in intricate settings.

3. Proposed System

Despite the advancements in OCC and the application of neural networks, there re-
main gaps in the literature, particularly in the context of lighting-constrained environments
like museums. The current study aims to fill these gaps by developing a CNN model tai-
lored for the classification of a set of 25 optical codes. The model is trained, validated, and
tested using a dataset of images captured with a smartphone camera in a controlled envi-
ronment, simulating the conditions of a museum. The proposed CNN model’s performance
is evaluated based on its accuracy in classifying the optical codes, its training efficiency, and
its validation results, contributing to the field of OCC by providing a solution that is both
reliable and adaptable to the unique requirements of lighting-constrained environments.

The proposed system aims to integrate Optical Camera Communication (OCC) and
Visible Light Positioning (VLP) technology within a museum setting, to simulate real-
time positioning on a 3D platform. Our methodology unfolds through several strategic
phases, as illustrated in Figure 1, collectively forming a comprehensive approach from
data collection to real-time simulation. Initially, images of an LED lamp are collected using
a mobile phone camera. These images feature distinct optical codes—patterns such as
stripes or lines—generated by the LED lamp, resulting in a total of 25 different codes. Each
code is manually labeled to serve as a reference for the subsequent learning process.

Once labeled, these images serve as input data for a Convolutional Neural Network
(CNN), which is tasked with the training, validation, and classification of the optical codes.
The CNN’s role is to accurately identify and categorize the unique patterns in the images,
learning the characteristics that define each class of code.

After the CNN is trained and the optical codes are classified, the data are used to
conduct a 3D simulation of indoor positioning. This simulation gathers information to feed
back into the CNN, aiming to refine the predictions and classifications of the optical codes.
Through iterative training and simulation, the system’s ability to accurately determine
indoor positioning is enhanced, advancing the potential for precise and reliable navigation
in interior environments such as museums.

At the onset of this study, we performed a thorough process of collecting, labeling,
and categorizing images of LED lamps, each encoded with unique and distinct optical
codes essential for the functionality of Indoor Positioning Technology based on VLP. This
foundational work sets the stage for the sophisticated analytical processes that follow,



Electronics 2024, 13, 1828 5 of 16

ensuring a rich dataset that mirrors the complexities and variability encountered in museum
lighting conditions.

Figure 1. Proposed system scheme in this contribution.

3.1. CNN Model Developed

The core of our research is the development of a highly specialized Convolutional
Neural Network (CNN) model designed to accurately identify and classify OCC signals
within museums, where lighting conditions can vary significantly.

Our CNN architecture, is outlined in Figure 2, is structured to incorporate a series of
convolutional layers activated by the ReLU (Rectified Linear Unit) function. This choice is
strategic, leveraging ReLU’s ability to introduce non-linearity into the model, enabling it to
learn and model complex patterns in the data efficiently. These convolutional layers are the
backbone of the model, designed to detect and learn from the spatial patterns present in
the images of LED lamps, capturing the essence of the optical codes they emit.

Figure 2. CNN structure used in this work.
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Following the convolutional layers, max pooling layers are employed to perform
dimensionality reduction. This process simplifies the information by retaining only the
most salient features, thereby reducing the computational load for subsequent layers
and mitigating the risk of overfitting. This step is crucial for maintaining the model’s
performance and generalization ability across varying lighting conditions and optical codes.
A flattening layer then transforms the processed features into a one-dimensional vector,
making them suitable for classification through dense layers. To enhance the model’s
robustness and adaptability to new, unseen data, we integrated dropout techniques within
the dense layers. This approach randomly deactivates a fraction of the neurons during
training, compelling the model to learn more generalized patterns that are not dependent
on the presence of specific neurons. The culmination of the classification process is achieved
via a softmax activation layer. This layer assigns a probability to each of the model’s output
classes, effectively determining the specific optical code category for each input image. This
probabilistic approach is instrumental in handling the inherent uncertainty and variability
in the optical codes generated by the LED lamps.

The model initiates with a scaling layer to normalize the input values, enhancing the
model’s ability to learn efficiently from the start. Sequentially, the convolutional layers,
equipped with an array of filters, embark on the task of extracting and learning diverse
spatial features from the input images. The complexity and depth of learning escalate
with each layer, as indicated by the increasing number of filters designed to capture
an ever-expanding spectrum of visual characteristics.

In our experiments, the hyperparameters of this model, summarized in Table 1, were
optimized to enhance performance. These parameters, including learning rates and epochs,
were adjusted to maximize classification accuracy and efficiency.

Table 1. Hyperparameter values for the proposed CNN model.

Hyperparameter Value

Batch size 32
Epochs 30 and 50

Learning rate 0.001
Loss Function Sparse Categorical Crossentropy

Optimizer Adam
Convolutional layers 3 layers: 32, 64, 128 filters each

Pooling layers MaxPooling2D

Dense layers 1 layer with 128 neurons, 1 output layer with num_classes
neurons

Activation Function (Output Layer) Softmax
Data Augmentation RandomFlip, RandomRotation
Regularization (L2) 0.01 applied to all convolutional and dense layers

Dropout 0.5 applied to the last dense layer
Early Stopping Patience of 3 epochs

Source: Own elaboration.

Through this intricate architecture and the strategic layering of convolutional, pooling,
and dense layers, our model embodies a sophisticated learning mechanism. It is adept
at navigating the complexities of optical code recognition within the dynamic and often
challenging lighting environments of museums.

With over ten million trainable parameters, our CNN model stands as a testament
to the depth of its learning capacity and its prowess in classifying images into 25 distinct
optical code categories. This complexity not only highlights the model’s advanced analytical
capabilities but also underscores its potential to revolutionize indoor navigation systems
by accurately interpreting the nuanced optical signals critical for VLP technology.

This development phase underscores our commitment to pushing the boundaries of
what is possible with OCC signal detection and classification, setting a new standard for
accuracy and reliability in museum navigation solutions.
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3.2. Precision and Loss Function Explanation

The accuracy of our CNN model is quantitatively evaluated using the accuracy metric,
which measures the proportion of correctly predicted instances out of the total number of
instances in the dataset:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
This metric provides a straightforward measure of the model’s overall performance.

Additionally, we employ the sparse categorical crossentropy as our loss function, which is
particularly effective for multi-class classification problems. This loss function is defined as:

Loss Function (Sparse Categorical Crossentropy) = −
C

∑
i=1

yo,c log(po,c)

where

- yo,c is a binary indicator (0 or 1) if class label c is the correct classification for
observation o;

- po,c is the predicted probability of observation o being of class c.

This function penalizes incorrect classifications by evaluating the logarithm of the
predicted probabilities, which intensifies the penalty as the prediction deviates further from
the actual class. The use of logarithmic loss ensures that large errors are heavily penalized,
fostering a more precise model calibration.

3.3. Normalization of the Confusion Matrix

To ensure a fair comparison of the model’s performance across different classes, we
normalize the confusion matrix. This normalization process adjusts the matrix values to
represent probabilities instead of absolute counts, enabling an equitable comparison across
all classes regardless of their sample size in the dataset:

Normalized Value =
Original Value

Sum of Values in Row
This approach ensures each row in the confusion matrix sums to one, reflecting the

distribution of predictions for each actual class, and is critical for identifying biases towards
particular classes or potential areas of improvement in the model’s classification accuracy.

3.4. Data Collection, Labelling and Preprocessing

To ensure representativeness and diversity that accurately reflects real-world con-
ditions, more than 18,000 images were taken of an LED lamp sending different optical
codes. This dataset spanned a wide range of optical codes generated with OOK modulation,
named from 500 to 10,500, and captured at various distances—from less than 1 m to up to
4 m—and at different angles—30°, 45°, and 60°—to precisely simulate the varied viewing
conditions found in a museum environment. Additionally, images of LED lamps emitting
light at different frequencies were obtained, resulting in a rich diversity of optical codes.

These optical codes are composed of unique patterns of light and darkness, often
appearing as a series of alternating lines or dashes, as shown in Figure 3. The nature of
these patterns is due to the inherent operation of LED lamps, which emit light through
a rapid sequence of turning on and off, too fast to be perceived by the human eye. However,
mobile device cameras are capable of capturing these quick changes in light intensity,
resulting in distinct visual patterns. These patterns, in turn, generate unique optical codes
for each LED lamp.

The image classification process resulted in the definition of 25 distinct classes, each
corresponding to a unique optical code associated with a specific LED lamp. Each class
represents a particular optical code, determined by the specific combination of distance,
angle, and optical code of each lamp.
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Given that OCC technology utilizes the blinking of LEDs, it is essential to consider
the refresh rates of LEDs and the frame rates of cameras. If the LED’s refresh rate and the
camera’s frame rate are not synchronized, the rolling shutter effect may complicate the
extraction of the proposed optical codes. In our experiments, the system was receiving until
a recognized optical code was obtained and, as the frame rate of the camera is slower than
the change of the LED, there is a fast response from the CNN as can be seen in Figure 3.

Figure 3. Capture of the 25 different optical codes.

3.5. Model Training and Testing

The CNN model was trained using an extensive dataset, consisting of images, of which
a set was exclusively reserved for validation and evaluation purposes. This meticulous
process involved fine-tuning the model’s parameters and architecture to ensure its accuracy
in identifying LED lamps within the museum environment. The model was trained to
recognize these lamps based on their unique optical codes, composed of distinctive patterns
of light and darkness generated by the lamps themselves.

The training phase was conducted by dividing the dataset into 80% for training and
20% for validation, experimenting with batch sizes of 32 to find the optimal configuration
that maximized learning. The evaluation of the model focused on accuracy and loss over
30 and 50 epochs, using graphs to visualize the learning progression and adjust the model’s
settings as necessary. Additionally, a confusion matrix was used to provide a detailed
analysis of the model’s performance in classification.

3.6. VLP System Based on 3D Platform in Real-Time Simulator

An exhibition room within a museum has been simulated within a 3D platform.
This environment, designed to emulate a real museum space, becomes the ideal stage for
implementing and validating the VLP technology, offering a testing ground that faithfully
simulates the conditions to which the system would be subjected in real applications (see
Figure 4).

Figure 4 showcases the VLP system’s coverage within a virtual room, where repeated
labels like LED1, LED2, and LED3 visually demarcate the illuminated zones, illustrating
the LED sources’ range.
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The design of the virtual room incorporates key elements such as detailed exhibi-
tions, an adaptable lighting system, and avatars programmed to simulate the presence
and movement of visitors, among other aspects, enabling a detailed evaluation of the
accuracy and reliability of the VLP system under different lighting conditions and spatial
configurations. The ability to dynamically adjust the lighting conditions in this simulated
environment allows the testing of how the VLP system responds to significant variations in
light, a critical element for validating the efficacy of light-based technologies, and increases
robustness against ambient light-induced noise.

Figure 4. Virtual room created in 3D Develop Platform.

The implementation of the convolutional neural network (CNN) specialized in classi-
fying 25 distinct optical codes emitted by the light sources within the simulation is crucial
in this study. This CNN has undergone an exhaustive development and refinement process
and has been trained using a diverse array of light patterns to ensure it classifies images
accurately across a wide range of lighting conditions. The integration of this CNN with the
VLP system enables quick and precise identification of each optical code, thereby facilitating
detailed and contextualized navigation within the virtual environment.

The implementation of this virtual museum room, complemented with deep learning
technology, marks a significant advancement in the simulation of VLP systems. This
approach not only validates the technical viability of accurately classifying multiple optical
codes in a controlled environment but also highlights the potential of VLP systems to
enhance the navigation experience in complex and culturally significant indoor spaces,
such as museums. The synergy between detailed environmental simulation and advanced
CNN analytics establishes a robust and flexible methodology for testing and continuous
improvement of the VLP system, ensuring that the technology is not only pioneering but
also applicable and effective for accurately guiding visitors and enriching their experience
in indoor environments.

4. Results

The CNN model demonstrated high accuracy in classifying optical codes across all
tested distances, outperforming traditional detection methods, especially in low-light
conditions. The results indicate that our neural network-based approach can significantly
enhance OCC signal detection in environments with challenging lighting conditions.

4.1. CNN Evaluation

The learning curves for the CNN model provide valuable insight into the training and
validation process over 30 epochs, with a focus on accuracy and loss for a batch size of
32 (Figure 5).
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The learning curves provide a clear visualization of the model’s performance through-
out the training process over 30 epochs. Initially, we observe a phase of rapid learn-
ing, where the accuracy quickly ascends, and the loss—which reflects the model’s error
rate—sharply declines. This indicates that the model is efficiently learning from the training
data and improving its predictions at a fast rate.

Approaching the fifth epoch, the model begins to show signs of convergence. This
is evident as the pace of improvement in accuracy decelerates, and the reduction in loss
becomes less pronounced. The curves for both metrics start to level off, suggesting the
model is reaching a state where further training yields little to no improvement in learning,
the phenomenon commonly referred to as a “plateau”.

From around the 10th epoch onwards, the plateau phase is fully established. The
accuracy curve flattens, and the loss curve stabilizes, indicating that the error rate of
the model’s predictions has minimized to an optimal level given the current setup. The
consistency in the loss curve, particularly the validation loss, confirms that the model is
generalizing well to new, unseen data and is not merely memorizing the training dataset.

By the 30th epoch, the model’s learning curve exhibits no significant changes in both
accuracy and loss, affirming that the model has reached its learning capacity. The slight gap
between the training and validation loss remains steady. These results confirm the model
as being well balanced between fitting the training data and generalizing to the validation
data without overfitting.

Figure 5. Results of training and validation of CNN after 30 epochs.

A comprehensive examination of the confusion matrix (Figure 6) indicates the model’s
commendable accuracy across a broad spectrum of classes, effectively distinguishing the
majority of optical codes. This performance attests to the model’s capacity for extracting
and applying key features of each code towards accurate classification.

Notably, the model exhibited remarkable accuracy with specific classes, such as
‘10,500’, ‘600’, ‘3500’, ‘1500’, ‘5500’, ‘2000’, and ‘8000’, with correct classifications num-
bering 134, 128, 124, 121, and 120, respectively. These outcomes highlight the model’s
robustness in identifying a vast array of codes, evidencing its superior capability in feature
extraction and the application of learned patterns to novel data.

Conversely, the matrix also shed light on precise instances of misclassification, offering
pivotal insights for model enhancement. A recurrent issue was observed with the optical
code ‘1000’, which saw misclassifications primarily with codes bearing close numerical or
visual resemblance, such as ‘3000’, ‘500’, ‘700’, ‘800’, and ‘900’. This trend underscores the
challenges in differentiating between codes with closely aligned numerical associations
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or visual characteristics, pinpointing an area ripe for improvement in the model’s feature
discrimination aptitude.

A particular challenge was the differentiation between codes ‘900’ and ‘800’, where
‘900’ was frequently misclassified as ‘800’ on 17 occasions. This pattern of confusion
between two closely related codes calls for a refinement in the model’s ability to discern
the subtle distinctions between similar codes.

Moreover, the matrix intricately details the interaction among various codes, for
instance, ‘2500’ being misclassified as ‘3000’ nine times. Alongside other notable confusions,
such as between ‘5000’ and ‘5500’, this emphasizes the need to refine the specificity of the
features that uniquely identify each class.

The insights gleaned from the confusion matrix not only affirm the model’s strengths
in accurately classifying a diverse array of optical codes but also illuminate specific areas
where the model struggles to distinguish between codes with near-identical numerical
or visual features. Tackling these issues through strategic enhancements—like refining
the model’s architecture, advancing feature extraction methodologies, or diversifying
the training dataset—promises significant improvements in the model’s precision. This
meticulous analysis serves as a cornerstone for future explorations aimed at rectifying the
identified shortcomings, thereby bolstering the model’s functionality and reliability for
precise optical code classification in practical applications.

Figure 6. Confusion matrix after 30 epochs.

The learning curves for the CNN model offer a compelling narrative of the model’s
initial rapid learning phase over the first 30 epochs, where accuracy markedly increases and
loss—an indicator of the model’s error rate—sharply decreases. By the 5th epoch, the model
shows signs of convergence; as we progress to the 10th epoch and beyond, a plateau phase is
evident, suggesting an optimal learning state has been achieved within the given configuration.

When these results are compared with the extended training period of 50 epochs (see
Figure 7), a continued albeit slower improvement in accuracy suggests a nearing to the
performance limit achievable with the current dataset. The validation loss shows a tendency
to stabilize, with a slight uptick, potentially indicative of the early stages of overfitting.
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The confusion matrix at 30 epochs (see Figure 6) reveals commendable classification
accuracy across a broad spectrum of optical codes, with certain classes achieving correct
classification rates well over 120. Notable misclassifications occur for code ‘1000’, which is
frequently confused with numerically or visually similar codes, as well as between the ‘900’
and ‘800’ codes.

Examining the confusion matrix after 50 epochs (see Figure 8), it can be noticed
a consistent pattern with some classes showing slight improvements in classification
accuracy and continued misclassification errors for specific codes. This underscores that
while additional training has led to incremental model improvements, certain structural
confusions between similar classes remain unaddressed.

Figure 7. Results of training and validation of CNN after 50 epochs.

Figure 8. Confusion matrix after 50 epochs.
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These findings suggest that while the model is capable of effective learning and
generalization up to a point, there is a performance threshold that requires further strategic
intervention to surpass. Future research might focus on experimenting with deeper or
more complex network architectures, advanced data augmentation techniques, and more
sophisticated regularization methods to overcome current limitations and achieve even
more precise discrimination between optical codes.

4.2. System Evaluation

Data exchange in the system evaluation is a crucial aspect that enables these virtual
representations to simulate, analyze, and predict the performance and behavior of their
physical counterparts in real-time. In this work, a virtual museum environment was pro-
grammed using a 3D rendering framework. The first step involved collecting data from the
physical entity that the virtual entity represents. The positioning information obtained from
the CNN was send to this virtual museum. This can include a wide range of data types such
as operational data, sensor readings, environmental data, and maintenance records. The col-
lected data are then integrated into the virtual environment. This process involves ensuring
the data are in the correct format, are accurate, and reflect the current state of the physical
entity. Data integration tools and middleware are often used to automate and streamline
this process. For a virtual representation to be effective, it needs to be synchronized with
its physical counterpart. This means that any changes in the physical entity should be
reflected in the virtual environment in real-time or near-real-time. This synchronization is
achieved through continuous data exchange between the physical and virtual models. With
the data integrated, the virtual representation can simulate the behavior and performance
of the physical entity under various conditions. Advanced analytics and machine learning
models can be used to analyze the data, identify patterns, predict future performance, and
potentially uncover insights that could lead to optimizations.

The virtual simulator environment, shown in Figure 9, was set with uniform light
intensity for all LEDs during experiments. Future work, related to this aspect, will be done
for demonstrating how accurately the proposed network can predict values across different
LED brightness levels.

Figure 9. Simulation of visible light positioning system in a virtual room.
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The insights and predictions generated by the virtual environment can be fed back
to the operators or automated systems controlling the physical entity. This creates
a feedback loop where the physical and virtual continuously inform and improve each
other’s performance. Given the sensitive nature of the data involved, security and
privacy are paramount in the data exchange process. This includes securing the data
transmission channels, ensuring data integrity, and implementing access controls and
privacy measures.

5. Discussion

In addition to the configuration of the lighting conditions for each of the lamps,
an advanced convolutional neural network (CNN) is implemented specifically designed for
the classification of the 25 unique optical codes emitted. This CNN is the result of a rigorous
development and training process, where it has been fed with a data set composed of varied
light patterns, corresponding to the optical codes generated by the lighting system. The
integration of this deep learning technology into the VLP system represents a qualitative
leap in the system’s ability to accurately and efficiently interpret the light data received.

The network has been optimized to recognize and classify these codes with high
precision, even in conditions of light variability and under different spatial configurations.
The implementation of CNN allows the VLP system to not only detect the presence of
an encoded light source, but also to unambiguously identify the specific optical code it
emits. This is essential for the effective operation of the system, since each optical code is
associated with a precise location within the simulated or real environment, thus allowing
detailed guidance and navigation for users.

The integration of CNN into the museum room simulation adds an additional layer
of intelligence to the VLP system, enabling real-time classification of optical codes in the
environment. This ensures that regardless of fluctuations in lighting conditions or changes
in space configuration, the system can deliver accurate and up-to-date positioning informa-
tion. Such capability is essential for applications in dynamic, culturally rich environments
such as museums, where accuracy in wayfinding and the provision of relevant contextual
content can significantly enrich the visitor experience.

The synergy between detailed lighting simulation and the powerful analytical capabil-
ities of CNN is at the heart of the innovation in our VLP system. This combination not only
demonstrates the technical feasibility of classifying multiple optical codes in a complex
environment, but also underlines the transformative potential of visible light positioning
technology for indoor navigation and spatial interaction.

Researchers investigating future research opportunities should be aware of the lim-
itations of this study. First, depending on the data used to train it and the conditions
under which the images were captured, the model developed to classify LED images may
have some limitations. It is important to note that LEDs can emit light at higher or lower
frequencies, and depending on the frequency of the flicker, it can affect the quality of the
illumination and how the light is perceived. Another consideration is that reducing mobile
images from 1440 × 1440 pixels to 150 × 150 pixels can impact image quality to make the
model load and run faster. As a result, the quality of the photos is another major limitation,
as low-resolution photos can make it difficult for the model to distinguish between different
light patterns. The size of the photos has been reduced due to problems with loading and
running the images to train the model. Future studies will consider this reduction, as it
may affect the quality of the images collected for the LED detection model. Variations in
lighting can also cause problems, and the model may need assistance to accurately identify
photos if the lighting conditions change too much during image collection. In terms of
future research, this study may inspire investigations into the combined use of VLP and
OCC in indoor tourist localization beyond museums. In addition, this study may motivate
future research on the application of machine learning techniques in the tourism industry
to examine and understand the data collected by VLP and OCC technologies.
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