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Abstract: Graph convolutional networks (GCNs) have attracted increasing attention in various fields
due to their significant capacity to process graph-structured data. Typically, the GCN model and
its variants heavily rely on the transmission of node features across the graph structure, which
implicitly assumes that the graph structure and node features are consistent, i.e., they carry related
information. However, in many real-world networks, node features may unexpectedly mismatch
with the structural information. Existing GCNs fail to generalize to inconsistent scenarios and are
even outperformed by models that ignore the graph structure or node features. To address this
problem, we investigate how to extract representations from both the graph structure and node
features. Consequently, we propose the multi-channel graph convolutional network (MCGCN)
for graphs with inconsistent structures and features. Specifically, the MCGCN encodes the graph
structure and node features using two specific convolution channels to extract two separate specific
representations. Additionally, two joint convolution channels are constructed to extract the common
information shared by the graph structure and node features. Finally, an attention mechanism
is utilized to adaptively learn the importance weights of these channels under the guidance of
the node classification task. In this way, our model can handle both consistent and inconsistent
scenarios. Extensive experiments on both synthetic and real-world datasets for node classification
and recommendation tasks show that our methods, MCGCN-A and MCGCN-I, achieve the best
performance on seven out of eight datasets and the second-best performance on the remaining dataset.
For simpler graph structures or tasks where the overhead of multiple convolution channels is not
justified, traditional single-channel GCN models might be more efficient.

Keywords: graph convolutional networks; network analysis; graph representation learning

1. Introduction

Network data are ubiquitous in the real world, such as social networks [1,2], cita-
tion networks [3,4], communication networks [5,6], and biological networks [7,8]. Such
data often comprise two sources of information: the underlying network structure and
the node features. For example, in a citation network, each node symbolizes a paper,
characterized by keywords, whereas the edges denote citation links between papers. Con-
sequently, an effective graph learning algorithm should seamlessly integrate both types of
information [9,10].

Graph convolutional networks (GCNs) [11] are extensively studied for their robust rep-
resentation learning capabilities and have been applied to various network analysis tasks,
such as node classification, link prediction, community detection, and recommendation
systems [12–14]. Typically, GCNs employ a feature-passing mechanism over the structure

Electronics 2024, 13, 607. https://doi.org/10.3390/electronics13030607 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030607
https://doi.org/10.3390/electronics13030607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13030607
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030607?type=check_update&version=1


Electronics 2024, 13, 607 2 of 17

of the input graph, integrating information from both the network structure and node
features. Specifically, each layer of the GCN updates node representations by aggregating
those of their neighboring nodes, which is supervised by partially available node labels.

Recently, a variety of GCN layers have been proposed. For example, GraphSAGE [15]
samples a fixed size of neighborhoods for each node, proposes a sum/max/LSTM pooling
aggregator, and adopts a concatenation operation for the update. GAT [16] applies an atten-
tion mechanism to assign weights to neighbors. GIN [17] generates a provably maximally
powerful graph neural network under the Weisfeiler–Lehman test [18].

Existing GCN-based methods [11,15,16,19] suffer from serious drawbacks. To fuse
structural information and node features, they heavily rely on the process of passing
features across the graph structure, which is roughly equivalent to Laplacian smoothing
on node features [20]. Essentially, they assume consistency between structural and feature
information, both contributing positively to node label prediction. However, in numerous
real-world networks, these two sources of information often possess distinct characteristics,
leading to a prevalent mismatch between them [21].

Such a mismatch (inconsistency) between structures and features can arise from
two scenarios: (1) Either the topological structure or the node features frequently carry
substantial noise, which can negatively impact node predictions. Using social networks
like Twitter as an example, the real social relationship reflects the community structure
more directly than the diverse and noisy user-generated features. (2) Adversarial attacks
can specifically target either the network structure or node features [22]. These attacks
involve actions like adding/removing edges or injecting random noise into node attributes.
Both scenarios result in a mismatch between these two information sources. When such
a mismatch occurs, existing methods struggle to derive effective representations from
both the graph structure and node features. These methods exhibit inferior performance
compared to models that solely leverage either the network structure (e.g., DeepWalk [23])
or node features (e.g., MLP [24]), as supported by our motivating observations.

Recent methods, such as H2GCN [25], Geom-GCN [26], CPGNN [27], GGCN [28],
and GPR-GNN [29], target graphs exhibiting varying degrees of heterophily or low ho-
mophily, where connected nodes may have differing class labels and features. However,
these methods continue to presume that both high-order structures and node features are
reliable and consistent. In situations where the graph structure is initially completely incon-
sistent with the node features (e.g., random graph structure), incorporating a high-order
structure fails to capture useful representations for downstream tasks [30]. As a result,
these models struggle to generalize in scenarios with inconsistent structures and features.

Therefore, our research focuses on devising methods to derive representations from
both the graph structure and node features, particularly under circumstances where these
elements exhibit inconsistencies. In this work, we propose a novel approach called the
multi-channel graph convolutional network (MCGCN) for graph data with inconsistent
structures and node features. The core idea is to extract distinct representations from both
the structural aspects and node features of the graphs. Additionally, we aim to capture
the shared insights arising from combinations of structures and features. Meanwhile, we
utilize an attention mechanism to adaptively incorporate these representations under the
guidance of semi-supervised node classification tasks.

Specifically, we first generate a feature structure from the original node features and
extract topological features based on the inherent network topology. Subsequently, we
propagate the original features across the feature structure and the topological features
across the original structure, employing two distinct convolution channels to extract two
specific representations of the features and structure, respectively. This approach aims to
identify inconsistencies within the data.

Furthermore, we propagate the original features across the original structure and
the topological features across the feature structure using two joint convolution channels,
aiming to effectively fuse information in a consistent scenario.
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Ultimately, we leverage an attention mechanism to adaptively learn the importance
weights of these representations, extracting the most useful information for downstream
tasks [31,32]. Our method excels at extracting useful representations that significantly con-
tribute to node prediction, even in cases of mismatched network structures and node features.

To summarize, our work makes the following contributions:

• We study the mismatch (inconsistency) between structures and node features and
present two motivating examples, highlighting the limitations of GCNs in fusing
inconsistent structures and node features.

• We propose a multi-channel graph convolutional network for graphs characterized
by inconsistent structures and features. Our method extracts representations from
both the structure and feature spaces, along with their combinations, and adaptively
fuses the most useful information from these representations through an attention
mechanism.

• Extensive results on both synthetic and real-world datasets for node classification
tasks show that the proposed method outperforms existing start-of-the-art methods
on graphs with inconsistent structures and features and also delivers competitive
performance on graphs with consistent structures and features.

2. Related Works
2.1. Graph Convolutional Networks

A graph convolutional network (GCN) [11] is a kind of graph neural network that
aims to extend traditional deep learning methods to graph-structured data [33,34]. GCNs
simplify spectral-based graph convolutional networks [35,36] by limiting the filtering
operation on the first-order neighborhood. GCNs update the representation of the target
node by combining its own representation and the aggregated representations from its
direct neighborhood.

The field has seen a variety of methodological advancements aimed at improving
the flexibility, scalability, and performance of GCNs. This includes the development of
spatial-based approaches like GraphSAGE [15] and GIN [17], which allow for inductive
learning on graphs [37–39]. Attention mechanisms were introduced into GCNs with the
Graph Attention Network (GAT) [40], enabling the model to focus on important parts of the
graph. Further, Rong et al. proposed the DropEdge technique to alleviate over-smoothing
issues prevalent in deep GCNs [41].

2.2. Multi-Channel Graph Convolutional Networks

Drawing inspiration from multi-channel strategies in conventional CNNs, researchers
have explored similar concepts in the realm of GCNs. These works involve using multiple
types of convolutions or incorporating various aspects of graph data (like different types of
relationships or features) into separate channels. One of the pioneering works in this area
is the multi-channel spectral GCN [42–44], which extends spectral graph convolutions by
incorporating multiple spectral filters. This method allows different channels to capture
various frequency components of graph signals, leading to richer representations.

However, in scenarios where the graph structure is misaligned with node features,
existing methods prove ineffective in capturing useful representations for subsequent tasks.
Consequently, models operating under these conditions face challenges in generalizing
effectively when confronted with discrepancies between structures and features.

In this work, we design two specific convolution channels to extract representations
from the structure and feature spaces. Another two joint convolution channels are designed
to fuse and capture the common information shared by both the structure and node features.
Finally, an attention mechanism is employed to adaptively learn the importance weights
of these representations. By adopting this approach, the problem of mismatch between
network structure and features can be effectively resolved.
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3. Preliminaries

We first present the notations and problem definition and then introduce graph convo-
lutional networks (GCNs).

3.1. Problem Definition

Definition 1. Attributed Network. Given an undirected, unweighted, and attributed network,
G = (V, E, X), where V = {v1, v2, . . ., vn} is a set of n nodes, E =

{
eij
}
⊆ V × V is a set of

edges, and X ∈ Rn×m is a matrix representing node features, where m denotes the feature dimension.
The i-th row of X corresponds to the feature of node vi. The topological structure of G is depicted by
an adjacency matrix A =

[
aij

]
∈ Rn×n, where aij = 1 indicates a connection between nodes vi and

vj, and aij = 0 otherwise.

Definition 2. Semi-Supervised Node Classification Task. In the attributed network, G =
(V, E, X), each node is categorized into one of C classes. We have labels for a subset VL of nodes,
containing u nodes, where u ≪ n. For each node vi ∈ VL, a label yi ∈ C is assigned. The objective
of the node classification task is to predict the labels of the remaining nodes in V\VL.

3.2. Notations of Graph Convolutional Networks

Given a network, G = (V, E, X), where A is the adjacency matrix and D is the degree
matrix with Dii = ∑j Aij. By introducing self-loop and normalizing the adjacency matrix,
we have Ã = D̃(−1/2) ÃD̃(−1/2), where Ã = A + I (identity matrix) and D̃ii = ∑j Ãij. Then,
the classic two-layer GCN can be defined as:

Z = f (X, A) = σ(Ãσ(ÃXW(0))W(1)), (1)

where W(0) and W(1) are learnable weight matrices, σ denotes non-linear activation func-
tions such as ReLU, and Z is the final output representation for downstream tasks. Al-
though GCNs show proficiency in various network analysis tasks such as node classifica-
tion [12,45], they fail to extract useful and effective representations from networks with
inconsistent structures and features, as discussed in this paper.

4. Motivating Observations

In this section, we generate two sets of synthetic graphs to evaluate the adaptability
of classical GCNs in learning from features and topological structures, especially under
different inconsistency levels. A graph with 900 nodes is generated, and these nodes are
categorized into three groups, with each group containing 300 nodes. For nodes sharing
the same category, node features are generated following a Gaussian distribution, whereas
their topological structure is created using the Stochastic Block Model (SBM) [46]. As a
result, node labels are correlated with both the node features and topological structure.
The initial phase of our experiment involves a synthetic graph with ideal features and
an ideal structure, a condition termed the “perfect setting”. We then incrementally add
inconsistency. The methodology used to create these synthetic graphs and the approach
used to integrate the inconsistencies are detailed in Section 6.2.3. For a comparative study,
we select three benchmark models: Multi-Layer Perceptron (MLP) [24] as a feature-based
model, DeepWalk [23] for structure-based analysis, and a GCN, which is a standard graph
neural network model that utilizes both the graph structure and feature data, assuming
their dependability and association with node labels.

4.1. Setting One: Structure Inconsistency

In this part of the experiment, we maintain constant and ideal node features that are
correlated with their labels but introduce inconsistency into the topological structure. We
generate a series of 11 graphs with increasing levels of structure inconsistency. The process
begins with a perfectly consistent structure (i.e., structure inconsistency is 0). In the final
graph of the series, the structure inconsistency reaches its maximum (equal to 1), resulting
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in a completely random topological structure. The results are shown in Figure 1a. Our
observations reveal that all models perform efficiently under ideal conditions. However,
as structural inconsistency is introduced, the MLP’s performance remains stable, given
its independence from structural information. On the other hand, DeepWalk’s perfor-
mance significantly worsens as structural inconsistency increases, eventually equating to
the accuracy of random assignments. This decline is attributed to DeepWalk’s inability
to extract meaningful insights from a random and label-unrelated topology. Similarly,
the performance of the GCN also diminishes, underscoring its limitations in gleaning
valuable information from unreliable topological structures.
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Figure 1. Classification accuracy on synthetic graphs. The x-axis represents the structure/feature
inconsistency levels.

4.2. Setting Two: Feature Inconsistency

In this part, we maintain a constant and ideal structure, and feature inconsistency is
added gradually. Similarly, 11 graphs with increasing feature inconsistency levels are gen-
erated. The series starts with an ideal situation where feature inconsistency is nonexistent
(equal to 0). In the final graph of this sequence, feature inconsistency reaches its peak (equal
to 1), characterized by all nodes sharing the same Gaussian distribution, thereby making
the features uncorrelated with the node labels. The results are illustrated in Figure 1b.
The results indicate that under ideal conditions, all models perform efficiently. DeepWalk
demonstrates robust performance across various feature inconsistency levels. The effective-
ness of the MLP diminishes swiftly, eventually aligning with the accuracy of random label
assignment. The performance of the GCN also reduces as feature inconsistency increases,
confirming its limitations in extracting valuable information from unreliable feature data.

4.3. Motivation

The outcomes of these experiments reveal a critical aspect of classical GCNs: their
inherent method of combining information from both features and topological structures
without discerning the reliability of each. This approach results in GCNs being less effec-
tive in extracting useful information from data where either the structure or features are
inconsistent. Intriguingly, models that solely rely on either a topological structure or node
features have been shown to outperform GCNs in such scenarios. This limitation of GCNs
has been a key motivator in our research, leading us to develop and introduce specific and
joint convolution methods as the primary contribution of this work.

5. Methodology

In this section, we provide a brief overview of our approach, followed by a detailed
introduction of the main components of our model.

5.1. Overview

In order to enhance information fusion and extract optimal representations from
inconsistent structures and features, we introduce the MCGCN, a multi-channel graph
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convolutional network. The framework of the proposed approach is illustrated in Figure 2.
We separately process the network structure and features, deriving two distinct representa-
tions from the structure and feature spaces to effectively address inconsistency. Initially,
feature structures are generated from the original node features, and structural features
are initialized based on the network topology. Subsequently, the MCGCN propagates the
original node features and structural features using two specific convolution channels
over the features and the network structure, respectively. Simultaneously, the original
and structural features are propagated through their respective structures via two joint
convolution channels, efficiently extracting shared information and enabling generalization
in both consistent and partially inconsistent scenarios. Lastly, recognizing the uncertain
contribution of each representation to label prediction before training, we employ an atten-
tion mechanism to adaptively learn their importance weights. This approach adaptively
ensures the extraction of pertinent information for the classification task, even in scenarios
where the structure and features exhibit inconsistency.
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 topological features
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Figure 2. The framework of the MCGCN. We first generate topological features from the original
structure and create a feature structure from the original features. Then, we design four convolution
channels to capture different information: two specific convolution channels to separately capture
feature and structure information, and two joint convolution channels to effectively extract the
common information shared by the structure and features. Finally, we employ an attention mechanism
to adaptively learn the importance weights of these representations.

5.2. Specific Convolution Channels

To enhance the ability to manage inconsistent information, we employ two specific
convolution channels to extract distinct representations from both the structure and features.
Initially, we use a traditional MLP to capture representations from node features. However,
this method treats each node independently, disregarding any concealed relationships
among them. To address this limitation and extract more potent feature representations that
account for the hidden node relationships, we leverage a specific graph convolution channel.
This channel allows us to grasp the underlying connections between nodes, leading to more
effective representations in the feature space. In order to carry out convolution operations
within the feature space, we first generate a feature structure based on the original node
features. Although there exist various methods for creating a feature structure, in this
context, we choose an intuitive approach, k-nearest neighbor (kNN), to construct the feature
structure, denoted as A f ∈ Rn×n.
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Specifically, we first calculate the similarity matrix S ∈ Rn×n using cosine similarity to
assess the similarity between any two nodes.

Sij =
xixj

|xi||xj|
, (2)

where xi ∈ Rm represents the original features of node vi. Based on the similarity matrix
S, we choose the top k similar nodes for each node to establish edges and, finally, derive
the adjacency matrix of the feature structure A f . Then, with the feature structure A f and
original node features X, we use a two-layer graph convolutional network to extract specific
representation from the feature space, each layer of which is expressed as:

Z(l)
f f = σ(D̃−1/2

f Ã f D̃−1/2
f Z(l−1)

f f W(l)
f f ), (3)

where Ã f = A f + I f (I f is the identity matrix) and D̃ f denotes the degree matrix of Ã f

with (D̃ f )ii = ∑j (Ã f )ij. W(l)
f f denotes the weight matrix of the l-th layer. Z(0)

f f = X. σ is an

activation function. We use Relu(t) = max(0, t) in the first layer and linear(t) = t in the
second layer. In this way, we can obtain the final feature representation Z f f (Z f f = Z(2)

f f )
that captures the underlying structure of nodes in the feature space.

Next, to extract specific representations from the topological space, we employ another
dedicated convolutional channel designed to capture the inherent relationships between
nodes within the topology space. Specifically, we first generate the initial topological
features from the original network structure. There are numerous methods available for
generating these topological features. Notably, the network’s adjacency matrix, denoted
as A, can directly encapsulate the structural information of nodes. Therefore, we initially
consider the original adjacency matrix A as the initial topological features Xs, i.e., Xs = A.
Leveraging both the topological features and the original network structure, we sub-
sequently employ a two-layer graph convolutional network (GCN) to distill structural
representations from the structural space, each layer of which is expressed as:

Z(l)
ss = σ(D̃−1/2 ÃD̃−1/2Z(l−1)

ss W(l)
ss ), (4)

where Ã = A + I and D̃ denotes the degree matrix of Ã. W(l)
ss denotes the weight matrix

of the l-th layer. Z(0)
ss = Xs. We also use Relu and linear(t) = t in the first and second

layers, respectively. Moreover, as shown in (4), we can also set the initial structure features
Z(0)

ss = Xs = I, as used in SAT [47]. Finally, we obtain the final structure representation
Z(2)

ss that captures the underlying relationship of nodes in the structure space.
With these two specific convolution channels, we can extract specific representations

from both the feature and topology spaces. In this way, our model can adaptively choose
useful information for graphs with inconsistent structures and features according to specific
downstream tasks.

5.3. Joint Convolution Channels

Many real-world networks exhibit diverse degrees of alignment between their partial
network structures and node features. To ensure that our model is capable of handling both
consistent and inconsistent scenarios, we further design two joint convolutional channels.
These channels effectively merge the network structure and node feature information,
enhancing flexibility in classification tasks to identify more pertinent information.

Specifically, our method propagates the original features across the network structure
and topological features through the feature structure using two joint convolution channels.
It is important to highlight that this approach is distinct from traditional GCN-based meth-
ods that only propagate features across the network structure. The new joint convolution
channels effectively fuse these two distinct types of information more efficiently.
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First, based on the original network structure and node features, we use a two-layer
graph convolutional network, each layer of which is expressed as:

Z(l)
fs = σ(D̃−1/2 ÃD̃−1/2Z(l−1)

fs W(l)
fs ), (5)

where W(l)
fs denotes the weight matrix of the l-th layer and Z(0)

fs = X.
Second, based on the feature structure and topological features, we use a two-layer

graph convolutional network, each layer of which is expressed as:

Z(l)
sf = σ(D̃−1/2

f Ã f D̃−1/2
f Z(l−1)

sf W(l)
sf ), (6)

where W(l)
sf denotes the weight matrix of the l-th layer and Z(0)

sf = Xs. Finally, we obtain

two final joint representations Z(2)
fs and (Z(2)

sf ). With these two joint convolution channels,
we can extract the common information shared by both the structure and features.

5.4. Attention Mechanism

Following the utilization of two distinct convolution channels and two combined
convolution channels, we can successfully acquire the structural representation Zss, feature
representation Z f f , and two joint representations Z fs and Zsf . Nonetheless, predicting which
representation correlates most with the classification task can be challenging, particularly
in cases where the structure and features do not match. To address this, we employ an
attention mechanism, which adaptively combines these representations using varying
degrees of importance weights, enabling the automatic extraction of valuable insights.
Their importance weights (αss, α f f , α fs, αsf ) are defined as follows:

(αss, α f f , α fs, αsf ) = attention(Zss, Z f f , Z fs, Zsf ), (7)

where αss, α f f , α fs, αsf ∈ Rn×1 represent the attention weights of the representations Zss, Z f f ,
Z fs, Zsf ∈ Rn×d, respectively. Specifically, we take the structure representation of node vi,
zi

ss ∈ R1×d as an example. To obtain the attention value of the structure representation, we
first transform the representation through linear transformation, followed by a nonlinear
activation function tanh. Then, we apply a shared attention vector q ∈ Rd′×1 to obtain the
attention value as follows:

βi
ss = qT · tanh(Wa · (zi

ss)
T + b1), (8)

where Wa ∈ Rd′×d represents the learnable weight matrix and b1 ∈ Rd′×1 denotes the bias
vector. Similarly, we can obtain the attention values of βi

f f , βi
fs, βi

sf . We can obtain the final
importance weights by normalizing the attention values using a softmax function [48]:

αi
ss = softmax(βi

ss) =
exp(βi

ss)

exp(βi
ss + βi

f f + βi
fs + βi

sf )
. (9)

The above equation implies that a larger αi
ss value increases the importance of the

structure representation. Similarly, we have:

αi
f f = softmax(βi

f f )

αi
fs = softmax(βi

fs)

αi
sf = softmax(βi

sf ).

(10)
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Based on the importance weights, we can obtain the final representation of node vi as
follows:

zi = αi
sszi

ss + αi
f f zi

f f + αi
fszi

fs + αi
sf zi

sf . (11)

The final representation for all n nodes is expressed in matrix form as follows:

Z = αSSZss + αFFZ f f + αFSZ fs + αSFZsf , (12)

where αSS = diag(αss), αFF = diag(α f f ), αFS = diag(α fs) and αSF = diag(αsf ).

5.5. Optimization Objective

Based on the final representation Z obtained using (12), we then apply a linear transfor-
mation and softmax function to obtain the predicted soft label assignment matrix Ŷ ∈ Rn×C

as follows:
Ŷ = softmax(WcZ + b2), (13)

where Ŷic represents the probability of node vi belonging to class c. Then, for the semi-
supervised node classification task, we can minimize the cross-entropy over all labeled
nodes between the ground truth and the prediction:

L = ∑
l∈VL

Yl ln Ŷl , (14)

where Y represents the label indicator matrix, i.e., Yic = 1 if node vi belongs to class c,
or Yic = 0 otherwise.

6. Experiments

In this section, we first give the experimental settings and then compare our proposed
approach (MCGCN) with some state-of-the-art methods on two network analysis tasks,
including transductive node classification and visualization. Next, we give attention to
the analysis of synthetic datasets to validate whether the MCGCN can learn interpretable
importance weights.

6.1. Experimental Setting
6.1.1. Datasets

Eight publicly available real-world datasets were utilized for evaluation. The Cornell,
Texas, and Wisconsin datasets consist of web pages as nodes, hyperlinks as edges, and page
categories (student, project, course, staff, and faculty) as node labels. These datasets were
obtained from the respective web pages of Cornell University, the University of Texas,
and the University of Wisconsin. The textual content of the web pages is typically processed
and converted into feature vectors, which serve as input attributes for each node in the
learning process. They are benchmarks for evaluating the performance of various graph-
based machine learning algorithms, especially GCNs and other GNN models. The Film
dataset is an actor co-occurrence network [49]. where nodes are actors, edges represent
co-occurrence on the same Wikipedia page, and labels categorize actors based on their
Wikipedia content. The Chameleon and Squirrel datasets are Wikipedia networks [50]
with web pages as nodes, mutual links as edges, and labels categorized by the average
monthly traffic of each page. The Cora and Citeseer datasets are citation networks [51,52],
where nodes are academic papers, edges are citations, and node labels represent academic
topics. Paper contents are processed as node features. Table 1 summarizes the statistics of
these datasets.
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Table 1. The statistics of the datasets. # denotes the number of objects.

Dataset Texas Wisconsin Cornell Squirrel Chameleon Film Cora Citeseer

# Nodes 183 251 183 5201 2277 7600 2708 3327

#Edges 309 499 295 217,073 36,101 33,544 5429 4732

#Features 1703 1703 1703 2089 2325 931 1433 3703

#Classes 5 5 5 5 5 5 7 6

6.1.2. Baselines

We compared two variants of the MCGCN with six state-of-the-art methods (Deep-
Walk, MLP, GCN, GAT, H2GCN [25], GPRGNN [29]): (1) MCGCN-A, which initializes
topological features with an adjacency matrix, and (2) MCGCN-I, which initializes topolog-
ical features with an identity matrix.

6.1.3. Parameter Setting

Following the Geom-GCN approach [26], for each dataset, we performed ten random
separations, allocating 38%, 52%, and 10% of the total number of nodes for training,
validation, and testing, respectively. All the parameters of the baselines were initialized
as suggested in their respective papers. In our methods, MCGCN-A and MCGCN-I, we
employed two-layer GCNs across four convolution channels. For Citeseer, we maintained
a consistent hidden layer dimension of 512 and an output layer dimension of 32. ReLU
was used as the activation function for all GCN modules. For the feature structure, we
constructed a kNN graph using k ∈ {2, . . ., 9}. Our models were developed using PyTorch
deep learning tools and optimized with the Adam optimizer. The learning rate was set to
0.001, and we assessed model performance using classification accuracy.

6.2. Results and Analysis
6.2.1. Node Classification

Table 2 demonstrates that our methods, MCGCN-A and MCGCN-I, achieved the best
performance on seven out of the eight datasets and the second-best performance on the
remaining dataset.

Table 2. Mean accuracies for transductive node classification task (%). The best result is indicated in
bold and the second-best result is underlined.

Texas Wisconsin Cornell Squirrel Chameleon Film Cora Citeseer

DeepWalk 49.19 ± 0.38 53.51 ± 1.10 44.12 ± 0.52 32.37 ± 0.95 42.61 ± 0.42 23.74 ± 0.56 76.08 ± 0.63 53.59 ± 0.63
MLP 77.30 ± 0.55 83.01 ± 1.02 77.98 ± 0.83 34.39 ± 0.43 45.47 ± 0.37 32.78 ± 0.52 72.30 ± 0.88 70.17 ± 0.62
GCN 52.16 ± 1.04 55.88 ± 0.97 52.70 ± 0.71 37.96 ± 1.13 60.03 ± 0.74 27.92 ± 0.51 85.21 ± 0.53 73.68 ± 0.47
GAT 58.38 ± 0.48 54.41 ± 0.94 54.32 ± 0.38 30.03 ± 1.28 59.93 ± 0.69 28.15 ± 0.92 85.34 ± 0.73 73.92 ± 0.43
H2GCN 77.57 ± 0.87 81.72 ± 0.74 77.81 ± 0.69 40.14 ± 0.47 59.64 ± 1.02 31.63 ± 0.49 85.27 ± 0.32 74.42 ± 0.49
GPRGNN 77.83 ± 0.43 81.96 ± 0.96 77.93 ± 0.98 41.81 ± 0.89 60.09 ± 0.73 33.25 ± 0.47 85.79 ± 0.36 73.37 ± 0.90

MCGCN-A 78.46 ± 0.39 82.39 ± 0.91 78.65 ± 0.59 41.74 ± 1.28 59.91 ± 0.47 33.46 ± 0.62 86.32 ± 0.60 74.04 ± 0.67
MCGCN-I 78.39 ± 0.47 82.55 ± 0.42 78.21 ± 0.38 42.21 ± 1.79 61.64 ± 0.35 33.17 ± 0.58 86.28 ± 0.74 74.51 ± 0.34

Our models demonstrated a noticeable improvement over the standard DeepWalk,
GCN, and GAT across all datasets. This is primarily due to the MCGCN’s multi-channel
approach, which allows it to better capture the complex interplay between node features
and the graph structure. DeepWalk and GCN, while robust in simpler graph environ-
ments, fell short in scenarios where the graph structure was inconsistent or features were
complex. Compared to GAT, the MCGCN exhibited superior performance, particularly
in environments with inconsistent graph structures. The MCGCN outperformed GAT,
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which employs attention mechanisms at the node level. This suggests that the MCGCN’s
method for handling inconsistency through multiple channels is more effective than the
attention-based strategies used in GAT. The H2GCN achieved the second-best result on
the Citeseer dataset. It addressed the limitations of GNNs in handling heterophily or
low-homophily settings. However, the real-world complexity of heterophily might not
have been fully captured in the models and datasets used. GPRGNN, which utilizes a
novel GPRGNN architecture that adaptively learns GPR weights, achieved the second-best
result on both the Chameleon and Film datasets. This adaptability is crucial for optimizing
the use of both node features and topological information, regardless of the extent to which
node labels exhibit homophily or heterophily.

The MCGCN’s strength lies in its ability to handle inconsistency in both graph struc-
tures and node features, making it particularly suitable for complex networks found in
domains like social network analysis or bioinformatics. However, its complex architecture
may not yield significant improvements in more uniform or consistent graph datasets.
In such scenarios, the additional computational complexity of the MCGCN might not trans-
late into proportionate performance gains, especially when compared to simpler models
like the GCN or GAT, which are optimized for such environments.

In conclusion, the MCGCN represents a significant advancement in graph convolu-
tional networks, especially for challenging datasets with structural and feature inconsis-
tencies. Its multi-channel approach offers a novel and effective solution for these complex
scenarios, though its complexity may not always be necessary for more straightforward
graph analysis tasks.

6.2.2. Visualization

To demonstrate our approach’s superior performance, we employed t-SNE [53], which
can project the learned node representations into a two-dimensional space, to visualize the
representations in the Cora dataset as an example. Figure 3 displays the visualization results
for the MLP, DeepWalk, GCN, and MCGCN-A, with each color denoting a categorical
label. As shown, the results for the MLP, DeepWalk, and GCN are less satisfactory, since
the borders between different segmented groups are unclear, and some points of different
classes are mixed with each other. In contrast, the MCGCN forms more discernible clusters.

(a) MLP (b) DeepWalk

(c) GCN (d) MCGCN-A

Figure 3. Visualization results on the Cora dataset. Each color denotes a categorical label (i.e.,
academic topic).
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6.2.3. Synthetic Experiments

In this section, we elaborate on the generation of the synthetic datasets described in
Section 4, which are utilized in the subsequent attention analysis.

Each synthetic graph comprised 900 nodes, and each node had a 50-dimensional
feature vector. These 900 nodes were divided into three groups of 300, with each group
receiving a distinct label. Although the three Gaussian distributions for these groups
shared a common covariance matrix, their centers were initially distanced from each other.
The topological structure was created using the SBM model [46], where each group was
treated as a community. Intra-community edges were formed with a probability of 0.03,
while initially, there were no inter-community edges. The node labels correlated with
both the node features and the topological structure. Starting from this ideal scenario, we
gradually added inconsistency.

In scenarios with structural inconsistencies, we maintained perfect and fixed node
features while setting the intra-community edge probability at 0.03. We began with a syn-
thetic graph with a 0 probability for inter-community edges. Inconsistency was introduced
by incrementally increasing the inter-community edge probability by 0.003 for each new
graph. In total, eleven graphs were generated, culminating in a final graph where the
inter-community edge probability reached 0.03, matching the intra-community probability.

In settings with feature inconsistencies, we began with an ideal scenario, where three
distinct node groups were formed using three Gaussian distributions with centers distanced
from each other. We assumed that three randomly generated Gaussian distribution centers
were f1, f2, and f3, with a mean of fmean = ( f1 + f2 + f3)/3. We generated eleven graphs,
each with centers defined as fk[i] = i × fk + (1 − i)× fmean, where k = 1, 2, 3. When i = 1,
the three centers were in their original positions, distant from each other. We then decreased
i by 0.1 for each subsequent graph, causing each center to gradually shift toward fmean.
In the final graph of the series, with i = 0, all three Gaussian distributions converged at the
same center.

The results, presented in Figure 1, indicate that the MCGCN consistently performed
well in both groups of settings. This demonstrates the MCGCN’s effectiveness across
various inconsistency levels, aligning with our expectations.

6.2.4. Attention Analysis

To further validate the MCGCN’s ability to yield interpretable results, we analyzed
the distributions and trends of its attention values. Given the lack of a definitive measure
for inconsistency in real-world datasets, we analyzed the MCGCN’s attention values on the
synthetic datasets described earlier. This analysis helps illustrate how attention values shift
with varying degrees of inconsistency in structures or features. Figure 4 shows the trends
of the attention values on four representations (i.e., structure representation, feature repre-
sentation, and two joint representations). Initially, when both the features and structure
are informative, attention is distributed uniformly across all representations, as depicted
in Figure 4a. However, as structural inconsistency intensifies, particularly approaching
1, the attention predominantly shifts toward feature representation. The results validate
that the MCGCN can extract information that is correlated with the classification task and
filter the redundant information contained in an unreliable structure. A similar pattern is
observed in Figure 4b, where increasing feature inconsistency leads to a gradual shift of
attention toward structure representation. These trends, illustrated in Figure 4, indicate
that the MCGCN can adaptively learn the effective representation from an inconsistent
structure and features and further demonstrate that our proposed MCGCN can obtain
more interpretable results.
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Figure 4. Attention analysis of the MCGCN on synthetic datasets. The x-axis represents the fea-
ture/structure inconsistency levels.

6.3. Case Study on Recommendation Task
6.3.1. Datasets

To evaluate the performance of the MCGCN in the context of recommendations,
we constructed a dataset focused on person–job fit, sourced from the renowned human
resources platform Xinrenxinshi.com, as outlined in Table 3. The dataset allocation included
80% for training, with the remaining 20% equally divided between validation and testing,
each constituting 10%. BERT was utilized to initialize the representations for each person
or job node, deriving these from their respective textual descriptions.

Table 3. Statistics of the Xinrenxinshi dataset. # denotes the number of objects.

#Person #Job #Interaction #Recommend #Interview #Offer

9719 2035 15,101 1735 952 159

6.3.2. Baselines

For the job recommendation task, we employed GCN, GAT, AGC [54], and HAN [55]
as baseline methods. These models are recognized as state of the art in this domain. Notably,
HAN introduces a unique technique through its use of hierarchical attention networks.
This method enables a deeper comprehension of the inherent hierarchical structures present
in documents.

6.3.3. Metrics

The AUC (Area Under the Receiver Operating Characteristic Curve) metric is of
paramount importance in assessing the performance of recommendation tasks. Further-
more, we employed four other widely acknowledged metrics—accuracy, recall, and F1
score—to comprehensively evaluate effectiveness.

6.3.4. Results and Analysis

Table 4 displays the job recommendation results on the Xinrenxinshi dataset, with
our method exhibiting outstanding performance. Our approach surpassed all competing
methods in terms of accuracy and F1 score while achieving the second-best results in terms
of the AUC. In terms of recall, AGC and GAT marginally outperformed our model, with dif-
ferences of 3.79% and 0.45%. Overall, as illustrated in Table 4, our model demonstrated
either superior or comparable effectiveness in relation to other baseline models across most
of the evaluated metrics.

Xinrenxinshi.com
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Table 4. A comparison of the job recommendation results on the Xinrenxinshi dataset. The best result
is indicated in bold and the second-best result is underlined.

Method AUC Accuracy Recall F1 Score

GCN 0.7789 0.7347 0.9155 0.7753
GAT 0.8176 0.7300 0.9765 0.7834
AGC 0.8909 0.6596 0.9437 0.7349
HAN 0.6465 0.5266 0.7230 0.5693

Ours 0.8448 0.7483 0.9395 0.7891

7. Conclusions and Future Work

In this paper, we propose the MCGCN, a novel multi-channel graph convolutional
network for graphs with inconsistent structures and features. The proposed approach in-
cludes four main convolution channels and an attention mechanism. To handle inconsistent
information, two specific convolution channels are designed to extract representations from
the structure and feature spaces. Additionally, two joint convolution channels are devel-
oped to fuse and capture the common information shared by both the structure and node
features, enabling the handling of both consistent and inconsistent scenarios. An attention
mechanism is employed to adaptively learn the importance weights of these representa-
tions, focusing on the information most relevant to node label prediction. Comprehensive
experiments on synthetic and real-world datasets demonstrate the proposed approach’s
superior performance compared to several existing state-of-the-art methods.

The MCGCN is particularly well suited for applications involving complex network
structures with variable or inconsistent data, such as social networks, biological networks,
and recommendation systems. Its ability to handle inconsistency and extract meaningful
representations from complex graphs makes it a valuable tool in these areas. However,
for simpler graph structures or tasks where the overhead of multiple convolution channels
is not justified, traditional single-channel GCN models might be more efficient.

Incorporating the proposed approach into real-world applications demands careful
consideration of several practical aspects. (1) Scalability: As the approach is designed
for graph-based data, which can be extensive and complex in real-world scenarios, it
is vital to ensure that the model scales efficiently. This might involve using distributed
computing techniques to manage large datasets and optimizing the model’s architecture
to handle an increasing number of nodes and edges without significantly compromising
performance. (2) Deployment challenges: Integrating this model into existing systems
involves challenges such as ensuring compatibility with current infrastructures, minimal
downtime, and maintaining data integrity and security during the integration process. Con-
tinuous monitoring and maintenance will be required to ensure the model’s performance
remains optimal over time. (3) Computational resources: The proposed approach requires
significant computational resources for both training and inference. The training phase
might require high-performance GPUs or even TPUs to manage the computational load,
especially for larger datasets. For inference, especially in real-time applications, the compu-
tational demands can be substantial. It is crucial to balance the computational costs with
the performance gains provided by the model. In summary, the successful implementation
of the proposed approach in real-world applications requires a well-thought-out strategy
that addresses scalability, deployment, and computational resources.

In future research, we plan to explore alternative approaches for initializing topological
features and generating feature structures. Furthermore, we aim to enhance our method
with a data-driven, self-supervised learning approach, making it applicable to graphs
without available label information.
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