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Abstract: As a decentralized system, blockchain has been widely used in numerous areas and
has become a hot topic in both industry and academia. The increasing demand for blockchain
causes heavy storage consumption which seriously affects the performance of blockchain, especially
in the context of massive volumes of data. To solve these problems, many related systems like
sharding and sidechain have been proposed to improve the efficiency and scalability of blockchain.
However, in practical deployment scenarios, these systems still have problems, such as low read–
write performance, and reorganization and synchronization of ledger data after storage expansion,
which cause the storage system’s expansion to become difficult and time-consuming in large-scale
blockchain systems. Facing these problems, in this paper we propose ChainMaker Storage System
(CMSS). CMSS is a blockchain storage system with high read-and-write performance and horizontal
scaling support. It has been used as the storage system of the most popular permissioned blockchain
ChainMaker. There are three contributions of our proposed CMSS: (i) a new block storage workflow
to achieve high read–write performance; (ii) the Meta File System (MFS) to support the horizontal
expansion of blockchain storage; and (iii) hot–cold separation to reduce the resource usage and
economic costs. To evaluate the performance of CMSS, we compare CMSS with Hyperledger Fabric
(HLF), the most popular permissioned blockchain platform. We select five well-known cloud service
providers to calculate the storage cost in a real production environment. The results show that CMSS
has better performance in read and write than HLF and advantages in storage capacity and price.

Keywords: blockchain storage; system scalability; permissioned blockchain

1. Introduction

The blockchain system was first proposed in 2008 [1] as a solution to prevent tampering
and double record issues in the peer-to-peer version of the electronic cash system [1].
With the support of cryptographic algorithms [2] and the increasing emphasis on data
privacy and data rights confirmation [3], blockchain, one of the most popular decentralized
systems, has been used as the underlying architecture in numerous applications like
non-fungible tokens (NFTs) [4] and cryptocurrency [5]. Blockchain technology presents
a trilemma of decentralization, security, and scalability, wherein the pursuit of security
and decentralization invariably compromises scalability. To ensure the safety of users’
property, both Bitcoin [1] and Ethereum [6] prioritize decentralization and security at the
expense of scalability. Scalability has become the biggest bottleneck in the implementation
of blockchain applications. For example, the soaring number of accounts and transactions
made the Ethereum data more than 16.5 TB as of 18 February 2024 [7] and the storage
size of Bitcoin [1] is 549.46 GB on 15 February 2024 [8]. To maintain the consistent order
of transactions, ensure the integrity of the execution process, and support the traceability
of data sources, current blockchain technologies require that every node in the network
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should possess a comprehensive replication of the complete transaction history and ledger
state, which seriously influences the performance of blockchain in latency and throughput.
Facing this problem, many scholars have proposed many solutions to minimize the storage
pressure of blockchain and improve the performance and storage scalability of blockchain.
Sharding, proposed by [9–11], can divide the entire blockchain network into multiple
shards. The nodes in each shard are responsible for processing the transactions of the shard
and storing the status of the shard. Sharding technology can achieve the high-performance
goals of the blockchain without sacrificing the degree of centralization and has gradually
become one of the mainstream blockchain expansion technologies. However, the existing
sharding technology still leads to new problems, like cross-shard transaction processing
and attacks by slowly adaptive Byzantine adversaries [9]. Sidechain, proposed as another
solution [12,13], is an independent blockchain that can run in parallel with the main chain
and supports the cross-chain transmission of assets. Sidechain can reduce the burden of
the mainchain and improve scalability. The above solutions still face the problem that the
file systems of blockchain cannot expand horizontally. When the disks of file system are
full, the chain stops working and cannot store new blocks. When meeting massive data, the
blockchain will become cumbersome, non-scalable, and slow to operate. That means the
blockchain needs to reorganize and synchronize ledger data after the storage expansion.

After analyzing the problems and solutions in the blockchain storage system, we
summarize the following research questions worth attention and research. These research
questions are also the starting point of our work.

RQ1How to achieve efficient blockchain operations in scenarios with massive ledger
data, such as reading and writing block operations? When the amount of ledger
data is large, the operation of reading and writing blocks becomes time-consuming,
which causes delays and affects the throughput of the entire blockchain system, which
becomes one of the bottlenecks of the system.

RQ2How to improve the performance when adding more disks without reorganizing
the ledger data? The current technology writes the block data on the chain into a file
system. The upper limit of block storage in the blockchain is limited by the size of the
file system. When the file system (disk) is full, the chain stops working and cannot
store new blocks. If we add more disks to this system, the blockchain reorganizes the
ledger data and re-download the ledger data from the network. This is an extremely
time-consuming process.

RQ3As the scale of blockchain ledger data continues to expand, how to control the
storage cost of the entire blockchain? With the development of blockchain systems,
the amount of ledger data will become very large. Each node in the blockchain system
needs to save all ledger data, which will bring a huge storage burden and expensive
storage costs to the entire system.

To solve these research questions, we propose CMSS, ChainMaker Storage System,
in this work. CMSS is a blockchain storage system with high read-and-write performance
and horizontal scaling support. CMSS has a new workflow and architecture. It has been
used as the storage system of the most popular permissioned blockchain ChainMaker [14].
The new workflow of CMSS can achieve high performance in reading and writing data
while ensuring the consistency of the ledger. The architecture of CMSS supports rapid
horizontal scalability based on the meta file system (MFS) we proposed. To minimize
the consumption of storage and reduce the economic costs, our proposed CMSS provides
hot–cold separation supports. In the experiment, we compare CMSS with the storage
system of state-of-the-art permissioned blockchains such as Hyperledger Fabric (HLF).
The results of the experiments show that our storage system has significant advantages in
latency and throughput. Especially in scenarios of massive data, our storage system has
advantages over HLF in terms of efficiency and cost-effectiveness.

The major contributions are summarized below.
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1. New Workflow with High Read–Write Performance. We propose a new block stor-
age workflow. Following this process, CMSS can improve the reading and writing
efficiency of the blockchain system while ensuring the consistency of the ledger.

2. MetaFile System with Horizontal Scalability. We creatively propose a file architec-
ture for the blockchain storage system that supports rapid horizontal scalability. When
meeting scenarios with massive data, this architecture can expand ledger capacity by
only adding more disks without reorganizing the data.

3. Hot–Cold Separation with Lower Storage Costs. To save on the storage hardware
costs, we have designed a block storage management solution based on hot and cold
separation. Experiments prove that our blockchain storage system has lower costs
than other permissioned blockchains.

The remainder of this paper is structured as follows. Section 2 reviews the related
work in this area. Section 3 provides the necessary background and problem settings.
Section 4 introduces the architecture of CMSS and the new workflow. Section 5 explains
the features of CMSS and its underlying logic. Section 6 contains the implementation and a
series of experiments. Section 7 concludes this paper.

2. Related Work

In this section, we introduce the current technology used in the storage system of
blockchain to minimize storage pressure and improve performance and storage scalability.

Sharding. The limited scalability of blockchain technology has hindered its develop-
ment and application. Recently, sharding has been employed in blockchain systems to
partition the network into multiple committees that can process transactions concurrently.
Sharding divides the entire blockchain network into different shards, and the nodes in each
shard are responsible for processing the transactions of the shard and storing the status
of the shard. Initially, shared blockchain systems only supported network and transac-
tion sharding based on the UTXO model, such as Elastico [15] and Monoxide [16]. For
instance, in Elastico, each block needs to be broadcast to all nodes for storage. However,
more recent systems have started to incorporate state sharding in blockchain, such as
Chainspace [17] and AHL [10], which generalize the sharding technique to smart contract
applications beyond cryptocurrency. AHL [10] proposes a distributed transaction protocol
for smart contracts based on two-phase commit (2PC) and two-phase locking (2PL) proto-
cols to address cross-committee transactions that manipulate states in multiple committees.
Hellings et al. [18] proposed ByShard, a unifying framework for the study of shared resilient
systems, to provide a solid foundation for the development of ACID-compliant general-
purpose and flexible shared resilient data management systems. GRIDB, proposed by
Hong et al. [19], is a scalable blockchain database with a novel off-chain cross-shard mecha-
nism for efficiency cross-shard database services. GRIDB achieves a scalable throughput for
SQL linearly increasing with the shard number compared with the non-sharding systems.

Sidechain. Sidechain was first introduced by Back et al. [20]. A notable implementa-
tion of sidechains is Drivechains [21], which employs simple payment verification (SPV)
proofs [22] to facilitate transfers from the mainchain to sidechains. However, the proof
size of SPV proofs is linear in the chain length, which can be large and unwieldy. To
address this issue, PoW sidechains [12] were proposed, achieving logarithmic proof size.
While this construction is suitable for PoW blockchains with a fixed difficulty, it does not
apply to blockchains with variable difficulty. Subsequently, the FlyClient protocol [23] was
introduced for verifying blockchains with variable difficulty. Nevertheless, both the PoW
sidechain construction and FlyClient are designed specifically for the PoW setting. PoS
sidechains, a sidechain construction that is suitable for proof-of-stake (PoS) sidechain sys-
tems, was proposed by Gaži et al. [12]. In 2023, Yin et al. [24] proposed a generic sidechain
construction named Ge-Co to realize secure asset transfers between blockchains. Ge-Co
supports different consensus algorithms, such as proof of stake (PoS) and proof of work
(PoW). Deng et al. [25] proposed practical and secure sidechain construction (PSSC) in the
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form of parent–child chains, a practical and secure sidechain construction for heterogeneous
blockchains orienting IoT scenarios.

BFT-Store. To mitigate the negative impacts of the full-replication strategy while
ensuring the availability of all blocks, a reliable storage scheme called BFT-Store has been
recently proposed for permissioned blockchain systems [26]. This innovative approach
aims to address the scalability challenges faced by blockchain technology, enabling efficient
and secure data storage in a decentralized manner. However, BFT-Store still has some
problems [27], like complex re-initialization, high computational complexity, and massive
communication on the network.

Other techniques. Bagozi et al. [28] presented an approach that encompasses criteria for
identifying trust-demanding objects and activities within collaborative processes. Addi-
tionally, they introduced a model to describe smart contracts in a platform-independent
manner, along with guidelines for their deployment on a blockchain. After prior works,
they [29] introduced a methodology and a tool that utilizes step-by-step procedures to
facilitate trust management in web-based collaborative business processes. These processes
were initially designed based on a centralized BPM strategy but are now adapted for
blockchain integration.

All of these works enhance blockchain scalability while ensuring transaction atomicity
and consistency. However, they still face challenges such as heavy storage consumption
and economic costs. In practical deployment scenarios, when storage becomes depleted,
these proposed solutions require reorganization and synchronization of ledger data after
storage expansion. In response to these challenges, we introduce CMSS in this work to
achieve high efficiency, minimize storage consumption, and reduce economic costs.

3. Preliminaries

In this section, we provide the necessary background, such as the regular blockchain
workflow, the architecture of the normal blockchain storage system, and transaction dedu-
plication in permissioned blockchain.

3.1. Blockchain Workflow

Based on its access control mechanism and permission management methods, blockchain
can be divided into two categories: permissionless blockchain such as Bitcoin [1] and
Ethereum [6], and permissioned blockchain such as Hyperledger Fabric [30]. Similar to
permissionless blockchains, permissioned blockchains also receive transactions from clients,
go through a workflow to update the ledger, and ensure consistency among replicas in a
trustless environment. Based on their workflows, permissioned blockchains can be broadly
classified into two distinct categories.

Execute→ Order→ Validate Workflow. Hyperledger Fabric is the most traditional
example following this workflow. In this workflow, transactions are executed concurrently
first, and then, the order of transaction submission is determined. Transactions can be
executed concurrently across nodes during the execution phase. After using the sorting
service to determine the global order and package it into blocks, the blocks are sent to all
nodes for serial read-and-write conflict verification.

Order→ Execute Workflow. Quorum [31] leverages this workflow to process trans-
actions. In this workflow, nodes initially reach a consensus on the order of transactions.
Subsequently, each node executes transactions according to the determined sequence.
Consequently, transactions are less likely to be aborted due to contentions.

3.2. Storage System

The data storage system of the Hyperledger Fabric blockchain system mainly consists
of one file storage (block data) and three databases. The structure is shown in Figure 1.
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Figure 1. The storage system of Hyperledger Fabric.

The structure of the Hyperledger Fabric storage system consists of four parts:

• File System/Ledger. The file system (also known as the ledger) is used to store all the
transaction data in a sequential and immutable manner. It contains a series of blocks
linked by cryptographic hashes [32] and each block contains a set of transactions. Each
peer in the network maintains a copy of the ledger to ensure decentralization and
resilience. The ledger is stored as a set of files on disk, with each block being stored in
a separate file.

• State Database. The state database maintains the current state of the ledger, which
represents the most recent value of each key–value pair in the system. It is essentially
a key–value store that allows for fast retrieval of the latest state information without
having to traverse the entire blockchain. The state database is critical for performance,
as it enables applications to query the current state of the ledger without needing to
process all previous transactions. Hyperledger Fabric supports multiple state database
implementations, including LevelDB [33] and CouchDB [34].

• History Index. The history index keeps track of the historical values of keys in the
state database. It allows users to query the historical state of a key at any point in time.
This feature is particularly useful for auditability. The history index is implemented as
a separate key–value store, with keys being the historical versions of the state database
keys and values being the corresponding historical values.

• Block Index. Hyperledger Fabric provides a variety of indexing methods to quickly
find the required block data. The index database is updated every time a block is
submitted. It can efficiently locate blocks in the ledger based on certain criteria, such
as block number or transaction ID. It is essentially a mapping of block metadata to
block file locations on disk.

3.3. Sharding

Sharding [35], derived from database partitioning, involves breaking down a large
database or blockchain into smaller, manageable parts called shards. This enables parallel
processing of transactions, thereby enhancing scalability. In blockchain systems, sharding
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divides nodes and the ledger into shards, allowing for distributed processing of transactions
across shards. Here are the key components of the sharding protocol:

• Shard Formation: Nodes establish identities using Sybil-attack-resistant [36] methods
like proof of work (PoW). Each node is then randomly assigned to a shard to ensure
honesty with high probability. Additionally, shards need periodic reconfiguration to
prevent attacks.

• Cross-Shard Mechanism: Since the ledger is divided into shards, cross-shard transac-
tions occur frequently. A cross-shard mechanism is necessary to ensure the atomicity
(transactions are committed or aborted as a whole) and consistency (each transaction
commit leads to a valid state) of these transactions across shards.

• Intra-Shard Consensus: Within each shard, nodes must reach consensus on a block
containing proposed transactions. A Byzantine consensus protocol is typically em-
ployed to ensure safety (honest nodes agree on the same value) and liveness (valid
transactions are eventually included in the ledger).

3.4. Sidechains

Sidechain, also called pegged sidechains, is a cross-chain technique that enables
blockchain interoperability through sidechains construction [20]. Sidechain supports the
transfer of digital assets or data between different blockchains. Users send assets to an
external address linked to a federation to move assets from the mainchain to the sidechain.
This federation acts as a mediator, facilitating the locking and unlocking of assets or
data between the mainchain and the sidechain. After a specified transaction period, the
federation releases equivalent assets on the sidechain. Sidechains typically exist in two
forms: parallel chains and parent–child chains. In the parent–child chain design, the
mainchain serves as the parent chain, while additional chains function as sidechains.

4. Design of CMSS

In this section, we propose the design of our ChainMaker Storage System (CMSS).
First, we introduce the system model, and then, we define the new workflow of our system.

4.1. System Model

The storage system is responsible for persisting ledger data such as blocks, transactions,
statuses, and historical read-and-write sets on the storage chain, and providing external
query functions for the above data. In this study, we focus on the file system level to build
a blockchain storage system that supports rapid horizontal scalability. The architecture is
shown in Figure 2.

Ledger with multiple file systems. To solve the problem that the traditional ledger
is difficult to expand, we establish a new structure at the file system level. The new
ledger can be composed of multiple file systems, each file system contains multiple block
files, and each block file stores multiple transactions. In our scheme, blockchain supports
setting multiple file systems. While the system is running, the blockchain also supports the
continuous addition of file systems (disks) to achieve horizontal expansion and expand the
upper limit of ledger-stored data.

Cache that supports high-frequency contracts. For smart contracts with high-frequency
reading and writing characteristics, we design a cache component to optimize their reading
and writing operations. The database itself has an internal cache that can enhance the
reading and writing efficiency of the database. However, as the volume of data in the
database grows, the internal cache’s ability to improve database read-and-write efficiency
becomes limited. To address this issue, our architecture incorporates an additional layer
of cache that is separate from the database. This isolated cache can maximize read-and-
write efficiency, particularly in situations involving large amounts of data. By adding this
separate cache layer, we can overcome the limitations of the internal cache and ensure
optimal performance even as the volume of data continues to increase.
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Figure 2. The system model of CMSS.

4.2. CMSS’s Workflow

Now, we describe the workflow of our proposed architecture, which aims to optimize
the performance of the blockchain storage system. The workflow can be divided into six
main steps and is shown in Figure 3.

Serialize Block
Block File

Channel

Asyn consumer
write KVdb

Block Binary Log

Submit
and

Return

Cache

KVDB

Figure 3. The workflow of CMSS.

1. Serialization: Parallel serialization of new blocks.
2. Block Binary Log Writing: Write the read–write sets, the latest block height to the block

binary log. This step is essential for data recovery in case of abnormal interruptions.
3. Caching: In order to improve performance, a layer of cache is added. After the new

block submission request updates the block binary log, the block data are written into
the cache.

4. Submit and Return: Upon completion of both log and cache updates, the com-
mit request can return, and the background thread asynchronously updates the
relevant databases.

5. Asynchronous Database Update: The background thread updates the Block DB, State
DB, ContractEvent DB, History DB, and Result DB asynchronously, ensuring optimal
performance and resilience against failures.

By following this workflow, our proposed architecture ensures efficient data process-
ing, resilience against failures, and optimal performance, making it suitable for various
blockchain-based applications in enterprise environments.
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5. System Features

In this section, we introduce the system features of our CMSS (ChainMaker Storage
System). As a critical component of the blockchain ecosystem, the storage system is
responsible for securely and efficiently storing and managing the vast amount of data
generated by blockchain transactions. Our proposed CMSS incorporates several key
features that enhance its performance, scalability, and security, ensuring that it meets
the unique requirements of blockchain-based applications. These features include high-
performance read–write ability, horizontal scaling, transactions deduplication, and hot–cold
separation and archiving.

5.1. High-Performance Read–Write Ability

Most of the existing blockchain storage systems, such as LevelDB and CouchDB,
use a key–value database as their underlying architecture. Although there is a cache
inside the key–value database to improve reading and writing efficiency, in a massive-data
scenario, the amount of data stored in the database is large, and the internal cache has
little improvement in reading and writing efficiency, and there is even a possibility of
cache failure.

In our proposed architecture, we add a cache component that is isolated from the
database. This cache only stores the smart contracts that are often accessed and the stored
smart contracts can be changed by LRU or LFU algorithm. Using this cache component,
the CMSS can achieve high performance in reading and writing operations. When writing
blocks, our CMSS writes blocks to a key–value database and cache, which enhances reading
performance. During the reading process, CMSS efficiently retrieves data directly from
the cache.

5.2. Horizontal Scaling

To achieve horizontal scaling, we need to analyze the relationship between blocks, files,
file systems, and the ledger. In blockchain, a block is written into a file after serialization.
The file belongs to a file system. The relationship between them can be shown as follows:

• one ledger has many file systems;
• one file system has many files;
• one file stores many blocks.

5.2.1. Meta File System

To manage the relationships above, we propose the meta file system (MFS) that
supports our CMSS, giving it the ability of horizontal scaling. The key features of our
proposed system include the ability to retrieve the file system and filename associated
with a specific block height, as well as to provide the last used file system and filename.
Furthermore, our system supports at least two file system switching strategies and allows
for an arbitrary number of file systems to be added.

5.2.2. Architecture of MFS

The architecture of our proposed MFS is shown in Figure 4. The MFS consists of three
parts: MetaIndex, setting, and database.

MetaIndex. The metadata system needs to find out the file name and file system
information corresponding to this block based on the block height. With a huge number of
blocks, high search performance is required. If you use traversal search, the time complexity
is O(n). Through a B-Tree, with the block height as the key and the leaf node as file metadata,
the file metadata information corresponding to the corresponding block height can be found
efficiently. It can support 1 PB of data, the time complexity is O(m), and m is generally less
than 10.

Setting. To support horizontal scaling, MFS needs to keep the online file system in
the setting. MFS provides multi-version control settings and can persist historical settings.



Electronics 2024, 13, 1854 1862 of 1870

Every time the user modifies the configuration, the new configuration needs to be saved in
the metadata system and persisted.

Database. It is mainly a key–value structure data, with the file name as the key and
value as the serialized data of file metadata. It is used to store metadata information
persistently in the DB. When the process is restarted, metadata information is read from
the database and index data are constructed. Metadata information needs to be persisted.
After the server or process is restarted, the metadata information is read from the persistent
data and the index information is regenerated in memory. Persistence uses LevelDB to save
data, the key is the file name, and the value is the serialized data of fileMeta.

1 8 16

MetaIndex

B-Tree
Key: stratHeight
Value: fileMeta

OnlineFS: /disk1, /disk2

Version: 1.0.0

History Setting

Leveldb
Key                      Value
/allfiles/file1         OnlineFS: /disk1,      startHeight: 0,       endHeight: 90
/allfiles/file2         OnlineFS: /disk2,      startHeight: 91,     endHeight: 180

OnlineFS: /disk1, /disk2, /disk3

Version: 1.1.0

Setting

Meta File System

Figure 4. The architecture of MFS.

With the support of MFS, CMSS can achieve horizontal expansion on the ledger
data storage without the need to reorganize the data after the ledger storage expansion
is completed.

5.3. Hot–Cold Separation

In blockchain technology, it has been observed that transactions predominantly ac-
cessed tend to be those that have been recently inscribed, while older transactions, such
as those dating back several months or even years, experience a diminished frequency
of access. As the accumulation of transactions persists and the generation of new blocks
continues, there is a consequential increase in the number of files and the storage space they
occupy. This phenomenon leads to the emergence of several notable trends: firstly, the total
volume of transactions experiences a gradual growth over time; secondly, storage costs
witness a concomitant escalation; and thirdly, the quantity of highly accessed transactions
does not exhibit a proportional increase to the overall transaction volume.

To solve these problems, we propose the hot–cold separation. Our technology deliv-
ers solutions that balance cost, performance, and functionality while ensuring atomicity,
consistency, tamper resistance, and recoverability. The process of the hot–cold separation is
shown in Figure 5.

In Figure 5, the user initiates separation and reviews separation results asynchronously
in step 1. Then, the separation task is produced and sent into the separation queue in step 2.
Asynchronously, the separation task is written into the database. Step 3 consumes a task
from the separation queue. The separation automaton is called and the separation executed
in step 4. Separation automation is introduced in the next paragraph. After separation,
the result updates the separation state in the database. When a failure occurs during the
separation process, the separation operation resumes at the breakpoint. The unfinished
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separation tasks are scanned out from the database and re-sent to the separation queue to
continue to complete the separation.

（6）

2Task1

2

Breakpoint
Recovery
Process

4Task3
（7）

5

Separation Queue

DataBase

 Hot-Cold
Separation

Figure 5. The process of hot–cold separation.

Separation Automation. Separation automation includes a separation task status
machine and a file status machine. In the process of separation, the separation task status
machine is called once and the file status machine is called N times (N is the number of
files). The design of separation automation is shown in Figure 6.

separateStatus

NoStart

separateStatus

DelStart

separateStatus

CopyEnd

separateStatus

Finish

separateStatus

Begin

separateStatus

DelEnd

separateStatus

CopyStart

separateStatus

CopyStart

separateStatus

CopyStart

separateStatus

CopyStart

separateStatus

CopyStart

separateStatus

CopyStart

separateStatus

CopyStart

separateStatus

CopyStart

Task

Status

Machine

File

Status

Machine

Figure 6. The separation automation.

Breakpoint Recovery. During the separation process, both the separation task status
machine and the file status machine are employed. Each time an operation is executed,
it is initially performed in the current status. Upon completion of the execution, the task
status is updated in the database to ensure the persistence of the status. Consequently, in
the event of a failure, it is possible to resume the process by relying on the pre-existing state
before the failure and continue accordingly.

6. Experiment

To evaluate the performance of our proposed ChainMaker Storage System, we set a
series of experiments that follow the research questions proposed in Section 1. Here, we
introduce the experiment setup and other components that are necessary for evaluation
and comparison. By analyzing the experiment data and logic of the experiments, we
demonstrate that our protocol meets expectations.

6.1. Experiment Setup

We first introduce the basic information about our experiment setup.
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Baseline. To better prove the effectiveness of our CMSS, we chose Hyperledger
Fabric [30], the most popular enterprise-grade permissioned blockchain platform that is
used worldwide in numerous scenarios.

Testbed. We deploy Hyperledger Fabric and our CMSS in Tencent Cloud environ-
ments for our experiments. The compute service instance from Tencent Cloud is equipped
with an AMD EPYC 7K62 48-Core Processor, 32 GB of RAM, 150 GB Disk, and TencentOS
(Linux based). Especially, to meet the storage needs of massive data, we apply a 1000 GB
cloud block storage (CBS) for our instance.

Implements. To better compare the performance of storage systems and discard the
impact of other components (such as consensus [37,38], transaction scheduling [39], etc.)
on performance, we isolated the code of Hyperledger Fabric and CMSS and only selected
the storage system of these two permissioned blockchains for comparison.

Evaluation. We use QPS and average time in our experiment to evaluate the perfor-
mance of our CMSS. QPS stands for queries per second and is a metric used to measure the
number of queries or requests processed by a system within one second. QPS is commonly
used in the context of databases, web servers, and other systems that handle a large number
of requests. A higher QPS indicates better performance and scalability of the system, as it
shows the system’s ability to efficiently handle a large volume of requests within a given
time frame.

QPS =
Total number o f queries
Time period(in seconds)

(1)

6.2. Read–Write Performance Comparison between CMSS and HLF

Based on the current user usage scenarios of ChainMaker, we classify user contracts
into three categories according to the types of storage read-and-write operations: certificate
type [40], NFT type [4], and batch creation type (TDID [41]). These three types of contract
have their own characteristics from a storage perspective:

Certificate Type: These contracts are one-time deployed onto the blockchain and
almost no read operations are performed. The read-to-write ratio is typically 0:1.

NFT Type: These contracts facilitate various operations such as the issuance, sale, and
transfer of NFTs. They involve a significant volume of both read and write operations.

Batch Creation Type: These contracts are responsible for generating multiple key–value
data pairs, often involving read operations on the keys. Each transaction typically contains
several key–value pairs.

Based on this classification, we build three types of experiments: write, key-exist read
last written, key-exist random read, and read key-not-exist.

6.2.1. Write

We conducted experiments using a producer–consumer model to assess our storage
system. Specifically, the producer is responsible for block creation, initializing the number
of transactions in each block to 100, 200, 400, 800, 1600, 3200, 6400, and 10,000. Using
random functions, the producer populates each transaction with corresponding read–write
sets and state data. Subsequently, the producer writes the generated blocks into a channel.
The consumer, on the other hand, cyclically retrieves blocks and read–write sets from the
channel and subsequently writes them into the storage system.

Our proposed CMSS achieves higher throughput and lower latency than HLF, as
shown in Figure 7. Figure 7a illustrates the QPS of the system and Figure 7b displays the
average time in milliseconds. Figure 7a shows that our CMSS has a better QPS performance.
In the situation of 1000+ transactions in each block, our CMSS still improves the QPS by
3×. In particular, when the transaction number of each block is 10 thousand, our CMSS
improves the QPS by 5.3×. While having higher throughput, our CMSS also has lower
time consumption compared to HLF. Our CMSS has smaller times than HLF both when the
number of transactions in the block is low (100 transactions each block; improvement of 1×)
and when the block load is large (10,000 transactions each block; improvement of 5.5×).
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Figure 7. The experimental data from write comparison.

6.2.2. Key-Exist Read Last Written

In this experiment, we require that all read operations must satisfy that the content
being queried has been written recently (for example, we only query the content in the last
100 blocks). In this case, the queried content is hit in the cache, and the query efficiency is
relatively high. Figure 8 shows the performance of two storage systems in both throughput
and latency. As shown in Figure 8a, the QPS of CMSS reaches 688,188 and the QPS of HLF
reaches 409,563 on average. CMSS has a higher QPS than HLF in any situation and CMSS
improves the QPS by 0.68× on average. From the perspective of time consumption, due to
the optimization of CMSS in reading and writing processes and system architecture, most
of the data queried in this experiment will hit the cache of CMSS. As shown in Figure 8b,
the time consumption of CMSS is significantly less than that of HLF, by almost 5 times.
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Figure 8. The experimental data from key-exist read last written comparison.

6.2.3. Key-Exist Random Read

Different from the previous experiment, this experiment uses random reading to query,
which will make part of the query content unable to be hit in the cache, so that the overall
read operation efficiency is low. In testbench, we use a random function to generate query
content with a random block height. As depicted in Figure 9, our proposed CMSS achieves
higher throughput and lower latency than HLF. Figure 9a shows that CMSS improves the
QPS by 0.75× and the average time of HLF is almost 7.5 times the average time of CMSS.
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Figure 9. The experimental data from key-exist random read comparison.

6.2.4. Key-Not-Exist Read

In the blockchain system, transaction prevention is an important step that can keep
the consistency and atomicity of blockchain. In transaction prevention, reading the key-not-
exist content is one necessary component. We build this experiment to read the key-not-exist
content in CMSS and HLF. Figure 10 shows that our proposed CMSS has better performance
in both QPS and average time than HLF. As shown in Figure 10a, the QPS of CMSS is
1.83 times of the QPS of HLF on average. Under such throughput conditions, CMSS is still
more efficient than HLF. Figure 10b shows that the average time of CMSS is just 0.025 times
the average time of HLF.
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Figure 10. The experimental data from key-not-exist comparison.

6.3. Storage Performance Comparison between CMSS and HLF

To evaluate the storage performance of our proposed CMSS, we build a storage exper-
iment and check the storage status of disks. In this experiment, we conduct 100,000 blocks
and each block has 10,000 transactions. In each transaction, there is one key–value pair
and the size of the key and value are both 8 bits. Table 1 shows the storage performance
of CMSS. The original data volume is 320 GB if we do not use hot–cold separation. When
using hot–cold separation, the data that is not frequently accessed will be moved to cold
storage and compressed. The data in Table 1 shows that CMSS has efficient performance in
data storage and can significantly reduce data storage pressure.
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Table 1. Storage performance of hot–cold separation.

Hot–Cold Separation Rate Hot Disk Volume Cold Disk Volume Original Data Volume

50% 160 GB 32 GB 320 GB
90% 32 GB 57 GB 320 GB
99% 3.2 GB 63 GB 320 GB

99.9% 1 GB 64 GB 320 GB

To evaluate the economic cost savings of CMSS in a real production environment,
we selected five well-known cloud service providers (three overseas providers: Microsoft
Azure, Amazon Cloud and Google Cloud; two domestic providers: Tencent Cloud and
Alibaba Cloud) to conduct economic cost testing.

As shown in Table 2, regardless of the pricing of any cloud service provider, CMSS
can significantly reduce the storage cost of the entire system. When setting the hot–cold
separation rate as 50%, CMSS can reduce economic costs by approximately half. It is worth
noting that the price in the table is only the price for one month of service provided by the
cloud service provider. In actual business, the service provision time often lasts for several
months or even more than a year. From this point of view, CMSS can significantly reduce
economic costs.

Table 2. Economic cost performance of hot–cold separation.

Cloud Service
Provider

Hot Disk Unit
Price *

Cold Disk Unit
Price *

Hot–Cold
Separation Rate

Total Storage
Cost *

Tencent Cloud 1.7600 RMB/GB 0.0100 RMB/GB

None 563.20 RMB
50% 281.92 RMB
90% 56.89 RMB
99% 6.26 RMB

99.9% 2.40 RMB

Alibaba Cloud 1.00 RMB/GB 0.0075 RMB/GB

None 320.00 RMB
50% 160.24 RMB
90% 32.43 RMB
99% 3.67 RMB

99.9% 1.48 RMB

Microsoft Azure 2.2318 RMB/GB 0.0071 RMB/GB

None 714.18 RMB
50% 357.32 RMB
90% 71.82 RMB
99% 7.59 RMB

99.9% 2.69 RMB

Amazon Cloud 1.1519 RMB/GB 0.0071 RMB/GB

None 368.61 RMB
50% 184.53 RMB
90% 37.27 RMB
99% 4.13 RMB

99.9% 1.61 RMB

Google Cloud 1.4687 RMB/GB 0.0086 RMB/GB

None 469.98 RMB
50% 235.27 RMB
90% 47.49 RMB
99% 5.24 RMB

99.9% 2.02 RMB
* Here we only calculate one month of cloud service provision time. RMB stands for Renminbi, which is the
official currency of the People’s Republic of China. It is abbreviated as CNY internationally.

6.4. Experiment Results

In conclusion, a series of experiments were conducted to compare the performance of
our proposed CMSS with Hyperledger Fabric (HLF). First, we evaluate the performance of
reading and writing. The experiment in Section 6.2.1 demonstrates that CMSS outperforms
HLF in terms of QPS and the average processing time of CMSS is shorter than HLF. These
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results indicate that CMSS exhibits superior performance over HLF in writing blocks,
allowing it to process and store more blocks in the same time slot. Subsequent experiments
in Sections 6.2.2–6.2.4 evaluate the reading performance. Different types of keys are used to
represent various smart contracts in practical applications. The results show that CMSS
outperforms HLF in reading blocks, resulting in a faster response time when querying
information on the chain. Furthermore, the experiment in Section 6.3 compares CMSS
at different hot–cold separation rates based on cloud storage services from five domestic
and foreign cloud service providers. Through cost calculations in various settings, the
experiments demonstrate that the hot–cold separation provided by CMSS can significantly
reduce resource usage and economic costs. This makes it feasible for more participants
to deploy full nodes to maintain the full data stored in the blockchain. In traditional
techniques, this is not affordable for major participants, which may lead to reliability
problems with data.

7. Conclusions

To solve the storage pressure and subsequent expensive costs caused by massive data,
a blockchain storage system with high read–write performance and horizontal scaling
support needs to be proposed urgently. In this paper, we propose ChainMaker Storage
System (CMSS). CMSS is a blockchain storage system with high read–write performance
and horizontal scaling support. Our proposed CMSS provides a new block storage work-
flow that can improve the reading and writing efficiency while ensuring the consistency of
the ledger. The Meta File System (MFS) in CMSS supports horizontal expansion without
reorganization and synchronization of ledger data. The hot–cold separation provided by
CMSS greatly reduces resource usage and economic costs. In the experiments, we evaluate
our CMSS with the most popular permissioned blockchain platform Hyperledger Fabric in
read–write performance. We select five well-known cloud service providers to calculate the
storage cost in the real production environment. The results show that our CMSS has higher
throughput and lower latency than HLF in read and write operations and advantages in
storage capacity and price.

In the future, we will focus on the blockchain consensus to optimize blockchain
workflow and achieve higher efficiency and lower costs while ensuring security and
privacy. What is more, we will try to add an intermediate layer in the architecture to
achieve cross-platform compatibility.
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