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Abstract: In this paper, an n-i-p-type GaN barrier for the final quantum well, which is closest to the
p-type GaN cap layer, is proposed for nitride light-emitting diodes (LEDs) to enhance the confinement
of electrons and to improve the efficiency of hole injection. The performances of GaN-based LEDs
with a traditional GaN barrier and with our proposed n-i-p GaN barrier were simulated and analyzed
in detail. It was observed that, with our newly designed n-i-p GaN barrier, the performances of
the LEDs were improved, including a higher light output power, a lower threshold voltage, and a
stronger electroluminescence emission intensity. The light output power can be remarkably boosted
by 105% at an injection current density of 100 A/cm2 in comparison with a traditional LED. These
improvements originated from the proposed n-i-p GaN barrier, which induces a strong reverse
electrostatic field in the n-i-p GaN barrier. This field not only enhances the confinement of electrons
but also improves the efficiency of hole injection.

Keywords: GaN; quantum well; modeling; light-emitting diodes

1. Introduction

Nitride light-emitting diodes (LEDs) have garnered increasing attention and extensive
amounts of research due to their low power consumption and compact size [1–3]. One
common problem facing GaN-based LEDs is that the electrons can be easily injected from
the active regions into the p-GaN region, which decreases the recombination of the carriers
within the active regions, owing to the high mobility and small effective mass of the
electrons. This issue significantly limits these devices’ performances. To solve this problem,
a novel electron-blocking layer (EBL) made of AlGaN with a wide band gap was inserted
among the active regions and the p-type GaN cap region [4–8]. However, this method
alone is not effective in suppressing the injection of the electrons to the p-type GaN cap
layer. Moreover, it creates an obstruction within the movement of holes from the p-type
GaN cap layer towards the active regions. To enhance the efficacy of hole injection from
the p-GaN region into the active regions, concepts such as AlInGaN EBL [9], undope
BGaN/BAlN EBL [10,11], Graded EBL [12,13], quantum barrier [14], triangular EBL [15],
and band offset [16] devices have been reported. These works focused on finding a proper
EBL, which in general required an additional hetero epitaxial deposition, making them
difficult to realize due to the lattice mismatch. The EBL is primarily utilized for engineering
the energy band of the multiple quantum wells (MQWs) in close proximity to the p-GaN
cap layer, thereby enhancing both electron and hole concentrations and subsequently
improving the electrical and optical characteristics of nitride LEDs [17–20].

The aforementioned studies show that researchers have enhanced the carrier injection
efficiency by improving wider-bandgap EBL, but for GaN-based LEDs, it is not sufficient
to optimize a single p-EBL. Alternatively, it is conceivable that a favorable polarization
charge may exist at the interface where the final quantum barrier meets the EBL with a
wider bandgap. This occurrence can be attributed to a negative difference in heterointerface
polarization [21]. The existence of this positive charge has an effect on bending the last
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quantum barrier bands, leading to a reduction in the effective electron barrier and an
increase in the effective hole barrier. Consequently, it may significantly compromise both the
electron blocking and hole injection processes, ultimately resulting in a diminished optical
power and efficiency [22]. As a result, many strategies aimed at improving the amount of
droop utilize either an Al composition gradient [23–25] or a final barrier with a different
thickness [23,26,27] as a workaround for this issue. In a previous study we reported high-
performance green LEDs employing heterojunction-type last quantum barrier layers [28].
However, the realization of this process is difficult due to lattice structure mismatch. Further
investigations are necessary to determine a straightforward device structure that exhibits a
mechanism that clearly leads to enhanced carrier injection and reduced current leakage.

In this study, we introduce a novel n-i-p-type GaN barrier to engineer the energy band
structure. This n-i-p barrier is used for the last quantum well (QW) only, which is nearest to
the p-type GaN cap region. The improvements in the hole injection efficiency and electron
confinement of the LED with our newly designed barrier are demonstrated in simulations.
In addition, this method can avoid any additional hetero epitaxial growth, which makes it
easy to apply in practice.

2. Device Structure and Parameters

In this study, the InGaN/GaN MQW LED with a traditional GaN barrier developed in
Ref. [29] was used as a reference. Its schematic cross section is shown in Figure 1. From
the bottom to the top, the device structure consists of a sapphire substrate, an n-type
GaN/Si layer with a concentration of 5 × 1018 cm−3 and a thickness of 2 µm, five periods of
GaN (12 nm)/In0.15Ga0.85N (3 nm) MQW regions, subsequently accompanied by a p-type
Al0.25Ga0.75N:Mg EBL with a density of 3 × 1017 cm−3 and a thickness of 25 nm, and a
0.12 µm p-type GaN/Mg cap layer with a density of 3 × 1017 cm−3. The dimensions of the
device are 60 µm × 60 µm, forming a square shape. When the GaN barrier in the final QW
is substituted with n-GaN (1 × 1018 cm−3)-i-GaN-p-GaN (5 × 1018 cm−3), an LED with our
proposed n-i-p GaN barrier is then formed, as shown in Figure 1. The thicknesses of the n,
I, and p layers in the proposed barrier are identical at 4 nm. Therefore, the only structural
difference between these two types of LEDs is the type of barrier used for the last QW.
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Figure 1. Schematic diagrams depicting the LEDs with (a) a traditional GaN barrier and (b) an n-i-p
GaN barrier for the last quantum well.

To examine the impact of the n-i-p GaN barrier on the device’s performance, models
of these two types of LEDs were built in Silvaco ATLAS software (version 5.19.20.R), and
simulations of the band diagrams, the carrier concentrations, the light output power, the
I–V curve, and the electroluminescence spectra were performed. In the calculations, an
approximate value of 1 ns was assigned to the Shockley–Read–Hall (SRH) lifetime of the
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quantum wells (QWs). The coefficient for Auger recombination was assumed to be around
3.0 × 10−29 cm6/s. The offset caused by fixed defects and additional interface charges was
taken into account in 30% of the theoretical values.

The simulation model incorporates a k·p–Schrödinger solver for the examination of
luminescence and carrier distribution in the quantum wells, alongside a semi-classical drift
diffusion transport solver [30,31]. It has undergone improvements to accurately capture the
luminescence and transport characteristics specific to GaN-based MQW LEDs. A Newton
solver is employed to achieve a combined solution of models in both real and energy
domains. The Gummel iteration guarantees adherence to the k·p–Schrödinger model by
ensuring self-consistency.

The equations that generally dictate the calculation of band gap energies in InGaN
and AlGaN are provided below [32].

Eg(InxGa1−x N) = Eg(InN)x + Eg(GaN)(1 − x)− 3.8x(1 − x)
Eg(AlxGa1−x N) = Eg(AlN)x + Eg(GaN)(1 − x)− 1.3x(1 − x)

InN, GaN, and AlN have band gap energies denoted as Eg(InN), Eg(GaN), and Eg(AlN)
with values of 0.77 eV, 3.42 eV, and 6.25 eV, correspondingly. The assumed band–offset
ratio for InGaN and AlGaN materials is 0.7/0.3 [33,34].

The determination of the permittivity of nitrides can be achieved by employing linear
interpolations, which rely on the values obtained for binary compounds, to establish a
relationship with the composition fraction denoted as x [35].

ε(InxGa1−x N) = 15.3x + 8.9(1 − x)
ε(AlxGa1−x N) = 8.5x + 8.9(1 − x)

Polarization modeling is of the utmost importance in the evaluation of GaN-based
devices’ performance. Their highly polar nature results in a significant accumulation of
fixed charges at the interfaces, leading to the generation of a substantial static field which
is present within the LED. The overall macroscopic polarization P of InGaN (AlGaN)
is defined as the combination of the spontaneous polarization PSP in the equilibrium
lattice and the piezoelectric polarization PPi induced by strain. The total polarization, P, is
given by:

P = PSP + PPi

where PSP is specified in Table 1. Ternary material values are obtained through linear
interpolation based on the values of the binary materials.

The piezoelectric polarizations of InGaN and AlGaN are contingent upon the strains
present within the materials, which can be mathematically expressed as follows [36,37]:

PPi = 2
as − a0

a0
(e31 −

C13

C33
e33)

where e31 and e33 represent piezoelectric constants, C13 and C33 denote the elastic constants,
and a0 corresponds to the wurtzite lattice constant (as is the substrate value). The material
parameters for binary compounds are provided in Table 1. In the case of ternary compounds,
a linear interpolation method can be employed to estimate these values.

The physical parameters set in our simulation are justified by reproducing the experi-
mental results in [29], as shown in Figure 2. The simulated results align harmoniously with
the measurements, thereby validating the chosen physical parameters.



Electronics 2024, 13, 1399 4 of 11

Table 1. Room-temperature polarization parameters of wurtzite nitride semiconductors [32,38].

Parameter Symbol Unit InN GaN AlN

Spontaneous polarization Psp C m−2 −0.042 −0.034 −0.09
Piezoelectric constant (z) e33 C m−2 0.810 0.670 1.50

Piezoelectric constant (x, y) e31 C m−2 −0.410 −0.340 −0.53
Elastic constant C33 GPa 200 392 382
Elastic constant C13 GPa 94 100 127
Lattice constant a0 Å 3.548 3.189 3.112
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3. Results and Discussion
3.1. Light Output Power

The light output power performances of these two types of LEDs have been calculated
and compared, as depicted in Figure 3. It is evident that the incorporation of an n-i-p
GaN barrier greatly enhances the luminous output capability of the LED, across all levels
of current injection. With an n-i-p GaN barrier, the output power density of the LED is
increases by 105% in contrast with the traditional one at an injection current density of
100 A/cm2.
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3.2. Energy Band Diagrams

To investigate the carrier transport in LEDs, simulations of the band diagram have
been performed. The band diagrams of the LEDs, both with a traditional GaN barrier and
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an n-i-p GaN barrier, were simulated and results obtained at an injection current density
of 40 A/cm2, as depicted in Figure 4. It is evident that, in the case of a traditional GaN
barrier, the effective valence band barrier height for the holes is 312 meV, as depicted in
Figure 4a. And in the case of an n-i-p GaN barrier, the barrier height for the holes in the
valence band is found to be 285 meV, as depicted in Figure 4b. This means that the holes
encounter a much lower barrier height in the LED with an n-i-p GaN barrier than in the
traditional GaN barrier. Therefore, with an n-i-p GaN barrier, the holes can move from the
cap layer to the active regions easier, resulting in a higher efficiency of injecting holes. It
is clear that incorporating an n-i-p GaN barrier leads to an increased effective potential
barrier height being experienced by the electrons in the conduction band. This increased
electron barrier height can effectively suppress the electron leakage from the QWs to the
p-type cap region. In summary, the LED with an n-i-p GaN barrier shows significantly
improved carrier transport not only in the confinement of electron but also in the injection
of holes.
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barrier GaN (b) at 40 A/cm2.

3.3. Carrier Concentration

From the above band diagram analysis, it can be inferred that the n-i-p GaN barrier
enhances hole injection. To verify this, we have studied the carrier concentrations in
the active regions and compared the distributions of holes and electrons under DC bias.
Figure 5 shows the calculated hole and electron distributions of these two types of LEDs at
a current density of 40 A/cm2. The reference point for the relative position is established
at the uppermost layer of p-GaN, directed in a downward vertical orientation towards
the MQWs. As expected, the LED featuring an n-i-p GaN barrier exhibits significantly
elevated hole and electron concentrations compared to the LED employing a traditional
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GaN barrier. In the case of an n-i-p GaN barrier, the peak hole concentration can reach
6.0 × 1018 cm−3 in the first QW. However, in the case of a traditional GaN barrier, the peak
hole concentration is only 2.2 × 1018 cm−3 in the first QW, as depicted in Figure 5. It is
evident that the electron concentrations in the first QW are also improved with the n-i-p
GaN barrier. Similar trends were observed for the other four QWs, although these are not
shown in this paper.
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The insert in Figure 5 shows the profiles of leaked electronics for a traditional LED
and our proposed LED. The traditional LED exhibits a significant electron current leakage,
which is about three times higher than our proposed LED. Based on the results shown in
Figure 6, it is evident that the electron leakage of the LED utilizing the n-i-p GaN final
barrier is significantly lower compared to that of the conventional structure LED. This
means that the electron reflection is much stronger than the electron crossing at the EBL.
Consequently, our proposed LED structure exhibited a superior performance, as can be seen
in Figure 3. The electron-blocking capabilities of the n-i-p GaN barrier were significantly
enhanced, leading to a substantial reduction in leakage rate. These data validate that the
incorporation of the n-i-p GaN barrier effectively suppresses electron leakage and enhances
hole injection efficiency. Therefore, the active regions experienced a simultaneous rise in
the concentrations of both electrons and holes.
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3.4. Current-Voltage Curves

Figure 7 shows the I-V curves of these two types of LEDs. It is evident that the
LED featuring an n-i-p GaN final barrier exhibits a reduced turn-on voltage, indicating an
improved carrier transport. These results align with the analysis of the band diagram. When
the biased forward voltage increases to approximately 4.0 V, the corresponding current
densities of traditional and our proposed LED reach 17.4 and 42.212 A/cm2, respectively.
Due to the reduced series resistance of the n-i-p GaN final barrier in our proposed LED,
the current density of this new structure LED is higher than that of traditional one. It was
found that the electrical characteristics were hampered by adding the n-i-p-type doping
from our proposed LED.
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3.5. Radiative Recombination Rates

Figure 8 presents the carrier radiative recombination rate of the two LEDs, which
helps identify the confinement of carriers within the active region caused by the inclusion
of a last GaN barrier layer with an n-i-p configuration. Compared to the traditional LED,
the radiative recombination rates of our proposed LED were increased to 623%, 906%,
507%, 281%, and 248% in QW5, QW4, QW3, QW2, and QW1, respectively, at a current
injection density of 40 A/cm2. When a significant quantity of holes, each containing
an equivalent number of electrons, are introduced into the active region, the trapped
carriers will experience accelerated recombination within the MQWs. This phenomenon is
particularly evident in the final quantum well (QW5), which is located closer to the last n-i-
p-type GaN barrier and AlGaN EBL. These findings align closely with the aforementioned
results. We can infer that the carrier injection and transport in our proposed LED structure
are effectively enhanced by the last barrier being n-i-p-type GaN, leading to an accelerated
recombination process towards the final quantum well (QW5). It is noteworthy that,
while the increase in radiative recombination rate in QW4 is the highest, it constitutes a
relatively minor proportion compared to the final quantum well (QW5) in terms of the
overall radiative recombination. Consequently, the final quantum well (QW5) exerts the
most significant influence.
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3.6. Electroluminescence Spectra

The calculated electroluminescence (EL) spectra for both devices at current densities
of 40 A/cm2, 60 A/cm2, and 80 A/cm2 are depicted in Figure 9. A stronger EL intensity is
observed for the LED with an n-i-p GaN barrier than for the LED with a traditional GaN
barrier under all three current injection density conditions. In contrast to the conventional
LED, the maximum intensities of our new structure LED rise to 124.6%, 111.6%, and 113.1%
at current injection densities of 40 A/cm2, 40 A/cm2, and 40 A/cm2, respectively. The
enhanced EL intensity can be attributed to the enhanced carrier transport across the GaN
barrier in the n-i-p structure.
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3.7. Electric Fields

In order to understand the underlying mechanism of carrier concentration distribu-
tions, it is necessary to analyze the electrostatic field in the final GaN barrier and the AlGaN
EBL within these LED structures. The zoomed-in electric fields and energy band diagrams
of the LEDs with an n-i-p GaN barrier and a traditional barrier at 40 A/cm2 are depicted in
Figure 10. The energy band at the last GaN barrier and AlGaN EBL interface undergoes
a downward shift due to the influence of polarization effect, resulting from the presence
of strong electric fields in conventional LEDs. This leads to an increase in the effective
barrier height for hole injection and a decrease in that for electron injection, which may
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contribute to the less-than-optimal efficiency of hole injection and the noticeable electron
leakage observed in GaN-based MQW LEDs. However, the downward band bending at
the interface between the last barrier and AlGaN EBL is significantly reduced as a result
of the opposing electric field generated by the n-i-p junction in the GaN layers of the final
barrier. It is evident that the barrier height experienced by holes is decreased while that
for electrons is enhanced, which improves the hole injection efficiency and suppresses the
electron leakage. In summary, the above results indicate that the introduction of an n-i-p
GaN barrier can dramatically improve the GaN-based LED’s performance.
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4. Conclusions

In summary, a comprehensive numerical analysis and comparison have been con-
ducted on two distinct categories of GaN-based LEDs. One is an LED with a traditional
GaN barrier for the last quantum well, and the other is an LED with our newly proposed n-
i-p GaN barrier for the last quantum well. The light output power of the LED with the n-i-p
GaN last quantum barrier is significantly improved by 105% when exposed to an injection
current density of 100 A/cm2. Our research findings suggest that, by employing an n-i-p
GaN barrier as the final quantum well, it is possible to enhance hole injection efficiency from
the p-type GaN cap region into the active regions and effectively mitigate electron leakage
from the active regions. Therefore, the carrier confinement within the active regions is
improved. As a result, our newly devised barrier design exhibits remarkable enhancements
in various aspects such as increased light output power, reduced turn-on voltage, and
intensified EL emission intensity. The results obtained in this study present a novel ap-
proach for enhancing the efficiency of GaN-based LEDs. The suggested design can be easily
implemented during the fabrication process of LEDs, eliminating any challenges associated
with lattice mismatching that may arise during additional heterostructure growth.
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