
Citation: Gao, Y.; Liang, L.; Li, Y.; Li,

R.; Wang, Y. Function-Level

Compilation Provenance

Identification with Multi-Faceted

Neural Feature Distillation and

Fusion. Electronics 2024, 13, 1692.

https://doi.org/10.3390/

electronics13091692

Academic Editors: Kim Jindae and

Seonah Lee

Received: 1 April 2024

Revised: 22 April 2024

Accepted: 22 April 2024

Published: 27 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Function-Level Compilation Provenance Identification with
Multi-Faceted Neural Feature Distillation and Fusion
Yang Gao 1,*, Lunjin Liang 1, Yifei Li 1, Rui Li 2 and Yu Wang 2

1 Department of Computer Science and Technology, Heilongjiang University, Harbin 150080, China;
20211317@s.hlju.edu.cn (L.L.); 20196762@s.hlju.edu.cn (Y.L.)

2 School of Continuing Education, Xi’an Jiaotong University, Xi’an 710049, China; lrvberg@xjtu.edu.cn (R.L.);
wy1116@xjtu.edu.cn (Y.W.)

* Correspondence: gymail2009@163.com

Abstract: In the landscape of software development, the selection of compilation tools and settings
plays a pivotal role in the creation of executable binaries. This diversity, while beneficial, introduces
significant challenges for reverse engineers and security analysts in deciphering the compilation
provenance of binary code. To this end, we present MulCPI, short for Multi-representation Fusion-
based Compilation Provenance Identification, which integrates the features collected from multiple
distinct intermediate representations of the binary code for better discernment of the fine-grained
function-level compilation details. In particular, we devise a novel graph-oriented neural encoder
improved upon the gated graph neural network by subtly introducing an attention mechanism into
the neighborhood nodes’ information aggregation computation, in order to better distill the more
informative features from the attributed control flow graph. By further integrating the features
collected from the normalized assembly sequence with an advanced Transformer encoder, MulCPI
is capable of capturing a more comprehensive set of features manifesting the multi-faceted lexical,
syntactic, and structural insights of the binary code. Extensive evaluation on a public dataset
comprising 854,858 unique functions demonstrates that MulCPI exceeds the performance of current
leading methods in identifying the compiler family, optimization level, compiler version, and the
combination of compilation settings. It achieves average accuracy rates of 99.3%, 96.4%, 90.7%, and
85.3% on these tasks, respectively. Additionally, an ablation study highlights the significance of
MulCPI’s core designs, validating the efficiency of the proposed attention-enhanced gated graph
neural network encoder and the advantages of incorporating multiple code representations.

Keywords: compilation provenance; graph neural network; compiler identification; feature fusion

1. Introduction

In the process of software development, a variety of toolchains and configuration
settings could be utilized to convert the source code into the final executable binary. For
instance, developers might select different compilers, such as GCC or LLVM, along with
various compiler optimization levels such as O0 and O2, based on factors like stability,
performance considerations, the size constraints of the resulting binary, and their expertise
with these tools. This offers the developers great flexibility to manufacture binaries that
meet customized requirements. Nevertheless, this variety in compilation toolchains also
poses significant challenges to reverse engineers and security analysts, since the binary
output can vary greatly across different compilation settings [1,2].

Compilation provenance identification [3–7] is a task that reversely reveals from the
binary code the compilation details, like the specific compiler family, the optimization
option, and even the compiler version used during the compilation phase, and has thus
garnered considerable interest from researchers since it unveils critical insights into the
nuances of the binary production process. Precisely pinpointing these compilation details
is also crucial and advantageous for enhancing the efficacy of a myriad of binary code

Electronics 2024, 13, 1692. https://doi.org/10.3390/electronics13091692 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13091692
https://doi.org/10.3390/electronics13091692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13091692
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13091692?type=check_update&version=2

Electronics 2024, 13, 1692 2 of 21

analysis applications [8], such as binary code similarity detection [9,10], software plagiarism
detection [11], binary safety verification [12], and program authorship attribution [13].

Of existing compilation provenance identification solutions, the signature-based meth-
ods and the learning-based approaches are two main categories that have been investigated.
The signature-based approaches, as implemented in reverse engineering tools like IDA,
rely on matching the entire binary against a database of expert-crafted compiler-specific
signatures. These methods are hampered by the requirement of significant expertise
and laborious efforts in the development of sufficiently precise compiler-specific signa-
tures and are limited by their coarse granularity of identification. Thus, the more recent
works [4,12,14,15] all follow the learning-based paradigm, by training from well-labeled
samples a fine-grained classification model, later with which to infer compilation details on
unseen binaries.

To ensure the robustness of the learnt models, the traditional machine learning-based
ones generally enforce artificially intervened feature engineering to extract compilation-
indicative features, such as idioms [14] (assembly instruction combinations incorporating
wildcards) or graphlets [3] (small subgraphs derived from the CFG), from the binary code.
To alleviate the human bias impacts in the feature selection process, the deep-learning
(DL) based approaches [5,16,17], on the other hand, directly leverage deep neural encoders
to grasp compilation-indicative features by witnessing on massive samples, and exhibit
superior identification capability [4,5].

Prevailing DL-based compilation provenance identification methods generally resort
to sequence-oriented neural encoders, such as CNNs [4,16] and RNNs [4,16,17], to grasp
indicative features either from the raw bytes [16] or from the normalized assemblies [4,17].
These sequence-form intermediate representations of the binary code majorly imply features
that reflect the impacts of diversified compilations on the lexical and syntactic aspects of
the code. However, the structure of the binary code also varies significantly across different
compilation settings [1]. Thus, taking into consideration the graph-form intermediate
representations, such as the CFG, is likely to offer additional structural-related indicative
features that are hard to be captured from sequences.

In this regard, we propose to further incorporate the informative structural features im-
plied within graph-form intermediate representations into the final classification-inducing
feature set, apart from the typically considered lexical and syntactic related features. To
achieve that, we firstly employ well-adapted sequence-oriented and graph-oriented neural
encoders to gather compilation-relevant features from the normalized assembly sequence
and the ACFG of the binary function to be checked, respectively. Subsequently, these
features are deeply integrated through a fusion strategy derived from the prevalent self-
attention mechanism. This methodology enables a comprehensive capture of lexical,
syntactic, and structural features that well reflect specific compilation paradigms. The
primary contributions of this work are summarized as follows:

• A novel DL-based compilation provenance identification approach called MulCPI
is presented, which comprehensively integrates the compilation-indicative features
gathered from the binary function’s normalized assembly sequence and the ACFG
constructed utilizing sent2vec for enhanced capability in discerning fine-grained
function-level compilation details.

• To effectively distill informative features from the ACFG, we present an advanced
graph-oriented neural encoder that has improved upon the gated graph neural net-
work (GGNN) by subtly introducing an attention mechanism to better supervise the
aggregation computation of the information from the neighborhood nodes. Addi-
tionally, a fusion strategy predicated on self-attention is employed to more effectively
integrate the features gathered from the ACFG with those collected from the normal-
ized assembly sequence through the utilization of a Transformer encoder.

• Extensive experiments are conducted on a public dataset comprising 854,858 unique
functions for the systematic performance evaluation of MulCPI on various tasks
including identification of the compiler family, its specific version, the optimiza-

Electronics 2024, 13, 1692 3 of 21

tion level, and their combination. The findings demonstrate that MulCPI exhibits
impressive capability in disclosing the intricate compilation details, surpassing state-
of-the-art function-level compilation provenance identification approaches in both
detection accuracy and F1-scores. Moreover, the conducted ablation study confirms
the value of fusing multiple distinct yet complementary code intermediate represen-
tations. The source code implementation of MulCPI has also been made public at
https://github.com/gyjuice/MulCPI (accessed on 21 April 2024).

The remainder of this paper is organized as follows. Section 2 offers an overview of
related work in the field of compilation provenance identification. Section 3 provides a
comprehensive insight into the innovative designs of MulCPI, detailing the preparation of
the two distinct intermediate code representations, their respective feature encoding meth-
ods, and the fusion strategy employed. Section 4 is dedicated to an extensive evaluation,
including the experimental setup, detailed analysis of the results, and comparative obser-
vations between MulCPI and other methodologies. Section 5 acknowledges the limitations
of our approach and suggests intriguing avenues for future research. Finally, the paper
concludes with Section 6.

2. Related Work

Broadly speaking, existing research in compilation provenance identification fall into
three main categories: those that rely on signature matching and those that employ machine
or deep learning techniques.

2.1. Signature Matching-Based Approaches

The signature-based methods in compilation identification entail matching a binary
program against a set of specific and carefully crafted signatures to attribute the compiler’s
label to the entire program based on the signature that matches. This approach has been
implemented in several reverse engineering platforms, such as IDA Pro, LANGUAGE 2000
(https://farrokhi.net/language/, accessed on 21 April 2024), and PEiD (https://www.
aldeid.com/wiki/PEiD, accessed on 21 April 2024). Despite being efficient, they show
insurmountable limitations, including the need for specialized expertise and laborious
efforts to create accurate compiler-specific signatures and the potential for reduced accuracy
due to minor signature variations. Additionally, the signatures often rely on metadata or
program header details, which can be easily tampered with by malicious attackers or just be
missing in the stripped binaries. Moreover, these tools identify merely the compiler family
from the binary, rather than much more comprehensive information [4] such as the detailed
optimization level and compiler version, as MulCPI does. Furthermore, the identification
outcomes generally target the entire binary, despite the possibility that a program could
be compiled with multiple compilers, such as when the library code (which is compiled
with a certain compilation setting) is statically linked to the main program (which adopts a
different compilation setting) to produce the final binary.

2.2. Learning-Based Approaches

The learning-based approaches [3,4,18–20] treat the task as a machine learning chal-
lenge, with the assumption that the unique characteristics reflected within the binaries
can reveal the specific compilation settings used for their creation by identifying the
compilation-specific patterns implied within the binary code. Identification models are
trained with labeled samples to recognize these patterns, which are then used to make
predictions on new unseen binaries.

Rosenblum et al.’s groundbreaking study [14] introduced this methodology by defin-
ing a series of instruction idioms with placeholders to identify compiler-specific patterns
through mutual information analysis, successfully determining compiler families with
high accuracy. However, the method’s efficacy in identifying optimization levels remains
unknown due to a lack of evaluation. The subsequent ORIGIN [3] work improved upon
this by incorporating graphlets to capture structural features of the code, enhancing ac-

https://github.com/gyjuice/MulCPI
https://farrokhi.net/language/
https://www.aldeid.com/wiki/PEiD
https://www.aldeid.com/wiki/PEiD

Electronics 2024, 13, 1692 4 of 21

curacy in compilation detail recovery. Hidden Markov models have also been employed
to distinguish between compilers based on instruction type and frequency, necessitating
distinct models for each compiler family without addressing optimization level identifi-
cation [21,22]. BinComp [15] introduced a stratified technique for more resource-efficient
compiler identification, but its focus on compiler-related functions limits its applicability to
the broader challenge of function-level compilation provenance identification. Generally,
the accuracy of these conventional machine learning methods heavily depends on the
feature extraction and selection strategies carefully chosen based on expert experience, thus
often introducing human bias and potentially missing relevant features.

With the deep learning techniques having demonstrated remarkable performance in
addressing a variety of program analysis challenges [23–25], several studies [4,26] have
also been proposed that leverage deep neural networks to identify compilation details.
BinEye [16] is such an initial work, which employs instruction embeddings and CNNs to
recognize the optimization levels for each object file. To pinpoint the compilation details
on the finer-grained function level, Pizzolotto et al. [26] utilizes either a layered CNN
or the LSTM to grasp the interesting features from the raw bytes. o-glassesX [19] also
leverages a deep neural encoder comprised of a stack of CNN layers but further integrates
it with the dot-product attention to enhance the feature extraction capability. NeuralCI [4],
which was known as SOTA for a time, explores integrating multiple attention mechanisms
into two representative neural network structures, TextCNN and BiGRU, to distill the
important features from the instruction sequences, and conducts the most comprehensive
and systematic evaluation. In addition to these approaches that focus on raw bytes or
instruction sequences, Structure2Vec [27] explores utilizing a graph embedding network
to convert the CFG of a function into vectors for training a compiler family identification
classifier. Similarly, SNNN [28] operates on CFGs by simplifying them to include only
the types of control flow instructions and employing the GCN for feature extraction.
Unlike these methods, which typically rely on a single code intermediate representation
for feature extraction, MulCPI utilizes multiple distinct intermediate representations that
capture a wide range of lexical, syntactic, and structural aspects of code. It also employs
sophisticated neural encoders to extract the deep hidden yet significant indicative features
more comprehensively, thereby enhancing its identification capabilities.

3. Problem and Solution Overview
3.1. Problem Overview

The objective of compilation provenance identification is to deduce, from the to-be-
analyzed binary code, the specific compiler-related settings employed during the source
code’s compilation. This task is viable due to the distinct differences often introduced by the
various compilation and optimization settings. These differences significantly influence the
field of binary code similarity detection, which in turn highlights the impacts from distinct
mechanisms and design choices inherent within different compilers to their compiled
binaries, providing evidence of the binaries’ compilation provenance. We aim to develop a
highly effective compilation provenance identification method that operates at the more
fine-grained function level and achieves enhanced detection accuracy in this research,
which can be formulated as the following.

Definition 1. Fine-Grained Compilation Provenance Identification: From an individual binary
function f , which is stripped of any debug or symbol information, the diverse compilation settings
D adopted during the compilation processing for producing f can be accurately deduced with a suite
of models M following a learning-based paradigm.

The “fine-grained” aspect of this definition refers to two meanings. First, compared
with existing works [16,29] that perform identification on the whole binary or object file, our
subject of analysis is an isolated function, which is independent and devoid of any context
such as its adjacent functions in the function call graph. Second, the compilation settings

Electronics 2024, 13, 1692 5 of 21

D to be identified are more comprehensive, encompassing not only the compiler family
but also the optimization level, compiler version, or their combinations, which exceed the
simplicity of identifying just the compiler family [27] or optimization level [17] alone.

3.2. Solution Overview

Figure 1 depicts the structural overview of MulCPI, which encapsulates three principal
components: the module for intermediate representation preparation, the neural encoding
module, and the classification module. To be specific, taking in the binary function to
be analyzed, MulCPI firstly derives two distinct intermediate code representations, i.e.,
the normalized assembly sequence and the attributed control flow graph (ACFG), for it.
Subsequently, in the neural encoding module, compilation-indicative features are distilled
from the assembly sequence and the ACFG with the Transformer encoder and an attention-
augmented GGNN, respectively. These independently collected numerical features are then
further aggregated utilizing a self-attention driven fusion schema and are finally fed into
an MLP-based classification layer, either for loss computing against the ground-truth label
during the model’s training phase, or for predicting the compilation provenance details in
the detection phase.

……

Binary Functions

A
ttributed-C

FG

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

Fusion and ClassificationFeature Distilling with Encoders
Parsing

Parsing

Self-attention based
Fusion Layer

Transform
er

A
ttention-

Enhanced G
G

N
N

Raw
Instructions

Preparation of the Intermediate Representations

Fully C
onnected Layer

Softm
ax Layer

N
orm

alzied
Instruction Sequence

Control
Flow Graph

Normali
zation

Node
attributing

Skip-gram
Embedding

DGL Graph
Conversion

Compilation
Provenance

Details

Figure 1. The overall architecture of MulCPI.

4. Core Designs of MulCPI

The following sections present the designing details of MulCPI, including the prepara-
tion and processing of the two kinds of intermediate code representation, their correspond-
ing neural encoder for feature distillation, and the strategy for feature fusion from these
two distinct intermediate representations.

4.1. Intermediate Representation Preparation

This section details the process of constructing the normalized assembly sequence and
the ACFG, on which basis the compilation-significant features are extracted.

4.1.1. Assembly Sequence Normalization

The sequence of assembly instructions has been used as an effective intermediate code
representation across a broad spectrum of binary analysis tasks. It has also been established
as an effective source in reflecting the impacts of certain compilation configurations on the
resultant binary code [4], considering the distinguishable lexical and syntactic features it
conveys in the specific contents and the orderings of its comprising assembly instructions.
Therewith, MulCPI also regards it as a significant and representative intermediate code
representation upon which to operate.

Electronics 2024, 13, 1692 6 of 21

However, as figured out in many prior studies [30,31], direct engagement with the raw
assembly instructions suffers non-negligible pitfalls for nuanced binary analysis tasks. Mul-
CPI aims to discern the compilation-specific characteristics rather than functional attributes
of the binary code. Direct analysis of the raw assembly instructions risks inundating the
process with excessive functional details, thus potentially deteriorating the quality of in-
struction embeddings due to the retention of a plethora of distinct instructions (which
could also exacerbate the OOV problem), while complicating the distillation of compilation-
related features during neural encoding. Conversely, overly aggressive normalization of
assembly instructions could inject substantial human bias, erasing nuanced yet crucial dis-
tinctions, such as those found in the handling of specific predicates by different compilers
like GCC and Clang [4].

In consideration of this, we opt for a light-weight abstraction strategy to normalize
the assembly instructions. The specific normalization rules applied to each assembly
instruction within the sequence are as follows:

• The mnemonic (i.e., the operator) and the operands of the register type within each
assembly instruction remain intact.

• The base memory addresses within the operands are replaced uniformly with the
symbol MEM to bypass non-essential displacement details.

• The immediates with values larger than a predefined threshold (established at 5000 in
our implementation) are replaced uniformly with the symbol IMM.

• The string literals within each assembly instruction are uniformly replaced with the
symbol STR.

For instance, with applying the normalization rules, the instruction “add rsp, 8”
is normalized to “add rsp, IMM”, the assembly instruction “mov ecx, [0x400327b]” is
normalized to “mov ecx, MEM”, and the instruction “lea rdi, aBinary” becomes “lea
rdi, STR”.

4.1.2. ACFG Construction

The control flow graph (CFG), with its nodes being the basic blocks and the edges
delineating the control flow relationships between them, is a prevalent code intermedi-
ate representation in the literature of program analysis. Compared with the assembly
instruction sequence, it acts as a more comprehensive intermediate representation that
additionally offers the structural aspects of the code apart from the lexical and syntactic
aspects conveyed by the specific assembly instructions within each basic block. Thereby,
we recognize it as another valuable yet distinct source for extracting compilation indicative
features. To leverage this potential, we construct an attributed-CFG on its basis, which
serves as a foundation for facilitating the subsequent neural encoding process.

Specifically, given the CFG = (V, E), where V and E denote the set of nodes and edges,
respectively, we further associate each node with a set of attributes that well summarize
the lexical and syntactic characteristics of its contents. To achieve that, we first normalize
the assembly instructions within each basic block with the same abstraction strategy as
discussed in Section 4.1.1 and then leverage the efficient sent2vec model to obtain an
informative numerical vector.

Consider the basic block BB that corresponds to a node v within in the set V, and
let S = {w1, w2, · · · , wn} be its normalized sequence of assembly instructions. Here, wt
signifies the t-th normalized assembly instruction, and n is the count of instructions within
BB. We approach each such sequence akin to a sentence, treating each of its normalized
instructions as a word within it. Subsequently, we input these ‘sentences’ derived from
our binary dataset into the sent2vec algorithm, employing it to iteratively learn a sentence
embedding model S2V in an unsupervised fashion. This model conceptualizes sentence
embedding as the mean of the embeddings of its constituent ‘words’, while also enhancing
its learning scope to include both unigrams and n-grams within each ‘sentence’, thereby av-

Electronics 2024, 13, 1692 7 of 21

eraging out the embeddings of these n-grams along with the individual words. Equation (1)
displays the learning objective:

arg min
U,V

∑
S∈C

∑
wt∈S

(
qp(wt)ℓ(u⊤

wt vS\{wt}) + |Nwt | ∑
w′∈V

qn(w′)ℓ(−u⊤
w , vS\{wt})

)
(1)

where qp(wt) is the subsampling likelihood of an instruction wt being selected to constitute
the target positive unigrams of the current assembly sequence S. The function ℓ is the
binary logistic loss. uw represents the target embedding for each instruction w within
the vocabulary V , and vS is the sentence embedding of S, computed by averaging the
embeddings of n-grams contained within S. The set Nwt comprises instructions negatively
sampled for the instruction wt within the sequence S , and qn(w′) indicates the probability
of an instruction w′ in the vocabulary V being selected to generate the negatives.

With the learnt sentence embedding model, each node v in the CFG can be correlated
with a d-dimensional (which is set to 128 in MulCPI) numerical vector va, forming an
attributed-CFG. Given that MulCPI employs the widely used dgl (https://www.dgl.ai/,
accessed on 21 April 2024) library for building up the graph neural network model,
Algorithm 1 outlines the process of constructing the ACFG, which is compatible with
the graph data structure supported by dgl.

Algorithm 1 Construction of Attributed-CFG Compatible with dgl

Input:
G: CFG of a function
S2V: the learnt sent2vec model

Output:
ACFG: the attributed control flow graph

1: Edgs = {}
2: for each edge e in G.edges do
3: src, dst = e.src, e.dst
4: Edgs.append((src, dst))
5: end for
6: ACFG = dgl.graph(Edgs) ▷ initialize a dgl graph with the edges in the CFG
7: for each v in G.nodes do
8: idx = G.indexof(v)
9: S = insNorm(v) ▷ normalize the instructions within current node

10: va = S2V(S) ▷ obtain the numerical attributes of current node with S2V
11: ACFG.nodes[idx].data[‘attr’] = va
12: end for

4.2. Feature Gathering through Neural Encoding

This section elaborates on the methodology for extracting features indicative of the
compilation details from the normalized assembly sequence and the ACFG intermediate
representations, where a Transformer encoder is utilized for the former and an attention-
enhanced GGNN is devised for the latter.

4.2.1. Feature Encoding of the Normalized Assembly Sequence

MulCPI extracts informative features from the normalized assembly sequence through
a sequence-oriented encoder that follows the Transformer architecture [32], which is
renowned for its superior performance over other neural networks like CNNs and LSTMs
in encoding sequence-like data. Leveraging the multi-head attention, MulCPI tends to
discern not only the subtle lexical and syntactic features interspersed in the assembly
instructions but also their long-range contextual relationships.

Specifically, MulCPI first converts the assembly sequence into a d × n-dimensional
numerical matrix by adding up the positional embeddings of each normalized instruction

https://www.dgl.ai/

Electronics 2024, 13, 1692 8 of 21

with its word2vec embeddings. Subsequently, this matrix goes through a stack of Trans-
former blocks, each consisting of a multi-head attention layer, a normalization layer, and a
position-wise feed-forward layer, for hidden vector calculation. Finally, MulCPI takes the
averagely pooled result of the hidden vectors produced by the top-layer Transformer block
as the feature encoding vector, marked as Eins. For MulCPI’s specific implementation, the
number of Transformer blocks and the heads are set to three and five, respectively.

4.2.2. Feature Encoding of the ACFG

For the ACFG representation as constructed with Algorithm 1 for a binary function,
where each node has been independently attributed with the initially collected shallow
lexical and syntactic features of the assembly instructions within it, we further devise
an attention-augmented graph neural network based on the principles of GGNN [33] to
extract informative features. The choice is driven by the network’s ability in effectively
handling the complex interactions across the nodes through message passing [34,35], with
the expectation of distilling higher-level features that comprehensively reflect the impacts of
a specific compilation setting on the lexical, syntactic, and structural aspects of its produced
binary code. Compared with other prevalent graph neural network architectures like
Graph Convolutional Networks (GCN) [36] and Graph Attention Networks (GAT) [37], we
improve upon the GGNN structure considering its demonstrated superiority in encoding
in-depth features especially in the context of program analysis [38–40].

To be specific, the enhancement is enforced on the message passing process of the
original GGNN [33] layer by incorporating an attention mechanism. This allows for a
more focused aggregation of interesting information from the neighboring nodes to feature
the current node’s context, thus enhancing our graph neural encoder’s overall ability to
highlight relevant features within the graph’s context. Formally, we start with a hidden state
matrix H0 ∈ Rn×d, encapsulating all the d-dimensional real-valued attributes of the graph
nodes, and an adjacency matrix A ∈ Rn×n, delineating the neighborhood connectivity
among the n nodes within the ACFG. For each node i in the ACFG, we calculate a hidden
vector ĥ(t+1)

i , which incorporates the information of neighboring nodes through attention
scores and their hidden states at previous time step t, with the following equations:

ĥt+1
i = ∑

j∈Ni

αt+1
j ht

j (2)

αt+1
j =

exp(ht
jW)

∑j∈Ni
exp(ht

jW)
(3)

where Ni signifies the nodes that are contextually connected to node i, encompassing both
the node itself and its direct neighbors; αt+1

j denotes the attention score for node j at the
time step t + 1, which is derived by multiplying the previous step hidden states ht

j ∈ Ht of

node j with a globally shared weight matrix W ∈ Rd×1 and normalizing with the Softmax
operation.

In essence, the above calculations attempt to use the attention score bundled to each
neighbor of the current node to influence how much the neighbor’s information affects and
is assimilated into the updated state of the given node. Then, the specific computations
performed within the GRU unit for obtaining the final hidden states of the node i at time
step t + 1 can be expressed by Equations (4)–(8):

ht+1
i = h̃t+1

i ⊙ zt+1 + ht ⊙ (1 − zt+1) + ĥt+1
i (4)

h̃i
t+1

= tanh(What+1 + Uh(rt+1 ⊙ ht
i) + bh) (5)

rt+1 = σ(Wrat+1 + Urht
i) + br) (6)

zt+1 = σ(Wzat+1 + Uzht
i) + bz) (7)

Electronics 2024, 13, 1692 9 of 21

at+1 = Âtht
iWa (8)

where r and z are the reset and update gate of the original GRU unit, respectively; Â denotes
the Laplacian re-normalized adjacency matrix; the Ws and Us are the weight matrices,
which altogether with the bias vectors bs are to be learnt during training; ⊙ signifies the
element-wise multiplication; and σ denotes the sigmoid function.

After obtaining the hidden states of all nodes at the last time step, a graph-level
readout layer is appended to derive a comprehensive encoding vector for the entire graph.
Specifically, we adopt the max-pooling of all the nodes’ hidden states as the feature encoding
vector of the ACFG, which can be formulated as Equation (9):

Eac f g = maxpool{hv}v∈ACFG (9)

where hv denotes the final time step hidden states of a node v in the ACFG. Figure 2
illustrates the whole process of obtaining the Eac f g of the ACFG with our devised GGNN
enhanced with an attention mechanism.

𝑣𝑣𝑖𝑖

ACFG Constructed with sent2vec

Last Time Step Hidden
States of the Nodes

Attention-Enhanced GGNN

�𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝒉𝒉1

𝑘𝑘 ,𝒉𝒉2
𝑘𝑘 ,⋯ ,𝒉𝒉𝑛𝑛

𝑘𝑘

1 ≤ 𝑘𝑘 ≤ 𝑑𝑑

Readout with Max-Pooling

𝑬𝑬𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝒉𝒉𝒊𝒊𝟎𝟎 = 𝑆𝑆𝑆𝑆𝑆 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚 𝑣𝑣𝑖𝑖

Figure 2. The working flow of MulCPI’s feature fusion process.

4.3. Feature Fusion and Classification

After the features indicative of the compilation details have been gathered from the
normalized assembly token sequence and the ACFG using the respective neural encoders,
here we further mix these separately obtained features to obtain one dense yet perceptive
feature vector. Several strategies exist for fusing vectors derived from disparate sources,
including direct concatenation, max or mean pooling, and element-wise addition. Given the
information provided by the two code intermediate representations, their encoded features
could also present a degree of redundancy. Concurrently, the relevance of these features in
identifying compilation settings might differ. Hence, to mitigate the challenges posed by
redundant features and to discern the most salient ones, we employ a self-attention based
fusion strategy to obtain a mixture of the feature vectors in MulCPI.

The fusion strategy is inspired by the encoder–decoder attention layer within the
Transformer architecture, in which the self-attention computations are enforced between
vectors originating from disparate sources: one sourced from the encoder’s output, and the
other from the decoder layer’s input. This can be adapted to our case directly by regarding
the encoded feature vectors gathered from the distinct code intermediate representations
as different-sourced data. Figure 3 illustrates the working flow of the fusion process.

Electronics 2024, 13, 1692 10 of 21

𝑑𝑘

𝑑𝑘
𝑑

𝑑𝑣

Q

K

V

𝑑𝑣

𝑾𝒒

softmax
𝑲𝑇𝑸

𝐷𝑘

𝑾𝒌

𝑾𝒗 𝑬𝒇

𝑬𝒊𝒏𝒔

𝑑

𝑬𝒂𝒄𝒇𝒈

Figure 3. The working flow of MulCPI’s feature fusion process.

Specifically, our fusion strategy first derives the query matrix Q from the encoded
feature vector Eins ∈ Rd, as well as derives the key matrix K and the value matrix V from the
encoded feature vector Eac f g ∈ Rd, with three distinct linear transformations, respectively.

Q = WqEins, K = WkEac f g, V = WvEac f g (10)

where Wq, Wk, and Wv denote the learnable weight matrices associated with each linear
transformation.

Subsequently, the Q-K-V matrices undergo a standard self-attention calculation to
produce a refined output vector E f ∈ Rdv , serving as the ultimate feature encoding for
function f . This specific calculation can be expressed by Equation (11):

E f = softmax
(

QKT
√

dk

)
V (11)

where dk denotes the vector dimensionality in Q and K, and dv signifies that of the vectors
in V, which, in order to fulfill the feature concentration goal of the fusion, is intentionally
set lower than d.

On this basis, a multilayer perceptron (MLP)-based classification layer, which takes
in the function encoding E f and predicates a detection outcome, is finally appended to
constitute a complete compilation provenance identification model.

5. Experiments and Evaluations
5.1. Implementation Details and Dataset Preparation

MulCPI is primarily developed in Python and leverages IDA Pro (https://hex-rays.
com/ida-pro/, accessed on 21 April 2024) along with IDAPython (https://github.com/
idapython/src, accessed on 21 April 2024) for detailed binary parsing, including the
identification of function boundaries, as well as the acquisition of the raw assembly in-
structions and the original control flow graph for each binary function. The skip-gram and
sent2vec algorithms for generating instruction embeddings and for deriving numerical
attributes of the CFG nodes, respectively, utilize the implementations sourced from gen-
sim (https://radimrehurek.com/gensim/, accessed on 21 April 2024) and sent2vec (https:
//github.com/epfml/sent2vec, accessed on 21 April 2024). The Transformer-based neural
encoder for extracting features from the normalized instruction sequence, and the attention
augmented GGNN encoder for extracting features from the ACFG, are realized using the
Pytorch framework in conjunction with the dgl (https://www.dgl.ai/pages/start.html,
accessed on 21 April 2024) library. The hyperparameter set pertaining to the neural network
components within MulCPI are detailed in Table 1.

https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://github.com/idapython/src
https://github.com/idapython/src
https://radimrehurek.com/gensim/
https://github.com/epfml/sent2vec
https://github.com/epfml/sent2vec
https://www.dgl.ai/pages/start.html

Electronics 2024, 13, 1692 11 of 21

Table 1. Hyperparameter Settings of the Neural Network Components within MulCPI.

Neural Component Parameter Value

Sent2Vec

the dimensionality of the sentence embedding 128
the minimal number for the word occurrences 5
the threshold for sampling 1 × 10−3

the max length of word ngram 3

Transformer
Encoder

the number of Transformer blocks 3
the number of self-attention multiheads within each block 5
hidden state dimensionality of the intermediate layers 256
hidden state dimensionality of the last layer 128
dropout rate 0.5

Attention-Enhanced
GGNN Encoder

the number of hidden layers 3
the number of information propagation steps 5
the node hidden state dimensionality 128
readout mechanism max-pooling
dropout rate 0.5

The publicly available dataset (https://github.com/zztian007/NeuralCI, accessed
on 21 April 2024) established by NeuralCI [4] serves as the foundation for evaluating the
performance of MulCPI and its comparison with the baseline approaches. This dataset
includes diverse 4,810 binaries compiled from 19 extensively utilized C/C++ open-source
projects, with the combinations of different compilers in multiple versions, including
GCC (4.7, 4.8, 4.9, 5.5, 6.5, and 7.4), Clang (3.8 and 5.0) and ICC 19.0, and their different
optimization levels (O0, O1, O2, and O3). For further details on the compilation process,
interested readers may refer to NeuralCI, which also discusses the impacts of various
compilation settings on the generated binaries.

To derive the function samples, we leveraged IDA Pro to parse each binary file within
the base dataset and extracted the assembly instructions and the CFG of each function
within the binary using IDAPython. Similarly as in NeuralCI, functions with fewer than
10 instructions were deemed trivial and excluded from analysis, while only functions that
contain unique normalized assembly instructions were retained. These resulted in a dataset
comprising 854,858 distinct functions, with each of them well labeled according to the
compilation settings employed for compiling the binary in which the function resides.

5.2. Experimental Setup

Utilizing these extracted function samples, we conducted different experiments to
gauge MulCPI’s performance in discerning the diverse facets of compilation provenance,
encompassing the identification of compiler family, the specific optimization level, the spe-
cific compiler version used, and their combinations. For each specific detection challenge,
the function samples with pertinent labels were curated to form the specific dataset for
training an identification model and testing its performance. But in all the experiments, the
relevant function samples were systematically allocated into train, validation, and test sets,
adhering to a consistent ratio of 8:1:1. Moreover, the training of the models all commenced
with an initial learning rate of 0.001 and underwent a decay of 0.9 every five epochs, utiliz-
ing the Adam optimizer and a batch size of 32. To optimize training efficiency and curtail
overfitting, the early stopping schema was set up, which suspended the training upon a
lack of improvement in the validation accuracy over five epochs. The model exhibiting the
highest validation accuracy was thereafter designated as the definitive detection model
and used for subsequent test set performance evaluation. All experimental evaluations
were conducted on a server running Ubuntu 12.04 and equipped with 128GB RAM and
two NVIDIA RTX3090 GPUs.

Similar to prior research [4,17] on compilation provenance identification, MulCPI
adopts four established metrics, including Accuracy, Precision, Recall, and F1-score, for its
performance evaluation and comparison with other baseline approaches. Moreover, note

https://github.com/zztian007/NeuralCI

Electronics 2024, 13, 1692 12 of 21

that Accuracy refers to the total accuracy rate, whereas Precision, Recall, and F1-score all
represent the weighted averages of precision, recall, and F1-score, respectively, which can
be formulated as:

Acc. =
∑k

i=1 c′i
∑k

i=1 ci
, Prec. =

k

∑
i=1

ci

∑k
j=1 cj

pi, Rec. =
k

∑
i=1

ci

∑k
j=1 cj

ri, F1 =
k

∑
i=1

ci

∑k
j=1 cj

fi (12)

where k denotes the number of all possible class label values, {c1, c2, · · · , ck} represent the
number of samples corresponding to each class, and

{
c′1, c′2, · · · , c′k

}
denote the number of

correctly classified samples for each class by the model; {p1, p2, · · · , pk}, {r1, r2, · · · , rk},
and { f1, f2, · · · , fk} represent the standard precision, recall, and f1-score calculated for each
of the k classes, respectively.

5.3. Experimental Results

In this section, we present the details of the experiments conducted and the findings.
The experiments from Sections 5.3.1–5.3.4 evaluate the effectiveness of MulCPI in pinpoint-
ing the diverse compilation details, including the compiler family, the optimization level,
the specific compiler version, and a combination of them, respectively. Three state-of-the-art
deep learning-based methods (NeuralCIcnn, NeuralCIgru (https://github.com/zztian007
/NeuralCI, accessed on 21 April 2024), and o-glassesX (https://github.com/yotsubo/o-
glassesX, accessed on 22 April 2024), as well as three conventional machine learning-based
ones (https://github.com/dyninst/toolchain-origin, accessed on 21 April 2024) (Idioms,
Graphlets, and ORIGIN), which all support function-level compilation provenance iden-
tification, are taken as the benchmark models for a systematic comparison with MulCPI
in these sections. Furthermore, in Section 5.3.5, we carry out substitution experiments
to evaluate MulCPI’s performance by replacing either its neural encoders or the fusion
strategy with other alternatives. Finally, an ablation study, which examines the active roles
of leveraging multiple distinct intermediate code representations for feature extraction and
fusion, as opposed to utilizing solely one kind representation, in conducted in Section 5.3.6.

5.3.1. Performance on Compiler Family Identification

In this study, we consider the compiler family used to compile each function as the
ground truth, resulting in a reorganization of all the processed function samples into
three categories that are marked with GCC, Clang, and ICC, respectively. Then, the
MulCPI model is trained and assessed against other benchmark methods by adhering to
the experimental settings as outlined in Section 5.2.

As summarized in Table 2, MulCPI demonstrates excellent detection capability in
the compiler family identification task. It achieves an Accuracy of 0.993 and an F1-score
of 0.992, surpassing all comparison methods in both metrics. This indicates MulCPI’s
remarkable ability in distilling insightful features from the compiled binaries. Additionally,
it is noteworthy that DL-based methods consistently outperformed the traditional ML-
based approaches in terms of all the performance metrics, highlighting the superior feature
extraction capability of deep neural encoders.

Table 2. Performance of MulCPI against the benchmark methods on compiler family identification.

Metric MulCPI NeuralCIcnn NeuralCIgru o-glassesX Idioms Graphlets ORIGIN

Acc. 0.993 0.985 0.987 0.988 0.939 0.842 0.940
Prec. 0.995 0.985 0.987 0.989 0.943 0.845 0.944
Rec. 0.991 0.985 0.987 0.986 0.939 0.842 0.940
F1 0.992 0.985 0.987 0.985 0.938 0.838 0.939

5.3.2. Performance on Optimization Level Identification

This experiment assessed the effectiveness of MulCPI against the comparison methods
in pinpointing the specific optimization level utilized during the compilation process. Thus,

https://github.com/zztian007/NeuralCI
https://github.com/zztian007/NeuralCI
https://github.com/yotsubo/o-glassesX
https://github.com/yotsubo/o-glassesX
https://github.com/dyninst/toolchain-origin

Electronics 2024, 13, 1692 13 of 21

the optimization levels with respect to each certain compiler served as the ground-truth
labels to obtain all the function samples reorganized into the corresponding categories. As
pointed out by previous research findings [3,4], distinguishing between binaries compiled
with the O2 and O3 optimization levels is challenging. Thereby, the same as the settings
in previous works [3,4,15], we simplified this task by reducing the four-level optimization
options to two abstracted categories OL and OH . Specifically, the optimization levels O0
and O1, in which relatively fewer code optimizations are applied, were grouped into OL,
while levels O2 and O3, characterized by more extensive and aggressive optimizations, are
aggregated into OH . Furthermore, the tripartite classification scheme [4] which condenses
the optimization levels into O0, O1, and OH , as well as the original four-level optimization
settings, are also explored in this experiment to offer a nuanced perspective on the model’s
performance across varied optimization level identification scenarios.

The outcomes of the evaluation are detailed in Table 3, where the achieved higher
metric values affirm MulCPI’s superior performance over the benchmark methods across
all the metrics. Notably, in the two-level optimization identification task, MulCPI attains
a mean accuracy and F1-score of 0.967, surpassing the competing approaches with the
max improvements of 4.96% and 4.56%, and on average by 2.56% and 2.63% for Accuracy
and F1-scores, respectively. For the case of the three-level optimization identification
challenge, it achieves a mean accuracy and F1-score of 0.964, exceeding the performance of
other models by a maximum of 7.34% and 7.63%, and an average of 2.86% and 3.05% in
Accuracy and F1-scores, respectively. These results highlight MulCPI’s superiority in more
comprehensively and precisely discerning the significant features of compilation encoded
within fused real-valued vectors.

Furthermore, it is noteworthy that MulCPI’s performance in pinpointing optimization
levels varies across different compilers, with the most and least successful outcomes
reported for GCC and Clang, respectively, reflecting approximately a 6.9% gap in Accuracy.
This implies that the nuances introduced by GCC’s optimization levels in its binaries
are more readily identifiable, contrasting with the more challenging task of discerning
optimization levels in binaries compiled by Clang. Such differences in identification
challenges further point to the distinct approaches compilers take in specifying their
optimization levels.

Table 3. Performance comparison results on optimization level identification.

Level
Settings Model

GCC Clang ICC

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

2-Levels
(OL, OH)

MulCPI 0.991 0.991 0.991 0.991 0.932 0.933 0.932 0.932 0.978 0.978 0.978 0.978
NeuralCIcnn 0.987 0.987 0.987 0.987 0.918 0.918 0.918 0.918 0.957 0.957 0.957 0.957
NeuralCIgru 0.988 0.988 0.988 0.988 0.912 0.913 0.912 0.913 0.953 0.954 0.953 0.953
o-glassesX 0.986 0.986 0.986 0.986 0.920 0.921 0.918 0.919 0.973 0.973 0.972 0.973

Idioms 0.970 0.971 0.970 0.970 0.865 0.864 0.865 0.855 0.972 0.972 0.972 0.972
Graphlets 0.940 0.941 0.940 0.941 0.858 0.854 0.858 0.849 0.970 0.970 0.970 0.970
ORIGIN 0.972 0.973 0.972 0.972 0.871 0.870 0.871 0.862 0.976 0.976 0.976 0.976

3-Levels
(O0, O1, OH)

MulCPI 0.993 0.993 0.993 0.993 0.924 0.925 0.924 0.924 0.975 0.975 0.975 0.975
NeuralCIcnn 0.989 0.989 0.989 0.989 0.910 0.911 0.910 0.911 0.960 0.960 0.960 0.960
NeuralCIgru 0.988 0.989 0.988 0.988 0.913 0.916 0.913 0.914 0.949 0.949 0.949 0.949
o-glassesX 0.989 0.989 0.989 0.989 0.916 0.917 0.916 0.916 0.971 0.971 0.970 0.971

Idioms 0.966 0.967 0.966 0.966 0.857 0.862 0.857 0.849 0.970 0.970 0.970 0.969
Graphlets 0.920 0.922 0.920 0.920 0.825 0.829 0.825 0.821 0.953 0.952 0.952 0.952
ORIGIN 0.968 0.969 0.968 0.968 0.864 0.868 0.864 0.858 0.974 0.974 0.974 0.974

5.3.3. Performance on Compiler Version Identification

This section explores the capability of MulCPI in revealing from the binary code the
exact version of the compiler used for compiling it, which intuitively is a more intricate
and challenging task. Therewith, the function samples compiled with either GCC or Clang,
where multiple versions of them have been provided for constructing the dataset, were
used to train the models and assess their performances.

Electronics 2024, 13, 1692 14 of 21

As shown in the metric values in Table 4, MulCPI exhibits leading performance over
all the benchmark methods, with the average improvements of 5.48% on Accuracy and
5.81% on F1-score, respectively. This again indicates the subtle feature aware ability of
MulCPI attributed to its correct choice of leveraging multiple intermediate representations
and the elaborately designed neural encoders for capturing the more comprehensive lexical,
syntactical, and structural code aspects. Moreover, varied detection efficacy is observed
across different compilers. As the metric values show, consistently higher accuracies
were achieved for all the models in identifying the major versions of GCC over Clang.
These findings indicate the differences in code variation between compiler versions, with
GCC demonstrating a more pronounced divergence in the compiled code produced with
its different major releases compared to Clang. Additionally, significantly much lower
Accuracy rates were obtained in discerning between the minor GCC versions (4.7, 4.8,
and 4.9) compared to those achieved in identifying major versions. This aligns with the
common sense that major version updates of compilers tend to introduce more substantial
and breaking changes than minor updates.

Table 4. Performance comparison results on compiler version identification.

Model
GCC (Major) Clang GCC (Minor)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

MulCPI 0.956 0.955 0.956 0.955 0.858 0.858 0.856 0.857 0.792 0.799 0.791 0.793
NeuralCIcnn 0.944 0.943 0.944 0.943 0.841 0.841 0.841 0.839 0.770 0.774 0.770 0.771
NeuralCIgru 0.940 0.940 0.940 0.940 0.823 0.821 0.823 0.821 0.754 0.754 0.754 0.754
o-glassesX 0.948 0.947 0.948 0.947 0.851 0.848 0.851 0.849 0.786 0.788 0.786 0.787

Idioms 0.892 0.895 0.892 0.890 0.819 0.827 0.819 0.806 0.740 0.770 0.740 0.741
Graphlets 0.855 0.858 0.855 0.852 0.780 0.775 0.780 0.762 0.629 0.635 0.629 0.630
ORIGIN 0.905 0.908 0.905 0.903 0.838 0.845 0.838 0.828 0.759 0.778 0.759 0.760

5.3.4. Performance on Compilation Setting Combination Identification

Deciphering the combination of compilation settings employed to compile a binary
typically involves the synergistic use of multiple models, with each unraveling a specific
aspect of these settings. For instance, to ascertain both the compiler family and the opti-
mization level utilized to produce the binary function, one might initially deploy a model
learnt specifically for identifying the compiler family only. Subsequently, a specialized
model for optimization level identification but which is tailored to the previously identified
compiler family could be employed to determine the optimization level. Alternatively,
learning a unified model capable of simultaneously detecting all these settings tends to be
a more attractive and preferable approach. To explore the potential of MulCPI in applica-
tion to such a more complex task, we examined its ability to simultaneously unveil these
compilation details from a binary function.

Table 5 presents the experimental results (the same as in NeuralCI [4], only the major
compiler versions are involved in this experiment), where the performance of the models
are separately evaluated and reported for the 2-level and the 3-level optimization level
settings in Table 5a,b, respectively. As the results show, the detection accuracy values and
F1-scores of all the models are notably lower compared to those achieved in less challenging
identification tasks discussed in the previous sections. Yet, MulCPI still behaves the best
among all the models in terms of each performance metric. Its detection accuracies reach
0.855 and 0.853 under the 2-level and 3-level optimization settings, surpassing the other
methods with an average improvement of 12.0% and 12.1%, and a maximum improvement
of 32.8% and 35.0%, respectively.

Electronics 2024, 13, 1692 15 of 21

Table 5. Performance comparison results on compilation setting combination identification.

(a) Results for the 2-Level Optimization Level Setting

Metric MulCPI NeuralCIcnn NeuralCIgru o-glassesX Idioms Graphlets ORIGIN

Acc. 0.855 0.830 0.832 0.842 0.731 0.644 0.742
Prec. 0.856 0.830 0.833 0.843 0.750 0.661 0.761
Rec. 0.855 0.830 0.832 0.841 0.731 0.644 0.742
F1 0.853 0.828 0.832 0.839 0.724 0.634 0.736

(b) Results for the 3-Level Optimization Level Setting

Metric MulCPI NeuralCIcnn NeuralCIgru o-glassesX Idioms Graphlets ORIGIN

Acc. 0.853 0.837 0.827 0.846 0.729 0.632 0.744
Prec. 0.856 0.840 0.827 0.848 0.757 0.654 0.771
Rec. 0.852 0.837 0.827 0.843 0.729 0.632 0.744
F1 0.851 0.833 0.826 0.841 0.726 0.629 0.744

As illustrated by the values in Table 5, MulCPI wins over all the baseline methods
consistently in terms of all the performance metrics. To further establish whether these
differences in performance are statistically significant, we conducted the Wilcoxon rank
sum test and t-tests between MulCPI and each baseline method, utilizing a 5 × 2 cross-
validation setting. The resulting p-values for Accuracy and the F1-score are detailed in
Table 6 Notably, all the p-values are below the 0.05 threshold for either test, confirming
a statistically significant difference in performance between MulCPI and the baseline
methods on the challenging task of compilation setting combination identification.

Table 6. Statistical significance testing between MulCPI and the baseline methods.

Level
Setting Method Pair Wilcoxon Rank Sum T-Test

Acc. p-Value F1 Acc. p-Value F1 p-Value

2-Levels
(OL, OH)

MulCPI vs. NeuralCIcnn 0.0148 0.0151 0.0100 0.0143
MulCPI vs. NeuralCIgru 0.0153 0.0155 0.0121 0.0137
MulCPI vs. o-glassesX 0.0182 0.0156 0.0167 0.0142

MulCPI vs. Idioms 0.0003 0.0003 0.0001 0.0001
MulCPI vs. Graphlets 0.0001 0.0001 0.0003 0.0003
MulCPI vs. ORIGIN 0.0004 0.0003 0.0001 0.0001

3-Levels
(O0, O1, OH)

MulCPI vs. NeuralCIcnn 0.0210 0.0173 0.0149 0.0106
MulCPI vs. NeuralCIgru 0.0110 0.0103 0.0090 0.0090
MulCPI vs. o-glassesX 0.0256 0.0187 0.0173 0.0125

MulCPI vs. Idioms 0.0003 0.0003 0.0001 0.0001
MulCPI vs. Graphlets 0.0001 0.0001 0.0002 0.0002
MulCPI vs. ORIGIN 0.0004 0.0003 0.0001 0.0001

5.3.5. Substitutional Study

In this experiment, we performed alternative experiments by substituting the encoders
originally utilized in MulCPI for feature extraction with other widely recognized neural
network structures. To be specific, we incorporated three other sequence-oriented mod-
els—TextCNN, BiLSTM, and DPCNN—to process the normalized instruction sequences, in
addition to the Transformer encoder originally used by MulCPI. For feature extraction from
the ACFG, we considered two other well-known graph-oriented neural encoders, GCN
and GAT, as alternatives to our attention-enhanced GGNN, to evaluate their performance
comparatively.

The evaluation results of each identification task are depicted in Table 7. It should
be noted that the metric values for the optimization level identification task refer to the
results obtained under the 3-level identification scenario, considering the nearly identical
performance to the 2-level identification scenario as observed in Tables 3 and 4. Moreover,
the metric values were averaged across the different compilers to offer an overall view of

Electronics 2024, 13, 1692 16 of 21

the models’ performance in both the optimization level identification and the major version
identification tasks. The experimental findings reveal that MulCPI’s blend using of the
neural encoders makes it the most effective model for compiler provenance identification,
where substituting its components with the aforementioned alternatives generally results
in varied degrees of performance decline.

Table 7. Performance of MulCPI with alternative deep neural encoders.

Task Metric MulCPI MulCPItextcnn MulCPIbilstm MulCPIdpcnn MulCPIgcn MulCPIgat

Compiler
Family

Acc. 0.993 0.988 0.989 0.991 0.986 0.990
Prec. 0.995 0.989 0.991 0.992 0.988 0.991
Rec. 0.991 0.986 0.987 0.989 0.983 0.989
F1 0.992 0.987 0.988 0.990 0.984 0.990

Optimization
Level

Acc. 0.964 0.958 0.959 0.962 0.949 0.956
Prec. 0.964 0.959 0.957 0.963 0.948 0.956
Rec. 0.964 0.958 0.959 0.961 0.948 0.955
F1 0.964 0.958 0.959 0.962 0.948 0.955

Major
Version

Acc. 0.907 0.903 0.902 0.905 0.893 0.904
Prec. 0.907 0.903 0.902 0.904 0.892 0.904
Rec. 0.906 0.903 0.903 0.905 0.893 0.904
F1 0.906 0.903 0.903 0.905 0.893 0.904

Minor
Version

Acc. 0.792 0.788 0.789 0.790 0.763 0.788
Prec. 0.799 0.793 0.793 0.794 0.767 0.792
Rec. 0.791 0.785 0.787 0.787 0.762 0.786
F1 0.793 0.788 0.790 0.791 0.764 0.788

Setting
Combination

Acc. 0.853 0.850 0.849 0.852 0.842 0.851
Prec. 0.856 0.854 0.853 0.855 0.844 0.853
Rec. 0.852 0.849 0.849 0.852 0.842 0.851
F1 0.851 0.847 0.846 0.850 0.839 0.848

5.3.6. RQ4: Ablation Study

For this experiment, an ablation study regarding the effects of each intermediate
code representation was carried out to investigate whether considering the feature vectors
distilled from both of them indeed help boost MulCPI’s capability in pinpointing the
compilation provenance details, over relying on a singular feature vector extracted from
one representation alone. Therewith, we disabled the feature extraction component within
MulCPI that corresponded to the handling of certain code intermediate representation,
and then evaluated and compared the performance of these pruned models with the
complete MulCPI. The efficacy of our devised attention-enhanced GGNN encoder for
feature extraction from the ACFG was also evaluated by peeling off the attention mechanism
blended in it. For simplicity, we refer to the simplified versions of MulCPI operating
merely on the normalized instruction sequence or the ACFG as MulCPIins and MulCPIac f g,
respectively, and refer to the model adopting the original GGNN as MulCPIno_att.

As exhibited by the experimental results in Table 8, the complete MulCPI model
outperforms its simplified counterparts, which rely solely on the single vector derived
from one intermediate code representation. This enhancement in performance, achieved
by leveraging multiple distinct intermediate representations for feature extraction, un-
derscores the importance and advantage of considering various code aspects. This also
suggest that models trained with merely one certain code representation tend to struggle
to comprehensively capture the nuanced features present in the code, leading to poorer
identification capability. Particularly, for the challenging compilation setting combination
identification task, there is a noticeable decline in Accuracy, which drops by 3.28%, and
F1-score decreases by 3.41%, when stripping off features collected from the ACFG and only
utilizing features from the normalized assembly sequence. This decline can be attributed
to this particular code representation’s limitation of majorly manifesting the lexical and
syntactic characteristics of code, while the compilation optimizations could also alter the
binary code’s structural aspects to a large extent. It can also be inferred that there are
some overlaps in the features extracted from the normalized assembly instruction sequence

Electronics 2024, 13, 1692 17 of 21

and the ACFG. However, identifying and integrating the unique features from these two
different sources help improve the model’s identification capability. Furthermore, the
reduced performance of MulCPIno_att indicates that our enhancement of the GGNN with
an attention mechanism allows the encoder to identify more subtle yet significant features
that may have been overlooked by the original GGNN.

Table 8. Ablation study results with disabled certain core designs in MulCPI.

Task Metric MulCPI MulCPIins MulCPIac f g MulCPIno_attt

Compiler
Family

Acc. 0.993 0.982 0.988 0.984
Prec. 0.995 0.982 0.990 0.987
Rec. 0.991 0.980 0.986 0.983
F1 0.992 0.981 0.987 0.984

Optimization
Level

Acc. 0.964 0.947 0.957 0.948
Prec. 0.964 0.947 0.957 0.948
Rec. 0.964 0.946 0.957 0.947
F1 0.964 0.947 0.957 0.947

Major
Version

Acc. 0.907 0.888 0.898 0.885
Prec. 0.907 0.888 0.898 0.886
Rec. 0.906 0.889 0.898 0.885
F1 0.906 0.888 0.898 0.885

Minor
Version

Acc. 0.792 0.757 0.783 0.764
Prec. 0.799 0.759 0.786 0.768
Rec. 0.791 0.756 0.782 0.761
F1 0.793 0.758 0.783 0.764

Setting
Combination

Acc. 0.853 0.825 0.845 0.833
Prec. 0.856 0.828 0.847 0.835
Rec. 0.852 0.823 0.843 0.831
F1 0.851 0.822 0.841 0.829

6. Discussion

Based on the above experimental evaluations conducted, it can be observed that the
difficulty of training an effective compilation provenance identification model varies sig-
nificantly under different identification challenges, suggesting that different compilation
settings preserve varying amounts of distinctive clues in the final binaries. More specifi-
cally, as illustrated by the experimental results, regardless of the specific methods (i.e., the
conventional machine learning-based or the SOTA deep learning-based ones) adopted, the
difficulty of learning a model that accurately works for compilation provenance identifica-
tion generally increases in the order of M f < Mo < Mυ < Mcombo, where M f ,Mo,Mυ

signify the models learnt for the detection of compiler family, optimization level, and com-
piler version, respectively, while Mcombo refers to the model for unveiling the combinations
of compilation setting.

6.1. Threats to Validity

Just like many other binary analysis studies [4,10,41] focusing on individual functions,
MulCPI operates under the assumption that the function under examination can always be
accurately identified and extracted from the binary file. In our study, we leverage IDA Pro,
the leading binary reverse engineering tool, to alleviate such issues of inaccurate function
sample acquisition, considering its high performance and prevalence in binary analysis.
While other tools like Binary Ninja, Ghidra, and Angr are also compatible with MulCPI,
accurately parsing binaries remains an open challenge [42,43]. MulCPI could potentially
benefit from the emerging deep learning-driven binary disassembly techniques [44–46] to
enhance reliability in the acquisition of functions.

MulCPI’s effectiveness may be hindered by the diverse code obfuscation strate-
gies [47,48] applied to the code under analysis. Techniques such as compression and

Electronics 2024, 13, 1692 18 of 21

encryption can disrupt the initial analysis phase by preventing accurate function parsing
and extraction, which are critical for MulCPI and other function-level analysis methods.
Furthermore, obfuscation techniques like instruction replacement and dead code insertion,
which alter the code, could obscure or eliminate key features vital for compilation prove-
nance identification, reducing the detection accuracy. Addressing these challenges may
involve initially deobfuscating [49,50] the binaries or applying adversarial training [51,52],
which involves training the compilation provenance identification model on obfuscated
samples to enhance its resilience against obfuscation tactics. Tackling robust compila-
tion provenance identification against the code obfuscation countermeasures presents a
significant research challenge that we aim to explore as a future work.

6.2. Limitations

As exhibited in the experimental evaluations, especially the substitutional and ab-
lation study results, the carefully picked and elaborately designed neural encoders, as
well as the more comprehensive lexical, syntactical, and structural feature fusion from
multiple distinct intermediate representations, endow MulCPI with a heightened capability
to discern the nuanced yet pivotal features, helping it outperform other methods under the
various compilation provenance identification tasks. However, the collection and incor-
poration of features from multiple intermediate code representations inevitably escalate
computational overhead, placing MulCPI in an inferior position in terms of the runtime
efficiency compared with the methods operating on a single code representation.

Currently, MulCPI has only been evaluated on the binary functions of X64, one of
the most represented and widely used instruction architecture sets (ISAs). Theoretically
speaking, our method is not restricted to any specific ISA, as training with abundant
binary function samples of the corresponding ISA can always obtain an identification
model. However, there generally are significant morphological and syntactic gaps between
different ISAs; thus, the instruction normalization rules and the neural encoders designed
for X64 binary functions may not translate well to other ISAs, such as ARM64. Moreover, as
in the many studies targeting architecture agnostic binary code similarity detection [53–55],
achieving ISA agnostic compilation provenance identification is also highly appealing.
We leave the exploration of adapting MulCPI to different ISAs and cross-ISA compilation
provenance identification as interesting future works.

7. Conclusions

Targeting the challenging yet important compilation provenance identification prob-
lem, we present an innovative and high-performing method called MulCPI for fine-grained
compilation provenance identification on individual functions. It follows the cutting-edge
deep learning paradigm, but different from existing methods which generally operate on
a single intermediate code representation, it jointly leverages carefully devised sequence-
oriented and graph-oriented neural encoders to more comprehensively capture and fuse
the diverse significant features that reflect the rich lexical, syntactic, and structural aspects
of the binary functions. The extensive experiments conducted on a public dataset validate
MulCPI’s remarkable capability in capturing the compilation-indicative features and its
superior performance over existing methods in identifying the various compilation aspects.
The ablation study also confirms the indispensable role of MulCPI’s core components,
notably the efficacy of the devised attention-enhanced gated graph neural network encoder
and the strategic incorporation of multiple code representations.

Author Contributions: Conceptualization, Y.G.; Methodology, Y.G. and L.L.; Validation, Y.W.; Investi-
gation, Y.L.; Data curation, Y.L.; Writing—original draft, L.L.; Writing—review & editing, R.L. and
Y.W.; Supervision, Y.G.; Funding acquisition, R.L. All authors have read and agreed to the published
version of the manuscript.

Electronics 2024, 13, 1692 19 of 21

Funding: This research was funded in part by the Key Research Project of Shaanxi Higher Education
Teaching Reform (23JG001), and the Research Project of Higher Education Science of the China
Association of Higher Education (22ZXKS0308).

Data Availability Statement: The data presented in this study are openly available at https://github.
com/gyjuice/MulCPI (accessed on 21 April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ren, X.; Ho, M.; Ming, J.; Lei, Y.; Li, L. Unleashing the hidden power of compiler optimization on binary code difference: An

empirical study. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual, Canada, 20–25 June 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 142–157,
PLDI 2021. [CrossRef]

2. Tian, Z.; Liu, T.; Zheng, Q.; Zhuang, E.; Fan, M.; Yang, Z. Reviving sequential program birthmarking for multithreaded software
plagiarism detection. IEEE Trans. Softw. Eng. 2017, 44, 491–511. [CrossRef]

3. Rosenblum, N.; Miller, B.P.; Zhu, X. Recovering the toolchain provenance of binary code. In Proceedings of the International
Symposium on Software Testing and Analysis, Toronto, ON, Canada, 17–21 July 2011; pp. 100–110.

4. Tian, Z.; Huang, Y.; Xie, B.; Chen, Y.; Chen, L.; Wu, D. Fine-Grained Compiler Identification With Sequence-Oriented Neural
Modeling. IEEE Access 2021, 9, 49160–49175. [CrossRef]

5. He, X.; Wang, S.; Xing, Y.; Feng, P.; Wang, H.; Li, Q.; Chen, S.; Sun, K. BinProv: Binary Code Provenance Identification without
Disassembly. In Proceedings of the 25th International Symposium on Research in Attacks, Intrusions and Defenses, Limassol,
Cyprus, 26–28 October 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 350–363. RAID ’22. [CrossRef]

6. Jang, H.; Murodova, N.; Koo, H. ToolPhet: Inference of Compiler Provenance from Stripped Binaries with Emerging Compilation
Toolchains. IEEE Access 2024, 12, 12667–12682. [CrossRef]

7. Otsubo, Y.; Otsuka, A.; Mimura, M. Compiler Provenance Recovery for Multi-CPU Architectures Using a Centrifuge Mechanism.
IEEE Access 2024, 12, 34477–34488. [CrossRef]

8. Du, Y.; Alrawi, O.; Snow, K.; Antonakakis, M.; Monrose, F. Improving Security Tasks Using Compiler Provenance Information
Recovered At the Binary-Level. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
Melbourne, Australia, 10–14 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 2695–2709, CCS ’23.
[CrossRef]

9. Pei, K.; Xuan, Z.; Yang, J.; Jana, S.; Ray, B. Learning Approximate Execution Semantics From Traces for Binary Function Similarity.
IEEE Trans. Softw. Eng. 2023, 49, 2776–2790. [CrossRef]

10. Qasem, A.; Debbabi, M.; Lebel, B.; Kassouf, M. Binary Function Clone Search in the Presence of Code Obfuscation and
Optimization over Multi-CPU Architectures. In Proceedings of the 2023 ACM Asia Conference on Computer and Communications
Security, Melbourne, Australia, 10–14 July 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 443–456,
ASIA CCS ’23. [CrossRef]

11. Tian, Z.; Zheng, Q.; Liu, T.; Fan, M.; Zhuang, E.; Yang, Z. Software Plagiarism Detection with Birthmarks Based on Dynamic Key
Instruction Sequences. IEEE Trans. Softw. Eng. 2015, 41, 1217–1235. [CrossRef]

12. Du, Y.; Court, R.; Snow, K.; Monrose, F. Automatic Recovery of Fine-grained Compiler Artifacts at the Binary Level. In Proceedings
of the 2022 USENIX Annual Technical Conference (USENIX ATC 22), Carlsbad, CA, USA, 11–13 July 2022; pp. 853–868.

13. Kalgutkar, V.; Kaur, R.; Gonzalez, H.; Stakhanova, N.; Matyukhina, A. Code Authorship Attribution: Methods and Challenges.
ACM Comput. Surv. 2019, 52, 1–36. [CrossRef]

14. Rosenblum, N.E.; Miller, B.P.; Zhu, X. Extracting compiler provenance from program binaries. In Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, Toronto, ON, Canada, 20 June 2010;
pp. 21–28.

15. Rahimian, A.; Shirani, P.; Alrbaee, S.; Wang, L.; Debbabi, M. Bincomp: A stratified approach to compiler provenance attribution.
Digit. Investig. 2015, 14, S146–S155. [CrossRef]

16. Yang, S.; Shi, Z.; Zhang, G.; Li, M.; Ma, Y.; Sun, L. Understand Code Style: Efficient CNN-Based Compiler Optimization
Recognition System. In Proceedings of the IEEE International Conference on Communications, Shanghai, China, 22–24 May 2019;
IEEE: Piscataway, NJ, USA, 2019; pp. 1–6.

17. Chen, Y.; Shi, Z.; Li, H.; Zhao, W.; Liu, Y.; Qiao, Y. Himalia: Recovering compiler optimization levels from binaries by deep learning.
In Proceedings of the SAI Intelligent Systems Conference, London, UK, 6–7 September 2018; Springer: Cham, Switzerland, 2018;
pp. 35–47.

18. Ji, Y.; Cui, L.; Huang, H.H. Vestige: Identifying Binary Code Provenance for Vulnerability Detection. In Proceedings of the
Applied Cryptography and Network Security, Kamakura, Japan, 21–24 June 2021; Sako, K., Tippenhauer, N.O., Eds.; Springer:
Cham, Switzerland, 2021; pp. 287–310.

19. Otsubo, Y.; Otsuka, A.; Mimura, M.; Sakaki, T.; Ukegawa, H. o-glassesX: Compiler Provenance Recovery with Attention
Mechanism from a Short Code Fragment. In Proceedings of the 2020 Workshop on Binary Analysis Research, San Diego, CA,
USA, 23 February 2020.

https://github.com/gyjuice/MulCPI
https://github.com/gyjuice/MulCPI
http://doi.org/10.1145/3453483.3454035
http://dx.doi.org/10.1109/TSE.2017.2688383
http://dx.doi.org/10.1109/ACCESS.2021.3069227
http://dx.doi.org/10.1145/3545948.3545956
http://dx.doi.org/10.1109/ACCESS.2024.3355098
http://dx.doi.org/10.1109/ACCESS.2024.3371499
http://dx.doi.org/10.1145/3576915.3623098
http://dx.doi.org/10.1109/TSE.2022.3231621
http://dx.doi.org/10.1145/3579856.3582818
http://dx.doi.org/10.1109/TSE.2015.2454508
http://dx.doi.org/10.1145/3292577
http://dx.doi.org/10.1016/j.diin.2015.05.015

Electronics 2024, 13, 1692 20 of 21

20. Kim, J.; Genkin, D.; Leach, K. Revisiting Lightweight Compiler Provenance Recovery on ARM Binaries. In Proceedings of the
2023 IEEE/ACM 31st International Conference on Program Comprehension (ICPC), Melbourne, Australia, 15–16 May 2023;
pp. 292–303. [CrossRef]

21. Austin, T.H.; Filiol, E.; Josse, S.; Stamp, M. Exploring hidden markov models for virus analysis: A semantic approach. In
Proceedings of the Hawaii International Conference on System Sciences, Wailea, HI, USA, 7–10 January 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 5039–5048.

22. Toderici, A.H.; Stamp, M. Chi-squared distance and metamorphic virus detection. J. Comput. Virol. Hacking Tech. 2013, 9, 1–14.
[CrossRef]

23. Tian, Z.; Tian, B.; Lv, J.; Chen, Y.; Chen, L. Enhancing vulnerability detection via AST decomposition and neural sub-tree encoding.
Expert Syst. Appl. 2024, 238, 121865. [CrossRef]

24. Yan, Y.; Feng, Y.; Fan, H.; Xu, B. DLInfer: Deep Learning with Static Slicing for Python Type Inference. In Proceedings of the 45th
International Conference on Software Engineering, Melbourne, Australia, 14–20 May 2023; IEEE Press: Piscataway, NJ, USA,
2023; pp. 2009–2021, ICSE ’23. [CrossRef]

25. Tian, Z.; Tian, J.; Wang, Z.; Chen, Y.; Xia, H.; Chen, L. Landscape estimation of solidity version usage on Ethereum via version
identification. Int. J. Intell. Syst. 2022, 37, 450–477. [CrossRef]

26. Pizzolotto, D.; Inoue, K. Identifying Compiler and Optimization Options from Binary Code using Deep Learning Approaches. In
Proceedings of the 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME), Adelaide, Australia, 28
September–2 October2020; pp. 232–242. [CrossRef]

27. Luca, M.; Giuseppe, A.D.L.; Fabio, P.; Leonardo, Q.; Roberto, B. Investigating Graph Embedding Neural Networks with
Unsupervised Features Extraction for Binary Analysis. In Proceedings of the 2019 Workshop on Binary Analysis Research (BAR),
San Diego, CA, USA, 24 February 2019; pp. 1–11.

28. Benoit, T.; Marion, J.Y.; Bardin, S. Binary level toolchain provenance identification with graph neural networks. In Proceedings of
the 2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Honolulu, HI, USA, 9–12
March 2021; pp. 131–141. [CrossRef]

29. IDA Pro. Available online: https://hex-rays.com/ida-pro/ (accessed on 21 April 2024).
30. Li, X.; Qu, Y.; Yin, H. PalmTree: Learning an Assembly Language Model for Instruction Embedding. In Proceedings of the 2021

ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, 15–19 November 2021;
Association for Computing Machinery: New York, NY, USA, 2021; pp. 3236–3251, CCS ’21. [CrossRef]

31. Wang, H.; Qu, W.; Katz, G.; Zhu, W.; Gao, Z.; Qiu, H.; Zhuge, J.; Zhang, C. jTrans: Jump-aware transformer for binary code
similarity detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis,
Virtual, 18–22 July 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 1–13, ISSTA 2022. [CrossRef]

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.u.; Polosukhin, I. Attention is All you Need.
In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Guyon, I.,
Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Hook, NY, USA,
2017; Volume 30.

33. Li, Y.; Zemel, R.; Brockschmidt, M.; Tarlow, D. Gated Graph Sequence Neural Networks. In Proceedings of the ICLR ’16,
Proceedings of ICLR ’16, San Juan, Puerto Rico, 2–4 May 2016.

34. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef] [PubMed]

35. Wu, L.; Cui, P.; Pei, J.; Zhao, L.; Guo, X. Graph Neural Networks: Foundation, Frontiers and Applications. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 14–18 August 2022;
Association for Computing Machinery: New York, NY, USA, 2022; pp. 4840–4841, KDD ’22. [CrossRef]

36. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; vanaden Berg, R.; Titov, I.; Welling, M. Modeling Relational Data with Graph Convolutional
Networks. In Proceedings of the The Semantic Web, Monterey CA, USA, 8–12 October 2018; Gangemi, A., Navigli, R., Vidal,
M.E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 593–607.

37. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the
International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

38. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver,
BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., Alche-Buc, F., Fox, E., Garnett, R., Eds.; Curran
Associates, Inc.: Hook, NY, USA, 2019; Volume 32.

39. Dinella, E.; Dai, H.; Li, Z.; Naik, M.; Song, L.; Wang, K. Hoppity: Learning graph transformations to detect and fix bugs in
programs. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 30 April 2020.

40. Ding, Y.; Suneja, S.; Zheng, Y.; Laredo, J.; Morari, A.; Kaiser, G.; Ray, B. VELVET: A noVel Ensemble Learning approach to
automatically locate VulnErable sTatements. In Proceedings of the 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), Honolulu, HI, USA, 15–18 March 2022; pp. 959–970. [CrossRef]

41. Tian, Z.; Mao, H.; Huang, Y.; Tian, J.; Li, J. Fine-Grained Obfuscation Scheme Recognition on Binary Code. In Proceedings of the
Digital Forensics and Cyber Crime, Boston, MA, USA, 16–18 November 2022; Gladyshev, P., Goel, S., James, J., Markowsky, G.,
Johnson, D., Eds.; Springer: Cham, Switzerland, 2022; pp. 215–228.

http://dx.doi.org/10.1109/ICPC58990.2023.00044
http://dx.doi.org/10.1007/s11416-012-0171-2
http://dx.doi.org/10.1016/j.eswa.2023.121865
http://dx.doi.org/10.1109/ICSE48619.2023.00170
http://dx.doi.org/10.1002/int.22633
http://dx.doi.org/10.1109/ICSME46990.2020.00031
http://dx.doi.org/10.1109/SANER50967.2021.00021
https://hex-rays.com/ida-pro/
http://dx.doi.org/10.1145/3460120.3484587
http://dx.doi.org/10.1145/3533767.3534367
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1145/3534678.3542609
http://dx.doi.org/10.1109/SANER53432.2022.00114

Electronics 2024, 13, 1692 21 of 21

42. Pang, C.; Zhang, T.; Yu, R.; Mao, B.; Xu, J. Ground Truth for Binary Disassembly is Not Easy. In Proceedings of the 31st USENIX
Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12 August 2022; pp. 2479–2495.

43. Li, K.; Woo, M.; Jia, L. On the Generation of Disassembly Ground Truth and the Evaluation of Disassemblers. In Proceedings of
the 2020 ACM Workshop on Forming an Ecosystem Around Software Transformation, Virtual Event, USA, 13 November 2020;
Association for Computing Machinery: New York, NY, USA, 2020; pp. 9–14, FEAST’20. [CrossRef]

44. Pei, K.; Guan, J.; Williams-King, D.; Yang, J.; Jana, S. XDA: Accurate, Robust Disassembly with Transfer Learning. In Proceedings
of the Network and Distributed System Security Symposium (NDSS 21), Boston, MA, USA, 21–25 February 2021; pp. 1–18.

45. Cao, Y.; Liang, R.; Chen, K.; Hu, P. Boosting Neural Networks to Decompile Optimized Binaries. In Proceedings of the
38th Annual Computer Security Applications Conference, Austin, TX, USA, 5–9 December 2022; Association for Computing
Machinery: New York, NY, USA, 2022; pp. 508–518, ACSAC ’22. [CrossRef]

46. Yu, S.; Qu, Y.; Hu, X.; Yin, H. DeepDi: Learning a Relational Graph Convolutional Network Model on Instructions for Fast and
Accurate Disassembly. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA, 10–12
August 2022; pp. 2709–2725.

47. Schloegel, M.; Blazytko, T.; Contag, M.; Aschermann, C.; Basler, J.; Holz, T.; Abbasi, A. Loki: Hardening Code Obfuscation
Against Automated Attacks. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22), Boston, MA, USA,
10–12 August 2022; pp. 3055–3073.

48. Xu, H.; Zhou, Y.; Ming, J.; Lyu, M. Layered obfuscation: A taxonomy of software obfuscation techniques for layered security.
Cybersecurity 2020, 3, 9. [CrossRef]

49. Menguy, G.; Bardin, S.; Bonichon, R.; Lima, C.d.S. Search-Based Local Black-Box Deobfuscation: Understand, Improve and Miti-
gate. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic
of Korea, 15–19 November 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 2513–2525, CCS ’21.
[CrossRef]

50. Yadegari, B.; Johannesmeyer, B.; Whitely, B.; Debray, S. A Generic Approach to Automatic Deobfuscation of Executable Code. In
Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015; pp. 674–691. [CrossRef]

51. Qian, Z.; Huang, K.; Wang, Q.F.; Zhang, X.Y. A survey of robust adversarial training in pattern recognition: Fundamental, theory,
and methodologies. Pattern Recognit. 2022, 131, 108889. [CrossRef]

52. Bai, T.; Luo, J.; Zhao, J.; Wen, B.; Wang, Q. Recent Advances in Adversarial Training for Adversarial Robustness. In Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27 August 2021;
pp. 4312–4321, IJCAI ’21.

53. Luo, Z.; Wang, P.; Wang, B.; Tang, Y.; Xie, W.; Zhou, X. VulHawk: Cross-architecture Vulnerability Detection with Entropy-based
Binary Code Search. In Proceedings of the Network and Distributed System Security (NDSS) Symposium, San Diego, CA, USA,
27 February–3 March 2023; pp. 1–18.

54. Xue, Y.; Xu, Z.; Chandramohan, M.; Liu, Y. Accurate and Scalable Cross-Architecture Cross-OS Binary Code Search with
Emulation. IEEE Trans. Softw. Eng. 2019, 45, 1125–1149. [CrossRef]

55. Wang, J.; Sharp, M.; Wu, C.; Zeng, Q.; Luo, L. Can a deep learning model for one architecture be used for others? retargeted-
architecture binary code analysis. In Proceedings of the 32nd USENIX Conference on Security Symposium, Anaheim, CA, USA,
9–11 August 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3411502.3418429
http://dx.doi.org/10.1145/3564625.3567998
http://dx.doi.org/10.1186/s42400-020-00049-3
http://dx.doi.org/10.1145/3460120.3485250
http://dx.doi.org/10.1109/SP.2015.47
http://dx.doi.org/10.1016/j.patcog.2022.108889
http://dx.doi.org/10.1109/TSE.2018.2827379

	Introduction
	Related Work
	Signature Matching-Based Approaches
	Learning-Based Approaches

	Problem and Solution Overview
	Problem Overview
	Solution Overview

	Core Designs of MulCPI
	Intermediate Representation Preparation
	Assembly Sequence Normalization
	ACFG Construction

	Feature Gathering through Neural Encoding
	Feature Encoding of the Normalized Assembly Sequence
	Feature Encoding of the ACFG

	Feature Fusion and Classification

	Experiments and Evaluations
	Implementation Details and Dataset Preparation
	Experimental Setup
	Experimental Results
	Performance on Compiler Family Identification
	Performance on Optimization Level Identification
	Performance on Compiler Version Identification
	Performance on Compilation Setting Combination Identification
	Substitutional Study
	RQ4: Ablation Study

	Discussion
	Threats to Validity
	Limitations

	Conclusions
	References

