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Abstract: The primary objective of person re-identification is to identify individuals from surveillance
videos across various scenarios. Conventional pedestrian recognition models typically employ
convolutional neural network (CNN) and vision transformer (ViT) networks to extract features,
and while CNNs are adept at extracting local features through convolution operations, capturing
global information can be challenging, especially when dealing with high-resolution images. In
contrast, ViT rely on cascaded self-attention modules to capture long-range feature dependencies,
sacrificing local feature details. In light of these limitations, this paper presents the MHDNet, a
hybrid network structure for pedestrian recognition that combines convolutional operations and
self-attention mechanisms to enhance representation learning. The MHDNet is built around the
Feature Fusion Module (FFM), which harmonizes global and local features at different resolutions.
With a parallel structure, the MHDNet model maximizes the preservation of local features and global
representations. Experiments on two person re-identification datasets demonstrate the superiority of
the MHDNet over other state-of-the-art methods.
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1. Introduction

Person re-identification (Re-ID) is a critical field within computer vision that utilizes
techniques to detect individuals in images or videos [1,2]. It can be considered a subfield
within the domain of image retrieval. In recent years, Re-ID has emerged as a crucial
research area due to its diverse applications in criminal investigations and computer vi-
sion. The primary goal of Re-ID is to efficiently retrieve and recognize specific individuals,
thereby facilitating automatic identification in surveillance systems with non-overlapping
fields across multiple cameras. However, challenges such as occlusion [3,4], illumina-
tion, human posture [5], and other confounding factors [6] can significantly impact the
effectiveness of Re-ID in practical surveillance systems.

Early research on person re-identification focuses on extracting feature representations
to distinguish individual identities [7,8] and designing an effective distance measurement to
establish image similarity [9–11]. With the development of deep learning, the focus of early
research on Re-ID has shifted towards developing robust feature representations [12–14] to
distinguish individual identities, alongside the exploration of effective distance measurement
techniques tailored to establish image similarity. Person re-identification based on deep learn-
ing can divide three aspects from the extracted image features: (1) Global feature learning
is widely used in person re-identification. However, using attention mechanisms [15,16] to
extract a global feature vector may cause the network to neglect local details, which are
also important for accurate Re-ID. (2) Local feature learning is achieved by dividing the
pedestrian image into smaller blocks to extract features from various parts and enhance
the network’s performance. However, using methods like grid segmentation and pose
division can increase computational complexity, especially when using the pose division
technique which may require an additional pose estimation network to improve perfor-
mance. (3) Integrating global and local features through fusion learning [13,17] can help
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the network capture both global and local information to improve the identification of
pedestrians [18–20]. Although this approach leads to better semantic feature extraction, it
can increase the model’s complexity and network parameters. Additionally, it is important
to note that current methods mainly concentrate on deep semantic features and may not
consider other relevant factors.

Current research focuses primarily on the output features of high layers, overlooking
the learning potential of shallow components for detecting subtle details of a person.
Furthermore, the use of multi-loss joint training enables evaluation of person feature
distances across several dimensions, while multi-loss approaches have potential, it is
important to note that different losses have varying impacts on results, necessitating the
incorporation of novel loss combinations. However, utilizing multiple losses increases
training costs significantly as the computational complexity of the system is augmented.

To address the above-mentioned issues, this paper proposes a multi-scale interactive
transformer structure that utilizes Vision Transformer as the Re-ID backbone to extract
hierarchical information and fine-grained features. Additionally, a multi-scale feature
fusion module is proposed to achieve bidirectional fusion of the global modeling ability
of the Transformer and the local capture ability of the CNN, effectively improving the
performance and stability of the model. The joint action of the two modules improves
the network’s perception of crucial person information. This paper also incorporates a
learnable attention mechanism to further enhance the model’s performance by allocating
more attention to features. Experimental results on widely used datasets demonstrate that
the method proposed in this paper achieves impressive performance and robustness in
Re-ID tasks, significantly improving mAP and Top-1 accuracy compared to the current
state-of-the-art methods. The primary contributions of this paper are as follows:

(1) We investigated the feasibility of replacing convolutional neural networks (CNNs)
with vision transformers (ViT) in the person re-identification (Re-ID) domain, and we success-
fully integrated visual specificity induction bias into the standard ViT architecture, achieving
comparable and enhanced performance comparable to recent transformer-based models.

(2) We introduce a spatial prior module and two feature interaction operations, seam-
lessly integrating them into the backbone network in a hybrid manner. This approach
harmonizes the strengths of various modules, fostering efficient information exchange
within the network. As a result, our model captures local details more precisely and re-
organizes fine-grained multi-scale features, significantly improving matching accuracy
and stability.

(3) We conducted rigorous experiments and ablation studies on benchmark single-person
Re-ID datasets, Market1501 and DukeMTMC-reID, along with cross-dataset validation to
assess our method’s generalization. Our approach’s effectiveness is evident from numerous
experiments, demonstrating competitive performance against state-of-the-art methods.

2. Related Work

In this section, we will review previous relevant work to provide reference to our
research and compare and analyze our work with these studies.

2.1. Transformer in Person Re-ID

In recent years, with the widespread use of Transformer [21] in natural processing,
research on its application to computer vision tasks [22–24] to study image dependencies
has gained momentum. In Re-ID [1,2,25], spatial alignment [13,26] and multi-scale fea-
tures [27,28] are crucial for feature learning. However, implementing spatial alignment and
multi-scale features in visual-based Transformer structure remains a challenging research
area. In their work, He et al. [29] proposed a side information embedding and puzzle
patch modules to discriminative features in a pure Transformer framework for improving
performance. Chen et al. [30] constructed fully relational features for Re-ID with a fully
relational high-order transformer structure (OH Transformer), acquiring attention matrices
based on queries and isolated key pairs at each spatial position and further modeling
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high-order statistical information for non-local mechanisms. To enhance the robustness of
feature extraction, Chen et al. [31] designed a hybrid backbone Res Transformer by combin-
ing ResNet-50 with Transformer blocks. Lai et al. [32] proposed an adaptive component
partitioning model to extract local features more effectively in human Re-ID. In this paper,
we propose a bidirectional fusion of Transformer’s global modeling ability and CNN’s local
capture ability. This is achieved by combining Transformer with CNN, and we utilize a
multi-scale feature fusion module for feature extraction at different levels. Our proposed
approach achieves state-of-the-art performance on three datasets.

2.2. Multi-Scale Feature Method

In Re-ID tasks, different feature levels such as color, texture, shape, and posture
contribute to feature learning. Therefore, introducing multi-scale features has shown
potential in improving model performance. The method of multi-scale features involves
adding various feature extraction branches, each with a different scale, to the backbone
network. The features from different scales extracted by these branches are aggregated
for training, as shown in Figure 1d. This approach aims to learn the depth features
of different body layers, optimizing model performance. Cai et al. [33] used attention
mechanisms to extract characteristics at three scales. Wang et al. [34] extracted multi-
scale features based on different stages of the backbone network and added these to the
subsequent coding task. Liu et al. [35] proposed a multi-scale feature enhancement model
that aggregates shallow, medium, and deep-level features to extract feature maps with
good spatial structures and rich semantic information. Wu et al. [27] proposed an attention
depth framework with multi-scale deep supervision by inserting attention modules into the
backbone network for efficient feature extraction. Zhou et al. [36] proposed a lightweight
full-scale network model that extracts multi-scale features through full-scale residual blocks.
Chen et al. used feature block processing and multi-layer fusion methods to extract multi-
scale features. Hao Zhang et al. [37] proposed the multi-scale visual attribute co-attention
model (mVACA), enhancing zero-shot image recognition performance and achieving
outstanding results in benchmarks. Zhang et al. [38] developed an innovative region-based
multi-scale network that significantly improves emotional image recognition by seamlessly
integrating features extracted from focal regions along with their surrounding contexts.
Zhou et al. [39] introduced a DNN model that integrates spatial pyramid pooling with
feature pyramids to enhance distorted image quality assessment. This model leverages
deep end-to-end supervision to efficiently utilize multi-scale features, thereby improving
the accuracy of perceptual quality prediction. Chen et al. [40] introduced an innovative
multi-scale SER parallel network, AMSNet, which integrates fine-grained frame-level
manual features with coarse-grained utterance-level deep features. This network also
incorporates an enhanced attention-based LSTM and a CNN with Squeeze-and-Excitation
blocks (SCNN) to extract emotional information from speech signals more comprehensively.
Hu et al. [41] innovatively introduced the Multi-scale Multi-angle Attention Network
(MMAN), integrating 3D and 2D convolutional layers to extract spectral and spatial features,
respectively, for a comprehensive understanding of image content. While these methods
have their advantages and disadvantages, they effectively extract feature information
at various scales and prove to be beneficial attempts and explorations for pedestrian
recognition tasks.
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Figure 1. Overall architecture of MHDNet. (a) The ViT, whose encoder layers are divided into N
(usually N = 12) equal blocks (c) for feature interaction. (b) Our Information Fusion Architecture,
which contains two key designs, including (e) a spatial prior module for modeling local spatial
contexts from the input image, (f) Feature Fusion Module for introducing spatial priors into ViT.
(d) Block i.

3. The Proposed Method

This section provides a comprehensive exposition of our novel approach that addresses
the research problem.

3.1. Framework Overview

In order to tackle the intricacies of the detection framework and the absence of dimen-
sional correlation inherent in the domain of person re-identification, we present our network
architecture. The proposed person re-ID architecture based on multi-scale hybrid features
includes a ViT architecture, an information fusion architecture consisting of a spatial prior
module and a feature fusion module, and a person re-identification classification layer.

As illustrated in Figure 1, we focus on optimizing both the network model architecture
and the deep model. This paper employs a modified Vision Transformer as our backbone
for generating person identity features. The network structure is shown in Figure 1a,
consisting of a patch embedding layer and N Transformer encoder layers. We employ patch
embedding technology to partition the image into 16 × 16 non-overlapping small blocks.
These blocks are then flattened and mapped to the feature space, resulting in a reduction
of feature resolution by a factor of 16 compared to the original image. Following this, we
apply positional encoding to incorporate spatial relationships between the features before
feeding them into N encoder layers for further processing. Within each encoder layer, every
feature participates in a global attention mechanism that enables it to interact with all other
features for information exchange.

Regarding information fusion architecture, this paper employs an efficient and in-
novative approach, as illustrated in Figure 1b. We process the input image by feeding it
into the spatial prior module to obtain three spatial features at different scales. Follow-
ing this, we flatten these feature maps as inputs for feature interaction. Specifically, we
divide the ViT encoder into N blocks, where N is typically 12. For each block, we inject
the spatial prior information into it through the spatial feature fusion module and then
extract hierarchical features from the output, using a multi-scale feature extractor. Next, we
perform N feature interactions to obtain high-quality multi-scale features for enhancing
the model’s performance.
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The person re-identification classification layer of the network includes a linear layer,
a normalization layer, and a fully connected layer, as illustrated in Figure 1c. We transform
the input feature vector into a 768-dimensional feature representation for person identity
description. Subsequently, we determine the person’s identity in the re-identification task
using a fully connected layer.

3.2. Space Prior Module

Recent studies [42,43] have shown that incorporating convolution operations into the
Transformer architecture can better capture local spatial information. However, rather than
modifying the original ViT architecture, we were inspired to introduce the Spatial Prior
Module (SPM) to address this issue. The SPM module is designed to work parallel with
the embedding layer while representing the local spatial context of the input image. Its
precise definition is articulated as follows:

F1, F2, F3 = SPM(X) (1)

where X ∈ R(C×H×W) represents the holistic depiction of the input image.
As illustrated in Figure 1d, the proposed module includes three convolutional layers

and one maximum pooling layer to extract and downsample features from the input image.
We then utilize a set of 1 × 1 strided convolutions to expand the number of channels
four times without altering the feature map size. This approach yields a feature pyramid
{F1,F2,F3} which is used as an input for feature interaction. The precise computational
procedure for Fi is as follows.

Fi+1 = f (BN(Conv(Fi, wi), βi, γi)) (2)

where f represents the activation function (such as ReLU), Conv denotes the convolution
operation, and BN denotes the batch operation. w represents the weight of convolution
kernel, and β and γ represent the scale and factors in batch normalization operation.

3.3. Feature Fusion Module

In order to tackle the intricacies of the detection framework and the absence of di-
mensional correlation inherent, we introduce the Global Feature Fusion Module (FFM), as
illustrated in Figure 2. This module enables the continuous coupling of local features and
global representations via interaction.

Feature Maps of ViT Patch Embedding

Conv BlockAvgPoolGELU+BN

Conv BlockGELU+BN

Feature Maps of CNN

𝐻 ∙𝑊 𝐻 ∙𝑊

𝐸 + 1 𝐸𝑋 𝑋𝑙

𝐻

𝑊

𝐶

𝑊∗

𝐶∗

𝐻∗

𝑋∗
𝑙

Figure 2. Feature fusion module.

It is important to note that CNN and Transformer models usually have different
feature dimensions. In CNN, the feature map has dimensions of F ∈ RC×H×W , where C, H,
and W represent the number of channels, height, and width, respectively. In Transformer,
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the shape of the patch embedding is P ∈ R(K+1)×E, where K, 1, and E represent the number
of multiple patches, tokens, and embedded dimensions of the image, respectively.

To ensure the alignment of spatial dimensions between the feature map in the CNN
branch and the patch embedding in the Transformer branch, an upsampling operation
is performed on the CNN feature map Fs ∈ R(Cs×Hs×Ws) . The feature map is then
adjusted to Cs channels using a 14 × 1 convolution to obtain Fs

conv ∈ R(Cs×Hs×Ws). Finally,
the upsampled feature map is added to F as Ff inal = F + Fs

conv.
When propagating from the branch to the Transformer branch, a 1 × 1 convolution

operation is applied to adjust the channel number to Ct, resulting in Pt
conv ∈ RCt×(K+1)×E).

The downsampling operation is then used to align the spatial dimension, obtaining
Pt

convpool ∈ R(Ct×(K+p)×E), where p represents the number of spatial dimensions that need to

be expanded. Add Pt
convpool to patch embedding P to obtain Pf inal = P+ Pt

conv ∈ R((K+p)×E).
The final Ff inal and Pf inal are normalized by using LayerNorm and BatchNorm.

In contrast, feature maps and patch embeddings exhibit significant semantic differ-
ences. Local convolution operators identify features within a local region and encode them
into distinct feature maps. Conversely, the global self-attention mechanism considers all
information and captures global relationships between pixels. To bridge these semantic
differences, we introduce FFM to each block (except the first) in order to progressively
integrate semantic information across the network.

3.4. Loss Function

In person re-identification tasks, the loss function plays a crucial role in model training
by adjusting the model’s discriminative ability and capturing correlations between similar
samples, either individually or jointly. To comprehensively evaluate the proposed model
under different loss constraints in person re-identification (Re-ID) tasks, incorporate several
metric learning loss functions. These include the ID loss, triplet loss, circle loss, contrast
loss, instance loss, and sphere loss, which can be used individually or in combination.

3.4.1. Cross-Entropy Loss

In person re-identification tasks, the cross-entropy loss is the most commonly used ID
loss and is used to measure the difference between the results of the model and the actual
labels. The smaller the cross-entropy loss, the closer the predicted results and actual labels are.

Specifically, for an input image x, the predicted output of the model for class i is
denoted as pi (the prediction probability for class i), and the true label of x is denoted as y.
The expression for the cross-entropy loss is given by Equation (3):

LCE =
N

∑
i
−qi log(pi)

{
qi = 0, y ̸= i
qi = 1, y = i

(3)

In ReID tasks, noise, missing labels, or inaccurate labels can lead to overfitting of the
model and limit its general ability when using a separate cross-entropy loss. To address
this issue, we propose the use of label smoothing [44] in cross-entropy to prevent the loss
of negative samples from being ignored. Unlike traditional cross-entropy loss, the class
label qi is calculated using a certain probability instead of being strictly defined as either 0
or 1. This improves the model’s performance, and α is represented by Equation (4):

qi =

{
1 − N−1

N ε, i f i = y
ε
N , otherwise

(4)

where N represents the number of classes in the multi-classification problem, and ε is a
small hyperparameter.
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3.4.2. Triplet Loss

Person re-identification tasks present unique challenges in terms of training models
to accurately measure distance and ensure high discriminability, making traditional loss
functions (such as the cross-entropy loss) inadequate. To address this, we selected metric-
based learning using the triplet loss function [45]. By using the distance between similar
and dissimilar samples to optimize the feature embedding space, triplet loss compensates
for the limitations of simple metric learning. The formula for calculating triplet loss is
shown in Equation (5):

LTri =
⌊
dp − dn − α

⌋
+

(5)

where dp and dn represents the distance between the feature representation pairs of positive
and negative sample pairs, usually calculated using Euclidean distance or cosine distance.
α is the marginal distance of loss.

3.4.3. Circle Loss

Referring to Equations (3) and (5), the circles of the same color show person features of
the same identity. The identity loss calculates the cosine distance between features, while
the triplet loss calculates the Euclidean distance between features. In person Re-ID tasks,
using identity loss alone for metric learning generally achieves better results than triplet
loss, and we also validate this claim. The Circle loss can be defined as follows, where a
given pedestrian sample x in the feature space has K within-class similarity scores and L
between-class similarity scores:

LCircle = log

[
1 +

L

∑
j=1

exp
(

γα
j
n

(
sj

n − ∆n
)) K

∑
i=1

exp
(
−γαi

p

(
si

p − ∆p
))]

(6)

where sj
n represent between-class similarity, j ∈ {1, 2, . . . , L}. si

p represent within-class

similarity, i ∈ {1, 2, . . . , K}. γ is the scale factor. α
j
n and αi

p are linear factors that constrain

the learning rate of sj
n and si

p. ∆n and ∆p denote the between-class and within-class
thresholds, respectively.

4. Experiment

In this section, we conducted experiments to verify the proposed method’s effective-
ness and compare it with the state-of-the-art techniques. We selected two benchmark Re-ID
datasets and conducted comparative experiments using the suggested method, as presented
in Table 1.

Table 1. Person Re-ID datasets introduction.

Datasets Cameras TrainIDs TrainImgs TestIDs QueryImgs GalleryImgs

Market-1501 [46] 6 751 12,396 750 3368 19,732
DukeMTMC-reID [36] 8 702 16,522 702 2228 17,661

4.1. Datasets

Market1501 [46] dataset comprises 32,668 images of 1501 individuals captured by six
cameras. Each individual is captured by at least two cameras, and the dataset includes multiple
training image sets of 751 individuals, totaling 12,936 images and averaging 17.2 training
images per person. The test set contains 19,732 images of 750 individuals, with 3368 of these
images used for query purposes, and the remaining images used as a library.

DukeMTMC-ReID [36] dataset comprises 36,411 images and 1812 identities captured
by eight different cameras. Of the identities, 1404 were captured by more than one camera,
while 408 were captured by only one camera. The training set includes 702 images of
identities, while the remaining identities were used for testing. For each identity in each
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camera, one image was selected as the query set in the test set, while the rest of the images
were reserved as the image library.

Evaluation indicators: Two commonly used metrics for pedestrian recognition tasks
are mean average precision (mAP) and cumulative characteristic (CMC). The traditional
accuracy indicator, referred to as Top-1 accuracy, reflects the matching result between
the identity with the highest probability prediction by the model and the ground truth.
Conversely, Top-5 accuracy is determined by considering the identities with the top five
highest probability predictions.

4.2. Implementation Details

The experiments in this article were conducted on a Windows 11 operating system
with a 12th generation Intel Core i9-12900H processor and 30 GB of memory, and an Nvidia
RTX 3090 graphics card (24 GB) using CUDA version 11.6. We used Python 3.8.17 and
PyTorch 1.12.1 for data processing.

The model was trained for 500 epochs with images resized to 256 × 128. Stochastic
Gradient Descent (SGD) was utilized as the optimization algorithm with the learning rate
initialized to 0.08 and subsequently optimized using a simulated annealing algorithm. We
set the drop rate to 0.1 to minimize overfitting.

4.3. Ablation Study

The effectiveness of SPM and FFM. To corroborate the performance advantages of SPM
and FFM, we compare the performance of different backbones on MHDNet in Table 2 and
Figure 3. We can observe that ViT series backbones bring better retrieval performance, but at
the same time, their increased model complexity brings more inference time consumption. It
is important to highlight that in the Market-1501, MHDNet achieves the mAP of 87.7, which
is 10.2 higher than the value of 77.5 by ResNet-50. Similarly, in the DukeMTMCID, MHDNet
obtains the mAP value of 79.7, which is 11.2 higher than the 68.5 mAP value of ResNet-50.
This outcome underlines that MHDNet leveraging SPM and FFM is significantly superior
to other methods on two datasets. Our experiments have demonstrated that the SPM and
FFM components have a considerable impact on improving the baseline performance.

94.6
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94.0 94.1

94.5
94.7

88.8
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88.0 88.1
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89.1

84
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Figure 3. Evaluate the Rank-1 of effective placement of Block on two datasets.
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Table 2. Comparison of different backbones.

Methods Inference Time
Market1501 DukeMTMC-reID

mAP Rank 1 Rank 5 mAP Rank 1 Rank 5

ResNet-18 5 ms 77.5 91.2 95.5 68.5 82.2 92.8
ResNet-34 11 ms 82.4 92.5 96.2 73.4 84.7 93.4
ResNet-50 16 ms 85.7 94.2 97.6 75.9 86.2 94.7
ResNet-101 24 ms 86.8 94.4 98.3 77.2 87.3 95.2
ViT-B 40 ms 86.8 94.5 98.1 79.3 88.8 95.4
Deit-B 36 ms 86.6 94.4 97.8 78.9 88.3 95.1
MHDNet (Our) 38 ms 87.7 94.6 98.6 79.7 89.1 95.6

Effective Feature Selection. In order to demonstrate the effectiveness of each module
in the proposed MHDNet, we experiment on Market-1501, DukeMTMC-ReID. We remove
all the above modules and set the ViT (ViT with basic operation module) as the baseline.
Starting with the baseline, three modules are added to the baseline model in turn. The
experimental results are shown in Table 3 and Figure 4. In Table 3, we found using
GAP in MHDNet performed better than baseline, while BN did not yield significant
improvements until BN was introduced. In addition, we experimented with the effect of
MHDNet with an FC layer and found that its accuracy is not as high as MHDNet with
one-dimensional convolution.

Table 3. Ablation studies of the proposed method on individual components.

Methods
Market1501 DukeMTMC-reID

mAP Rank 1 Rank 5 Rank 10 mAP Rank 1 Rank 5 Rank 10

Baseline 84.0 92.4 95.4 96.6 76.4 85.4 93.2 94.4
+ GAP 85.1 93.7 97.2 98.0 77.8 87.1 94.6 95.3
+ BN 85.2 93.9 97.5 98.1 78.1 87.5 94.9 95.5
+ FC Layer 86.8 94.5 98.1 98.9 79.3 88.8 95.4 96.2
MHDNet (Our) 87.7 94.6 98.6 99.3 79.7 89.1 95.6 96.6
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Figure 4. CMC curve of Baseline, Baseline + GAP, Baseline + GAP + BN, MHDNet with FC Layer
and MHDNet on the two datasets.
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4.4. Effectiveness of Different Loss Functions

Since different loss functions have other effects on person re-identificatin features,
the model performance is also significantly different. So, we conducted ablation exper-
iments based on loss selection to demonstrate the differential effects of different loss
functions, as shown in Tables 4 and 5.

Based on empirical evidence, the ID loss outperforms the Triplet loss when both losses
are used separately. Moreover, when combined with the Triplet loss or Circle loss, the ID
loss demonstrates superior performance compared to the Instance loss and Sphere loss.
This indicates that sensible choice of loss function for metric learning can consistently
enhance model performance. However, considering our primary focus on showcasing the
performance of the FFM module, we limit our subsequent experiments to using only the
ID loss and Triplet loss as the distance metrics.

Table 4. The effectiveness of loss selections on Market1501.

Loss Function mAP Rank 1 Rank 5 Rank 10

ID 81.8 93.1 97.2 98.5
Triplet 80.3 91.8 96.2 98.1
ID + Spere 78.5 90.9 97.1 98.2
ID + Contrast 82.6 93.0 97.9 98.7
ID + Cricle 83.4 93.7 98.1 98.9
ID + Instance 82.2 92.9 97.7 98.6
ID + Triplet 87.7 94.6 98.6 99.3
ID + Triplet + Cricle 84.1 93.6 98.3 98.8
ID + Triplet + Instance 83.8 93.4 97.5 98.9

Table 5. The effectiveness of loss selections on DukeMTMC-reID.

Loss Function mAP Rank 1 Rank 5 Rank 10

ID 75.3 86.4 94.5 96.2
Triplet 74.2 85.8 93.7 96.1
ID + Spere 71.8 81.6 94.1 95.9
ID + Contrast 76.9 87.8 95.2 96.3
ID + Cricle 77.6 88.1 95.4 96.5
ID + Instance 76.2 87.6 95.1 96.0
ID + Triplet 79.7 89.1 95.6 96.6
ID + Triplet + Cricle 78.5 88.7 95.5 96.6
ID + Triplet + Instance 77.4 87.9 95.0 96.4

4.5. Comparison with the State-of-the-Art Methods in Single-Domain Person Re-Identification

In this Section, we compare MHDNet with other methods on Market-1501 [46] and
DukeMTMC-ReID [36], as shown in Table 6. For fair comparisons, no post-processing such
as re-ranking strategies or multi-query fusion was used for our methods.

Table 6 shows that our MHDNet achieved 87.7% mAP and 94.6% Rank-1 on the
Market-1501 [46]. Its Rank-1 accuracy is slightly, 0.8%, lower than PAT and the same as
Rank1 accuracy in TransReID, yet MHDNet clearly surpasses all methods in terms of mAP.
On the DukeMTMC-ReID [36] dataset, MHDNet achieved the Rank-1 accuracy of 89.1%
and the mAP value of 79.7%, respectively, which are higher than most models. However, it
still cannot reach the level of some recent excellent models in all indicators. This is because
we only improved the model’s performance by modifying the backbone to make it work
well on devices with limited performance, while strictly limiting the model’s resource
consumption. In contrast, other models do not have this limitation.

As a result, our model achieves results comparable to most classical models, but there
is still a gap compared to the best models. Compared with other models, we improve only
on the backbone to improve the accuracy, which has better scalability and can be easily
combined with other methods to further improve the model accuracy.
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Table 6. Validation results on Market1501 and DukeMTMC-ReID. Bold indicates the best performance.

Method Venue
Market1501 DukeMTMC-reID

mAP Rank 1 mAP Rank 1

PCB [47] ECCV 2018 81.6 93.8 69.2 83.3
BoT [14] CVPR 2019 85.9 94.5 76.4 86.4
HOReID [26] CVPR 2020 84.9 94.2 75.6 86.9
M-DEFNet MTA 2020 82.7 94.8 73.1 84.7
ADC-2OIB [48] CVPR 2021 87.7 94.8 74.9 87.4
DAReID [49] KBS 2021 87.0 94.6 78.4 88.9
OSNet [50] TPAMI 2021 86.7 94.8 76.3 88.7
ASAN [51] TCSVT 2021 85.3 94.6 76.3 88.7
CDNet [52] CVPR 2021 86.0 95.1 76.8 88.6
PAT [53] CVPR 2021 86.6 95.4 78.2 88.8
L3DS [54] CVPR 2021 87.3 95.0 76.1 88.2
TransReID [29] ICCV 2021 86.8 94.6 79.3 88.8
ConRFL [55] PR 2022 81.4 92.8 68.4 80.5
CAL CVPR 2022 87.5 94.7 74.1 86.2
AOPS [51] TCSVT 2022 84.1 93.4 74.1 86.2
DeiT-Small + DCAL [56] CVPR 2022 85.3 94.0 77.4 87.9
IIANet MTA 2023 84.9 94.2 - -
With Res2Net50 [57] Sensors 2023 87.1 95.0 77.6 88.1
DWNet-R [58] Sensors 2023 87.5 94.9 79.1 88.4
UV-ReID-ABLM MVA 2023 75.0 89.9 61.8 81.4
ICAM [59] EAAI 2023 82.3 93.3 71.6 85.6
MHDNet (Ours) 87.7 94.6 79.7 89.1

4.6. Comparison with the State-of-the-Art Methods in Cross-Domain Person Re-Identification

To assess and demonstrate the efficacy and superiority of MHDNet, we conducted a
comparative evaluation of the proposed approach against several leading UDA re-ID meth-
ods on the Market-1501→DukeMTMC and DukeMTMC→Market-1501. The experimental
outcomes are summarized in Table 7, providing quantitative evidence for the performance
of MHDNet in UDA re-ID scenarios.

Table 7. Validation results on M→D and D→M. Bold indicates the best performance.

Method
DukeMTMC-reID→Market1501 Market1501→DukeMTMC-reID

mAP Rank 1 Rank 5 Rank 10 mAP Rank 1 Rank 5 Rank 10

CFSM [60] 28.3 61.2 - - 27.3 49.8 - -
UCDA-CCE [61] 30.9 60.4 - - 31.0 47.7 - -

UTAL [62] 46.2 69.2 - - 44.6 62.3 - -
ECN [63] 43.0 75.6 87.5 91.6 40.4 63.3 75.8 80.4

PDA-Net [64] 47.6 75.2 86.3 90.2 45.1 63.2 77.0 82.5
CR-CAN+ [65] 54.0 77.7 89.7 92.7 48.6 68.9 80.2 84.7
D-MMD [66] 48.8 70.6 87.0 91.5 46.0 63.5 78.8 83.9

AD-Cluster [67] 68.3 86.7 94.4 96.5 54.1 72.6 82.5 85.5
CGAN-TM [68] 35.2 57.3 - - 36.2 65.3 - -
Soft-mask [69] 69.5 86.9 - - 61.3 76.9 - -

PREST [70] 62.4 82.5 92.1 94.9 56.1 74.4 83.7 85.9
CAC–CSP [71] 36.9 69.4 82.8 - 37.0 57.5 71.2 -
EDAAN [72] 35.4 64.5 83.0 - 39.6 57.8 72.2 -
3D-GAT [73] 28.6 59.4 75.2 - 26.1 45.1 59.3 -
STReID [74] 31.6 62.3 79.1 - 29.2 52.3 65.9 -

UADA-SD [75] 30.2 57.4 72.4 30.3 45.3 57.8 -
MHDNet (Ours) 63.8 81.8 88.8 91.5 58.8 70.9 80.8 83.4

From Table 7, we can observe that MHDNet achieves 83.8% Rank-1 and 63.8% mAP
on the DukeMTMC→Market-1501 and 76.4% and 58.8% on the Market-1501→DukeMTMC,
respectively. Specifically, compared to PREST, which employs a progressive representation
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enhancement approach, MHDNet demonstrates improvements of 2.0% and 2.7% in Rank-1
and mAP on the Market-1501→DukeMTMC and 1.3% and 1.4% on the DukeMTMC→Market-
1501, respectively. This suggests that MHDNet effectively reduces the domain gap between
the source and target domains and gradually adapts to the data distributions of both
domains compared to PREST. In comparison to Soft-mask, the top performer in Table 7,
MHDNet demonstrates a minor decrement in performance, achieving a slightly lower
mAP by 1.7% and a Rank-1 accuracy reduction of 2.1% on the DukeMTMC→Market-1501.
Similarly, on the Market-1501→DukeMTMC, MHDNet exhibits a minor decline in Rank-1
accuracy by 0.5% and a 2.5% drop in mAP. Evidently, MHDNet does not possess a notable
edge over Soft-mask in the DukeMTMC→Market-1501 and Market-1501→DukeMTMC.
This could be due to the significant stylistic disparities between the Market-1501 and
DukeMTMC datasets, originating from Asia and America, respectively, as well as the
limitations in our network’s cross-domain fusion capabilities. In our future endeavors,
we aim to investigate strategies that effectively integrate domains exhibiting substantial
stylistic variations.

4.7. Visualized Attention Maps of the MHDNet

In this section, we conduct an exploratory analysis of the performance of the proposed
network by visualizing the final output feature maps of MHDNet, ResNet-50, DeiT, and ViT,
as shown in Figure 5. The purpose of this analysis is to gain a deeper understanding of
the characteristics of the network and to evaluate whether our design has achieved the
expected performance.

It is evident from the first and second rows on the left side of the attached image
that ResNet-50 struggles in handling regional features, whereas MHDNet demonstrates
profound attention to such features, excelling not only in balance but also in notable
multi-scale attention capabilities. In contrast, the first and second rows on the right side
reveal that while the traditional ViT structure model can, to a certain extent, focus on
regional features, it falls short in extracting these features with precision. MHDNet achieves
remarkable balance between local and global information, enabling accurate separation of
individuals from their surroundings. These characteristics fully demonstrate that the use
of MHDNet in person re-identification (ReID) tasks can more effectively capture human
body features, enhance recognition accuracy, and better adapt to various environmental
and scene processing requirements.

Figure 5. Visualization of feature maps based on different Re-ID models.
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4.8. Rank-List Visualization Analysis

This section examines feature extraction and similarity matching for each probe person
identification. We used the MHDNet, ViT, and ResNet-50 models to extract person features.
Then, we applied a similarity matching algorithm to select the top 10 search results based
on their similarity score. Correctly matched results are indicated in green boxes, while
incorrectly matched results are highlighted in red boxes. The significant advantage of
MHDNet in person recognition tasks is demonstrated by the in-depth analysis of query
results for different test samples (numbered 1–4) presented in Figure 6.

ResNet-50 ViT Our Model

Probe A Probe A Probe A

Probe B Probe B Probe B

Figure 6. Top 10 visualization results of the rank-list Market-1501.

The inference results presented in Figure 6 demonstrate that MHDNet retrieves targets
with the same ID rapidly and achieves better matching results than ResNet-50 and ViT
models for each query. Furthermore, in complex cases, such as case B, MHDNet can
correctly match the target and ignore other possible interfering factors, indicating that
it has stronger robustness and accuracy and can perform well even in complex person
recognition tasks.

5. Conclusions

This paper proposes an innovative hybrid multi-scale neural network architecture
aimed at addressing the challenges in person re-identification (ReID) tasks. Firstly, we
introduce a carefully designed spatial prior module that effectively extracts multi-scale
features from different levels of network branches, capturing the diverse information
present in pedestrian images. Subsequently, we construct a fusion module that bridges
the gap between CNN and ViT backbone networks, leveraging a self-attention mechanism
to learn global and local information of different granularities. This design successfully
introduces image-related inductive biases into the architecture without altering the in-
herent structure of the ViT model, enabling the reconstruction of fine-grained multi-scale
features crucial for accurate predictions. Through a series of comprehensive experimental
validations, our dual-backbone model demonstrates superior performance in Re-ID tasks.
Compared to currently well-designed vision transformers, our approach not only achieves
comparable or better results but also does not significantly increase the number of parame-
ters and computational complexity, thus achieving a good balance between performance
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and efficiency. Looking ahead, we will continue to delve deeper into the pivotal role of
multi-scale features in person re-identification tasks and strive to address the challenge of
multi-scale alignment in multi-modal Re-ID. We anticipate contributing more innovative
outcomes to the development of the person re-identification field through further research
and optimization.

6. Privacy and Ethical Considerations

The proposed hybrid multi-scale neural network architecture, despite its promising
performance in Re-ID tasks, necessitates a thorough examination of its privacy and ethical
implications. The extraction of multi-scale features, albeit effective in enhancing ReID accu-
racy, introduces potential privacy risks associated with the handling of sensitive personal
data. The integration of various networks further complicates these ethical considera-
tions. Consequently, it is imperative to strike a balance between optimizing performance
and safeguarding individual privacy, ensuring that the architecture adheres to ethical
standards. Future research endeavors must prioritize the development of sophisticated
privacy-enhancing techniques and ethical frameworks to facilitate the responsible and
sustainable deployment of ReID technology within the academic community.
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