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Abstract: Data augmentation is considered a promising technique to resolve the imbalance of large
and small objects. Unfortunately, most existing methods augment all small objects indiscriminately,
regardless of their learnability and proportion. This tends to result in wasteful enlargement for many
weak, low-information objects but under-augmentation for rare and learnable objects. To this end,
we propose a value-guided adaptive data augmentation for scale- and proportion-imbalanced small
object detection (ValCopy-Paste). Specifically, we first develop a non-learning object value criteria to
determine whether one object should be expanded. Both scale-based learnability and quantity-based
necessity are involved in this criteria. Then, the value distribution of objects in the dataset can
be further constructed on the basis of the relevant object values. This helps to ensure that those
uncommon, learnable objects that deserve enhancement are more likely to be enhanced. Additionally,
we propose to enhance the data by pasting the sampled objects into relatively smooth portions of
fresh background images, rather than arbitrary areas of any background images. This helps to boost
data diversity while reducing the interference from complicated backgrounds. Evidently, our method
does not require sophisticated training and just depends on the size and distribution of the objects in
the dataset. Extensive experiments on MS COCO 2017 and PASCAL VOC 2012 demonstrate that our
method achieves better performance than state-of-the-art methods.

Keywords: data augmentation; small object; imbalanced

1. Introduction

As an essential step for traffic surveillance and maritime rescue, object detection has
experienced tremendous progress [1–8]. This is not only due to the powerful representa-
tion ability of deep neural networks but it is also reliant on massive training data [9–12].
Unfortunately, most training data suffer from the heavily imbalanced ratio of large objects
to small objects. Typically, there exhibits obvious quantity skewness in favor of large
objects [13]. Then, small objects with inferior quantity proportion contribute less to the de-
tection model, whereas the large ones with great quantity advantage are dominant [14,15].
As a result, the learned detection model is severely biased. It cannot perform well towards
the small objects with low quantity proportion. However, in many practical tasks, detecting
small objects with uneven distribution is a challenge that must be faced. For example,
in terms of autonomous driving, the vehicles have to emphasize small objects to avoid
traffic accidents. Respecting satellite and aerial remote sensing images, imbalanced small
objects are a common presence that cannot be ignored. Therefore, small object detection
has garnered increasing research interest and many efforts have resorted to improving the
performance of imbalanced small object detection [16].
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Concerning this, data augmentation is recognized as an extremely efficient tech-
nique [9,17–22] to improve the generalization ability of detection model. Data augmentation
is less expensive and time-consuming than labeling larger-scale per-pixel annotations. A
typical scheme is deep neural network-based augmentation [23], e.g., meta-learning [24–28],
generative adversarial network [29–33], and reinforcement learning [34,35]. For example,
the generative adversarial network is leveraged to produce useful pseudo-data in [15,30].
Regarding AutoAugment [36], reinforcement learning is employed to find the optimal
policy combination for data augmentation. Despite their feasibility, they have to encounter
the challenge of training stability and computational overhead [37].

In this connection, many efforts have been concentrated on augmentation methods
involving no training, e.g., Cutout [38], Cutmix [39], Random Erasing [40], and Copy-
Paste [41]. Regarding Random Erasing, it randomly selects a rectangle region in an image
and erases its pixels with random values. In this connection, images with different levels of
rectangle occlusion are yielded. Analogous to Random Erasing, Cutout aims at randomly
masking out square regions of images during training. Obviously, both Random Erasing
and Cutout help to reduce the risk of over-fitting. While, by overlaying a patch of either
black pixels or random noise, discriminative information can be lost. Regarding this,
Cutmix proposes to cut and paste patches of training images. Specifically, the ground
truth labels are also mixed according to the area of the patches. Evidently, the amount and
diversity of training images can be guaranteed. In terms of the above-mentioned methods,
Copy-Paste augmentation is more advantageous as it is instance-oriented. Specifically,
it expands the object instance rather than the circumscribed rectangular area containing
that object. Then, with various levels of expansion, the diversity of training samples is
enhanced, and the quantity imbalance is alleviated to a certain extent. Clearly, this helps
to improve the generalization performance of the detection model. It is worth noting,
however, that current copy and pasting-based methods tend to augment all small objects
indiscriminately, regardless of their learnability or intelligibility. Consequently, this could
cause invalid expansion for weak objects containing extremely low amounts of information,
but under-augmentation for the learnable ones.

To this end, we propose a tri-sampling-based object-relevant value-guided explainable
copy-paste policy (ValCopy-Paste) for scale and quantity imbalanced small object detec-
tion. As tiny objects involve limited identifiable information, they are difficult to learn.
Therefore, apart from the balance of the number of samples in the training set, the detection
performance is closely related to the object size. Inspired by this, we take both the size
and quantity of object instances into consideration and further develop a criterion (i.e.,
indicator) for object-specific value (i.e., significance) characterization. Within this criteria,
both scale-based learnability and quantity-based necessity are involved. According to the
acquired object-relevant value, an object-specific value distribution is further established.
Then, guided by this distribution, we can select the instances to be copied via the sampling
technique. Evidently, this encourages those learnable and scarce objects to be augmented
with a greater probability. Instead, invalid augmentation is suppressed. Moreover, for the
sake of filtering the interference from complex contexts, we paste the copied instances to
the relatively uniform regions of new scene images. This is profitable to break the spurious
association between objects and backgrounds and improve the robustness of the detection
model. Experimental results on MS COCO and PASCAL VOC2017 datasets show that,
compared with state-or-the-art, our method exhibits obvious superiority for small object
detection. Our main contributions can be summarized as follows.

• Instead of extensive data-driven black-box training, we give a tri-sampling-based sim-
ple and explainable data augmentation framework for imbalanced small object detec-
tion. Specifically, we introduce the learnability and scarcity of data and formulate the
quantity-based necessity and scale-based learnability to characterize object-relevant
value without training. This is capable of reasonably reflecting which object instances
need and deserve augmentation as well.
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• Instead of extending all small object instances with equal probability, we leverage
the distribution of the attained object value as guidance to sample out the objects to
be augmented. Then, those valuable objects, which are learnable and scanty, will be
expanded with high probability, and vice versa. Therefore, on the premise of ensuring
the diversity of the expanded samples, invalid or unnecessary expansion was avoided.

• Aimed at averting the interference of extremely complex contexts, we paste the se-
lected objects to the relatively uniform areas of new scene images. This considers
both the diversity and low interference of contexts. In addition, after the objects are
pasted onto the background, the spurious correlation between objects and the scenes
is broken. This is beneficial to enhance the generalization and robustness. Experi-
mental results demonstrate that compared with others, the proposed method exhibits
obvious superiority.

2. Materials and Methods
2.1. Scale-Imbalanced Small Object Detection

For scale-imbalanced small object detection, one common strategy is to enhance the
resolution of the feature maps through super-resolution techniques [42]. For example,
a generative adversarial network is exploited to generate high-resolution feature maps
for small object detections in [43]. Another popular strategy is to make full use of the
feature maps from small objects. In general, this relies on effective network structures
capable of fusing multi-scale features [44–47]. A typical example is the feature pyramid
network (FPN) [44,48–50]. Additionally, to better integrate the high-level features with
the low-level ones, various FPN-based variants are further developed [50]. Among them,
NAS-FPN [51] is widely concerned since it can automatically learn the network connections.
Despite the improvement of detection performance brought by network upgrades, more
and more computing consumption is also an important problem that can not be ignored [52].
Therefore, it has attracted more attention to alleviate the problem of scale imbalance through
simple data augmentation [53], so as to improve the detection accuracy for small objects.

2.2. Copy and Paste Based Data Augmentation

Another typical strategy to augment small objects is to use copy and paste [13]. Copy
and paste is a simple and straightforward data augmentation technique to mitigate the
scale imbalance [37]. For example, in [13], small objects are first oversampled and then
pasted to any area that does not overlap with the objects in the original background
image. Note, that the entire bounding box area containing the objects is expanded. As a
result, the pseudo association between the objects and their contexts is susceptible to
being learned, which severely affects the generalization ability of detectors. To this end,
object instances are used for augmentation [54]. As the object instances are still pasted
to the original background images, the diversity of scenes cannot be guaranteed. In this
connection, Copy-Paste is developed, which advocates pasting the target into arbitrary
background images [41]. Apparently, this is advantageous to avoid over-fitting and enhance
the generalization of the detection model. Notably, since all object instances are augmented
with the same probability, learnable and inadequate object instances may obtain insufficient
augmentation. On the contrary, those who are difficult to learn or rich in quantity are
excessively augmented. To address this issue, we propose an object-relevant value-guided
copy-paste strategy (ValCopy-Paste) for scale-imbalanced small object detection.

3. Our Method
3.1. Problem Formulation

Note, that the severely unbalanced ratio between large and small objects has be-
come one of the primary challenges for object detection. It is sensible to augment more
small objects to mitigate the bias of the detection model through data augmentation.
Consequently, typical copy-paste-based methods are suggested to supplement data for
generalization enhancement.
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Unfortunately, the majority of known methods augment all objects uniformly, regard-
less of their quantity or learnability. In the case of extremely weak or plentiful objects, this
can result in a tremendous wasteful or useless expansion for objects that are exceedingly
weak or quite abundant. Additionally, it is well known that deep learning has the trait of
shortcut learning [55]. In other words, the model learns task-irrelevant shortcut features,
which often exist in the training sets, but once the test set is out-of-distribution (OOD),
the robustness of the model will be greatly reduced. For example, in the task of cow
recognition, the model can learn some connection between “grass” and “cows” and then
recognize the cows through “grass”. Consequently, when the cows are moved to the beach,
the model fails to recognize them. This is because the model recognizes the cows via the
“grass”. In this case, the “grass” is a shortcut for cows. As a result, due to the shortcut
learning issue, the deep detection model may become heavily focused on background
unrelated to the objects, drastically reducing the model’s robustness. Therefore, to prevent
learning of the fictitious semantic information of the objects, different background images
should be utilized. Moreover, when the expanded small objects are placed in the complex
area of the background images, the background texture easily interferes with the model’s
learning for the augmented small objects, as depicted in Figure 1.

Figure 1. Display of Enhancement Results of Three Typical Copy-Paste Related Methods: (a) Cutout
pastes the randomly cut patches to any areas of random background; (b) Augsmall pastes the
randomly selected small objects to any areas of original background; (c) CopyPaste pastes the
randomly selected objects to any areas of random background.

Motivated by this, this paper inherits the advantages of copy-paste-based methods
and further develops an object-relevant value-guided adaptive augmentation method
(ValCopy-Paste) (Algorithm 1). Respecting small objects, both the scale and quantity are
exploited to measure the learnability and necessity for augmentation. For the background,
the randomness and local smoothness are considered. Figure 2 gives the visual augmented
data by our method. Table 1 lists the main notations of involved variables.
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Algorithm 1 ValCopy-Paste Algorithm

1: Compute the object value based on Equation (1)
2: Calculate the object value distribution based on Equation (2)
3: Obtain the object instances to be augmented through sampling
4: Obtain the uniform areas of each image in the training set based on their variances
5: Acquire the background images from the training set via randomly sampling
6: Select the smooth areas of background images via randomly sampling
7: Generate the augmented images by putting the selected small object instances to the

smooth regions of the background images
8: return augmented images

0.0024

0.0019

0.0005

0.0034

0.0029

0.0023

Figure 2. Examples of augmented data by our method. The instances in the rectangle are the
augmented small objects through our method, whereas the values above denote the objects’s values.

Table 1. Notations.

N Total number of small object instances
M Total number of background images
oi The ith small object instance
Bj The jth background image
Bk

j The kth flat region from Bj

Vi The value of oi
Ni Total number of small objects in the same class as oi
ai Area occupied by the bounding box of oi

3.2. Establishment of Object Value Criteria

It is worth noting that object instances with an area less than 26 × 26 are tiny. They
have extremely low information and are hard to identify. On the contrary, objects with
an area greater than 96 × 96 are large. Between 26 × 26 and 26 × 26, the object with an
area around 64 × 64 is a medium one. Concerning this, we divide the object scale into four
intervals, which are (0, 26), [26, 64), [64, 96), [96, ∞), respectively. Here, the scale represents
the root mean square of the area occupied by the bounding box. For example, assume oi is
the ith small object instance, ai is the area owned by the bounding box of oi, then the scale
of oi is defined as

√
ai.

In general, the larger the size, the more learnable the objects. For small objects with
a scale of (0, 26), as quite limited information is encompassed, they are usually difficult
to learn, let alone detect. Therefore, it may be futile to enhance small objects with a
scale ranging in (0, 26). Specifically, for ease of averting useless augmentation, we do not
augment small-scale objects with a scale ranging in (0, 26). It can be observed that objects
with a scale greater than 96, have noticeable advantages in both quantity and detection
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accuracy. This indicates that they do not need to be enhanced as well. Regarding (64, 96],
there are relatively sufficient training data. This means that augmentation for (0, 26] is
usually futile, while for (64, 96], enhancement is not so necessary. Inspired by this fact,
the object scale interval for enhancement is set as (26, 64) in our method. Moreover, owing
to the strong correlation between learnability and instance size, we introduce scale-based
learnability to identify whether an object deserves augmentation.

Additionally, due to the noticeably proportional advantage of large objects, they tend
to play a leading role in training the detection models. Consequently, the learned model
is biased and is inclined to detect large objects effectively rather than small ones. In other
words, when the number of small objects in a scene is more than that of the large objects,
small objects will likely take the dominant position instead of large objects, which will lead
to a decrease in the accuracy of the model. From this perspective, it can be inferred that
the object detection performance is closely related to the number of training data as well,
as shown in Figure 3. This suggests that expanding the small objects with a low proportion
is more necessary and meaningful, and vice versa.

Figure 3. Comparisons of quantity and detection performance for small objects (i.e., size ranging from
[26 to 64) before and after augmentation on the PASCAL VOC 2012 dataset. The bar graph shows
the number of objects with different sizes, while the curve depicts their corresponding detection
accuracy. Notably, Copy-Paste randomly increases the objects of each scale indiscriminately. Despite
that the number of small objects is increased, the detection accuracy of small objects does not change
significantly. For ValCopy-Paste, it adopts object-relevant value-guided sampling to ensure that
learnable objects are augmented. Thus, the detection accuracy is significantly improved with the
increase in the number of small objects in the training set.

Enlightened by this, we first exploit the quantity-based necessity to evaluate whether
an object instance needs augmentation. Then, by integrating both scale-based learnability
and quantity-based necessity, we establish object value criteria for data augmentation.
Specifically, the criteria Vi corresponding to oi can be formulated by

Vi =

{
e
√ai
Ni ,

√
ai ∈ [26, 64)

0, otherwise.
(1)
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where Ni represents the total number of small objects in the same class as oi.
There are two main reasons for the establishment of the criteria Vi. First, it is worth

noting that the larger the object instance ai, the more informative and learnable. Regarding
this, the corresponding value vi should increase with the increase in area ai. Second, for the
object instance with an area of less than 26, it is found that they are difficult to present
visual representations for target recognition, resulting in a sharp decrease in the learnability
of detectable models, which can even be ignored. Therefore, the value vi of ai less than 26
is set to 0. Taking into account the above two reasons we construct the value criteria as
Equation (1), which can adaptively adjust with the size and number of the objects.

Apparently, Vi is a comprehensive index, which not only considers whether the
instance is worth expanding but also whether it is necessary to expand. Equation (1) reflects
that with a larger object value, the corresponding object is more worthy of augmentation
from the perspective of both quantity and intelligibility. Then, whether an object instance
is worth augmenting is directly proportional to its instance value. Therefore, the object-
relevant value can be directly used to supervise the data augmentation.

3.3. Learnability and Scarcity Based Object Value Distribution

To enhance the diversity and randomness of augmented data, we do not directly
utilize the object-relevant value. Instead, we further establish the value distribution. Based
on Equation (1), the value distribution of objects can be attained through the maximum
normalization. Concretely, the value probability corresponding to oi is defined as

Pi =
Vi

max(V)
, (2)

where V = [V1, V2, . . . , VN ]
T ∈ RN×1, N denotes the total number of small object instances.

Based on the attained object instance value distribution, we can sample out objects to
be copied. To be specific, due to the efficiency and effectiveness of the Walker–Vose alias
method [56], it is utilized to attain the objects in this paper. Subsequently, the attained
objects are copied for pasting in the next subsection.

3.4. Tri-Sampling-Based Generation of Augmented Training Images

To generate the augmented training images, we introduce a tri-sampling-based method.
First, C instances are randomly selected from the training set based on their value distribu-
tion and then copied. This enables scarce and worth learning small goals to be enhanced
with a greater probability. Second, background images are randomly selected from the
training set. This is helpful to guarantee the diversity of backgrounds and avoid overfitting
the detection model. Second, Third, uniform areas are randomly selected from the uniform
area pools from the chosen background images. This can effectively avoid interference
from complex backgrounds, thereby enabling the network to better learn the characteristics
of small objects. Specifically, note that for background images extremely complex contexts
cause serious interference to small objects, which makes the detection model hardly focus
on the pasted small objects. This indicates that for the posted location, a too-complex
context is not a reasonable choice. Otherwise, even after data augmentation, it is still
difficult to achieve satisfactory detection performance for small objects. To alleviate this
issue, it is sensible to force the instances to paste onto any relatively smooth regions.

Based on the above analysis, we will detail how to paste small object instances into
relatively smooth areas. As variance is simple and easy to obtain, we adopt it to measure
the degree of regional smoothness in this paper. It is worth noting that on the one hand,
too large a threshold makes small object instances pasted onto complex scenes, which is
unfavorable to small object learning and detection. On the other hand, too small a threshold
can affect the diversity of the contexts, which can lead to overfitting of the model. In this
connection, the relatively smooth areas obtain relatively flat regions in this paper. Then,
C instances are selected and put into arbitrary uniform areas, which are from randomly
chosen background images.



Electronics 2024, 13, 1849 8 of 15

Figure 2 gives six instances of augmented data. In this figure, the objects in the red
rectangle are expanded into small ones. Meanwhile, the value above denotes the value of
the augmented small object.

4. Experiments
4.1. Dataset and Comparison Methods

To evaluate the effectiveness of our method, comparative experiments with five repre-
sentative data augmentation methods, including Cutout [38], GridMask [57], the augmenta-
tion for small object detection [13] denoted by Augsmall, Cutmix [39], and CopyPaste [41]
is conducted on PASCAL VOC 2012 [58] and MS COCO 2017 [59] datasets.

Following a conventional design, we use ∼118k images for training and 5k images for
validation on the COCO2017 dataset. For VOC2012, 5717 and 5823 images were used for
training and validation, respectively.

4.2. Baseline and Evaluation Metrics

Baseline: Note, that SSD [60] and Faster RCNN [61] are typical one-stage and two-
stage object detection methods, respectively. Therefore, in this paper, we employ SSD
and Faster RCNN as our baseline models with ResNet-50 [62] as the backbone network.
Both of them adopt the official implementation version of PyTorch. To be specific, the im-
plementation of Faster RCNN please refer to https://github.com/pytorch/vision/tree/
main/torchvision/models/detection (accessed on 5 May 2024). The implementation of
SSD please refer to https://github.com/NVIDIA/DeepLearningExamples/tree/master/
PyTorch/Detection/SSD (accessed on 5 May 2024). All models are first initialized us-
ing ImageNet pre-trained weights, and then finely tuned on PASCAL VOC 2012 and
COCO2017 datasets. To be fair, we removed all data augmentation methods during the
data load process.

Evaluation Metrics: To better assess the effectiveness of our method on small object
detection under limited table width, we utilize Average Precision (AP) values involving
object scale, i.e., APIoU

scale, instead of the overall detection performance. Here, IoU refers to
the overlap rate between the generated candidate bound and the original ground truth
bound. For simplicity, the IoU used in APIoU

scale is expressed as IoU = IoU × 100%.

4.3. Experimental Setting

On the PASCAL VOC 2012 dataset, we set the learning rate, batch size, and epoch to
0.0003, 16, and 50 for SSD, respectively. Regarding Faster RCNN, they are set as 0.003, 8,
and 30, respectively. On the COCO2017 dataset, the learning rate, batch size, and epoch for
SSD are set as 0.001, 16, and 50, respectively. In terms of Faster RCNN, they are set as 0.02,
8, and 30, respectively. During training, the SGD optimizer is utilized with the momentum
set to 0.9 and weight decay set to 0.0005. Additionally, for both SSD and Faster RCNN, we
adopt the popular warm-up strategy to adjust the learning rate (lr). Concretely, in the first
four epochs, the learning rate increases to 10 times the initial.

4.4. Parameter Impact Analysis

C refers to the number of instances pasted to one background image. Then, the larger
the C, the more small objects will be expanded. To investigate the impact of different C,
relevant experiments are performed on VOC2012. Figure 4 plots the curve of detection
accuracy changing with C. From Figure 4 we can see that when C is 1, both SSD and
Faster RCNN achieve the highest AP. However, with the increase in C, there is an obvious
downward trend. Tables 2 and 3 further list the relationship between C and AP obtained
through Faster RCNN under different learning rates. It can be found that even for different
learning rates, C = 1 always corresponds to the highest AP. This is consistent with the
analysis of C in [13]. The main reason for this is that with the increase in C, the proportion
of small objects will be significantly increased as well. This incurs that the trained model is

 https://github.com/pytorch/vision/tree/main/torchvision/models/detection
 https://github.com/pytorch/vision/tree/main/torchvision/models/detection
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
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not mainly dominated by large objects, which leads to the deterioration of the detection
accuracy towards large objects with a large proportion.

1 2 3 4
C

45.0

47.5
A

P(
%

)

Faster RCNN
SSD

Figure 4. Curves of C vs. AP with both SSD and Faster RCNN on PASCAL VOC 2012 dataset.
Evidently, the optimal choice of C is 1. The main reason for this is that the larger the C, the greater
the change in data set distribution. Then, the learned model will not be dominated by large objects,
which can lead to a decrease in the detection performance for large objects with high proportions.

In the first row of Figure 5, only our method successfully detects the small object,
i.e., the cup, as pointed to by the red arrow in the last image. In the second row of Figure 5,
the red arrow in the last image points to two persons with a small scale. Still, only our
method successfully detects the two persons. Concerning other methods, GridMask detects
one person, while others fail. In the third row of Figure 5, our method could find the pen
holder in the middle of the image, but others failed.

(a) CopyPaste (b) Augsmall (c) Cutout (d) GridMask (e) Cutmix (f) Ours 

Figure 5. Visualization of results for different methods on the PASCAL VOC 2012 dataset.
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Table 2. SSD results based on detection results of different C and learning rate (lr) on PASCAL VOC
2012 dataset.

AP (%)
Lr

0.002 0.003 0.004 0.005 0.006 0.007 0.008

C

1 43.6 43.9 43.6 43.2 43.2 42.6 42.4
2 43.5 43.5 43.2 42.9 42.3 42.1 41.7
3 43.3 43.2 42.6 42.1 41.6 41.6 41.4
4 42.9 42.9 42.5 41.9 41.4 41.2 40.7

Table 3. Faster-RCNN based detection results with different C and learning rate (lr) on PASCAL VOC
2012 dataset.

AP (%)
Lr

0.002 0.003 0.004 0.005 0.006 0.007 0.008

C

1 49.0 49.6 49.3 48.9 49.5 49.6 49.2
2 49.1 48.9 48.5 49.2 49.3 48.8 48.6
3 48.1 48.1 48.1 48.6 48.6 48.6 48.2
4 47.8 47.6 48.3 48.0 47.6 47.4 46.5

4.5. Ablation Experiments

To investigate the effectiveness of each component, i.e., object value guided copy and
paste to a relatively smooth area, ablation experiments are conducted. The experimental
results are shown in Table 4.

Table 4. Ablation experimental result on PASCAL VOC 2012 dataset.

Strategy APS APM APL AP(0,26) AP[26,64) AP[64,96) AP[96,∞) AP50
(0,26) AP50

[26,64) AP50
[64,96) AP50

[96,∞) AP75
(0,26) AP75

[26,64) AP75
[64,96) AP75

[96,∞)

SSD+Baseline 9.4 27.7 51.1 5.5 22.8 31.7 51.1 13.7 42.4 56.6 79.9 3.4 23.0 31.6 56.7

SSD+RI+FA 6.9 22.6 47.4 3.7 18.4 26.2 47.4 10.1 36.3 47.1 76.8 1.2 16.9 25.5 51.1

SSD+VGI+RA 7.0 22.4 46.0 4.7 18.4 25.9 46.0 11.3 36.0 48.2 75.2 3.2 15.8 24.0 48.9

SSD+VGI+FA (Ours) 10.4 27.9 50.9 5.9 22.6 32.2 50.9 13.5 42.3 57.0 79.9 3.8 21.4 32.5 55.9

Faster-RCNN+Baseline 20.9 40.1 55.4 17.8 35.6 43.8 55.4 36.4 60.3 70.8 84.6 14.4 36.2 47.2 62.1

Faster-RCNN+RI+FA 21.8 39.4 54.9 16.7 35.4 42.4 54.9 34.6 59.2 68.1 83.7 13.6 37.7 45.7 61.2

Faster-RCNN+VGI+RA 22.3 38.8 55.3 16.8 35.6 42.2 55.3 33.7 58.9 68.5 83.6 14.3 36.8 45.4 62.0

Faster-RCNN+VGI+FA (Ours) 22.4 40.3 53.9 17.5 36.1 44.5 53.9 36.3 62.0 71.0 83.5 14.5 39.1 48.5 59.9

In Table 4, “RI (RandomInstance)” refers to selecting the instances to be copied at
random, whereas “VGI (ValueGuidedInstance)” represents the case that the instances are
samples based on its value distribution. In addition, “RA (RandomAreas)” refers to where
the copied object instances are pasted to arbitrary regions, while “FA (FlatAreas)” means
that the copied instances are pasted to relatively flat regions. In the first three columns
of Table 4, we show the accuracy results for S, M, and L objects divided by the previous
method. The next few columns show that we re-partition the object interval according to
the object size.

As demonstrated in Table 4, whether the SSD or Faster-RCNN strategy, our approach
achieves the highest accuracy in small object detection (APS). However, the overall small
object detection accuracy of the SSD method in small objects is not as good as that of the
Faster-RCNN method. The reason is that SSD shows strong performance on large objects
across feature extractors such as VGG, MobileNet, and ResNet, while the accuracy of small
object detection is extremely low [63]. What is more, since we augment the small objects,
the number of small objects in a picture increases which can cause the number of small
objects to dominate, further compromising the accuracy of the model trained using the SSD
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method. However, while we have augmentation for small objects, the loss of accuracy is
very small, for example, for AP50

[ 26,64) we are only 0.1 below the baseline. Different from
the SSD method, our method combined with the Faster-RCNN strategy can significantly
improve the precision of small objects. For example, for AP75

[ 26,64) , our detection accuracy is
improved by 2.9, 1.4, and 2.3, respectively, compared with the other three methods.

4.6. Comparison

Comparative experimental results on PASCAL VOC 2012 dataset: To assess the
effectiveness of our method on the PASCAL VOC 2012 dataset, comparative experimental
results obtained by Faster RCNN are listed in Table 5. It is obvious that the five comparison
methods perform absolutely differently under diverse detection metrics. Notably, our
method always achieves the top 1 accuracy for the small objects with scale in (26, 64]
in terms of various metrics. This further indicates the effectiveness and robustness of
our method.

Table 5. Result of object detection on the PASCAL VOC 2012 dataset.We achieve the best small object
accuracy on Faster-RCNN-50-FPN.

Method APS APM APL AP(0,26) AP[26,64) AP[64,96) AP[96,∞) AP50
(0,26) AP50

[26,64) AP50
[64,96) AP50

[96,∞) AP75
(0,26) AP75

[26,64) AP75
[64,96) AP75

[96,∞)

Baseline [61] 20.9 40.1 55.4 17.8 35.6 43.8 55.4 36.4 60.3 70.8 84.6 14.4 36.2 47.2 62.1

None copy and paste families

Cutout [38] 19.6 39.6 55.2 16.2 35.1 43.0 55.2 33.7 60.4 69.7 84.5 13.2 37.1 47.3 62.2

GridMask [57] 21.1 40.0 55.0 17.4 35.0 44.1 55.0 35.3 59.5 70.4 84.6 12.8 38.6 48.8 61.7

Cutmix [39] 19.9 39.4 53.8 17.1 34.1 43.7 53.8 34.6 58.5 71.0 83.7 13.5 36.5 46.8 60.5

Copy and paste families

Augsmall [13] 21.1 39.9 54.3 15.8 34.7 43.8 54.3 34.1 59.9 71.0 84.0 12.1 36.4 47.1 60.5

CopyPaste [41] 21.9 38.3 52.3 16.2 33.6 42.3 52.3 36.1 58.8 69.0 82.6 13.8 34.0 45.5 58.2

Ours 22.4 40.3 53.9 17.5 36.1 44.5 53.9 36.3 62.0 71.0 83.5 14.5 39.1 48.5 59.9

As shown in Table 5, our method is well-performing on the scale of (26, 64]. This is
because scale-based learnability encourages our method to augment the objects with scale
in this range. Instead of extending all object instances uniformly, our method focuses on
expanding small object instances more worthy of enhancement. This can avoid wasteful
enlargement for weak, low-information tiny objects or large objects with large amounts.
Therefore, it is possible that the detection performance for large or tiny objects without
getting augmented may not be as good as other methods. However, our method usually
outperforms others for objects with scale in (26, 64] as depicted in Table 5. For example,
our AP(26,64] is greater than that of CopyPaste by 2.5%. Regarding AP50

(26,64], our method

can outperform CopyPaste by 3.2%. Specifically, our AP75
(26,64] surpasses that of CopyPaste

by over 5%. Moreover, our method can achieve top-1 detection performance for objects of
scale in (0, 26] as well.

Comparative experimental results on COCO2017 dataset: Comparative experiments
on the COCO 2017 dataset are also conducted. Table 6 presents the detection accuracy
of various methods based on Faster RCNN. From Table 6 we could find that Augsmall is
capable of reaching top-1 accuracy for AP75

(0,26] and APS. This is because Augsmall focuses

on augmenting the small objects with scale in (0, 26]. Unfortunately, its AP50
(0,26] and AP(0,26]

are inferior to ours. Besides, our method achieves the top-1 accuracy on a scale of (0, 26]
almost under all IoUs. Furthermore, our method also can outperform the others on a scale
of (0, 26].

Note, that our method mainly concentrates on imbalanced small object detection
instead of the large ones. Therefore, after augmenting small objects through our method,
the situation where the model is dominated by large objects will be alleviated to some
extent, as shown in [16]. However, the detection performance for small objects can be
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enhanced. These experimental results demonstrate the superiority over others regarding
small object detection.

Table 6. Result of object detection on the COCO dataset. We achieve the best small object accuracy on
Faster-RCNN-50-FPN.And in the medium object also has a better performance.

Method APS APM APL AP(0,26) AP[26,64) AP[64,96) AP[96,∞) AP50
(0,26) AP50

[26,64) AP50
[64,96) AP50

[96,∞) AP75
(0,26) AP75

[26,64) AP75
[64,96) AP75

[96,∞)

Baseline [61] 10.9 28.9 40.4 9.2 24.1 34.7 40.4 17.9 40.3 55.6 62.4 8.5 25.8 37.3 43.4

None copy and paste families

Cutout [38] 10.9 27.6 41.0 9.3 22.9 33.6 41.0 17.8 38.8 55.1 63.2 8.7 24.1 35.1 43.7

GridMask [57] 11.1 27.8 39.0 9.3 23.2 33.6 39.0 18.0 39.7 54.6 61.0 8.4 23.9 35.7 41.9

Cutmix [39] 11.0 27.5 37.4 9.3 23.3 32.9 37.4 18.0 39.5 53.3 59.1 8.8 24.2 35.4 39.9

Copy and paste families

Augsmall [13] 11.3 28.2 40.2 9.2 23.6 33.8 40.3 17.7 39.6 53.9 62.3 9.0 25.0 36.3 43.3

CopyPaste [41] 9.7 26.5 37.2 8.6 21.7 32.2 37.2 17.1 37.6 52.8 59.1 8.0 22.4 34.4 39.7

Ours 11.2 29.2 39.9 10.2 24.4 34.3 39.9 20.2 41.7 57.4 63.4 9.0 25.7 36.2 43.5

5. Conclusions

We present a value-guided adaptive augmentation method (ValCopy-Paste) for scale-
imbalanced small object detection. In our method, we introduce scale-based learnability
and quantity-based necessity to depict the object-relevant value and then construct the
instance value distribution. This is advantageous to identify which object instances need
and deserve augmentation as well. Benefiting from the guidance of the instance value
distribution we can suppress the unnecessary and worthless augmentation, but encourage
the imperative and invaluable one. Additionally, aimed at avoiding the interference of
over-complex contexts, we propose to paste the small object instances to any flat areas
of new background images. In this connection, we can achieve a trade-off between the
diversity and low interference of contexts.

Comparative experiments are conducted with several representative data augmen-
tation methods on MS COCO 2017 and PASCAL VOC 2012 datasets. Throughout the
experiments, we can find that our ValCopy-Paste exhibits obvious superiority over others.
As is well known, detecting and tracking imbalanced small targets in remote sensing im-
ages is a challenging problem. In the future, we will leverage the idea of ValCopy-Paste to
improve the performance of remote sensing image-related detection or tracking tasks.
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