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Abstract: Three-dimensional integrated circuits can significantly mitigate the challenges posed
by shrinking feature sizes and enable heterogeneous integration. This paper focuses on the 3D
floorplanning problem. We formulate it as a multi-objective optimization issue and employ multi-
objective simulated annealing to simultaneously optimize area, wirelength and number of vias.
During the optimization process, neighboring solutions are explored in the design space through
inter-layer or intra-layer perturbations, and decision criteria for the exploration process are formulated
based on the dominance relationship of solutions. Test results on the GSRC benchmark demonstrate
that our approach delivers superior performance in optimizing area and wirelength. Compared to
2D floorplanning, our method reduces the area by approximately 49% and the wirelength by 21%.
Compared to other similar 3D floorplanning methods, we raise the success rate in satisfying the
fixed-outline constraint to 100% and improve the wirelength by 3%. The multi-objective simulated
annealing method proposed in this paper can effectively address the 3D floorplanning problem.

Keywords: floorplanning; 3D integrated circuit; multi-objective optimization; simulated annealing

1. Introduction

As predicted by Moore’s Law, the continuous scaling of Integrated Circuit (IC) tech-
nology faces increasingly daunting challenges in performance improvement for traditional
2D monolithic ICs. These challenges manifest in several aspects. Firstly, as transistor sizes
continue to shrink, thermal effects and signal integrity issues become more prominent,
hindering effective integration of digital and analog units. Secondly, long 2D interconnects
often introduce significant delays and limit the throughput of memory, posing challenges
for applications in high-performance computing and large-scale data processing. Lastly,
selecting a single process node to balance design metrics such as performance and area to
meet the requirements of specific applications is difficult.

Three-dimensional integrated circuits represent an emerging technology that achieves
integration of electronic components by stacking multiple chips or layers vertically. Com-
pared to traditional 2D monolithic ICs, 3D integrated circuits offer a range of significant
advantages [1], providing a promising direction to address the exponentially growing scale
of modern ICs. Firstly, they can achieve higher integration density by stacking multiple
layers of chips within a limited space, accommodating more transistors and electronic
components for higher functional integration. Secondly, due to the vertical stacking design,
3D integrated circuits can significantly reduce interconnect lengths between chips, thereby
reducing circuit delays and power consumption and improving signal transmission speed
and stability. According to theoretical speculation, the average wire length of 3D ICs is
inversely proportional to the square root of the number of layers [2]. Lastly, 3D integrated
circuits also have the potential for heterogeneous integration, stacking chips or layers with
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different processes together, reducing the number of components in the system, lowering
system complexity, and improving system performance and reliability.

Three-dimensional ICs can be categorized into three main types based on different
chip stacking methods: through-Silicon Via (TSV)-based 3D integration, Monolithic 3D
Integration (M3D), and Face-to-Face (F2F)-bonded 3D integration. TSV-based 3D IC is the
most mature 3DIC technology. However, due to significant spacing and parasitic effects
introduced by TSVs, this stacking method only offers advantages when the connections
between chips are relatively sparse, as observed in memory and logic designs. F2F stacking
involves connecting two pre-manufactured chips face-to-face, as illustrated in Figure 1.
Because Inter-Tier Vias (ITV) in F2F stacking do not pass through the silicon substrate like
when TSV based in backside stacking, F2F stacking allows for higher three-dimensional
integration density and provides better cost-effectiveness in manufacturing. Monolithic 3D
integration is a bare die stacking technology where standard cells and transistors can be
stacked in three-dimensional space, interconnected through nanometer-scale Monolithic
Integrated Vias (MIV) between layers. Among these stacking methods, MIVs enable the
highest density stacking, but their widespread application is hindered by immature tech-
nology. Overall, F2F presents a promising and feasible solution with good performance [3].
As early as 2013, Lim [4] utilized 3D technology based on TSV and F2F to realize a 64-core
256 KB stacked SRAM 3D processor named 3D-Maps. In 2020, Intel developed a hybrid
processor system called Lakefield using F2F bonding stacking technology with 10 nm
and 22 nm process nodes [5]. This 3D chip based on F2F bonding stacking technology
has been applied in consumer electronics, demonstrating the potential of this stacking
technique. Furthermore, a competition [6] in 2023 explored the 3D layout problem under
F2F technology, reflecting the cutting-edge direction of technological development and
the attention of related industries. Therefore, researching F2F 3D integrated circuits holds
significant potential and significance. The 3D IC issues studied in this paper are based on
F2F stacking. The blocks are placed in two dies stacked vertically.

Figure 1. Face-to-face stacking.

Due to the novelty and complexity of 3D IC technology, support from Electronic
Design Automation (EDA) tools is currently relatively limited. Engineers in the field of
computer engineering rely heavily on manual operations and accumulated experience
when designing and validating 3D ICs, which increases design cycles and costs, hindering
the development of 3D ICs. Therefore, research and development of EDA tools tailored for
3D IC design hold significant technological value. Floorplanning serves as the foundational
step in the physical design process of ICs, exerting a profound impact on subsequent tasks
such as placement and routing [7]. Moreover, Fixed-Outline Floorplanning (FOFP) assumes
critical significance in the design of large-scale ICs as it facilitates multilevel hierarchical
design [8]. And contemporary Very Large Scale Integration (VLSI) design predominantly
relies on a fixed-outline floorplan rather than a variable-die counterpart [9]. Furthermore,
FOFP poses considerably greater challenges compared to outline-free floorplanning [10].

Given that 2D and 3D IC floorplanning design are proven to be NP (Non-deterministic
Polynomial-time) hard problems [11], the majority of floorplanning algorithms rely on
metaheuristic approaches, such as Simulated Annealing (SA) and Genetic Algorithm (GA).
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Frantz et al. [12] proposed the use of genetic algorithms to address the 3D IC floorplanning
problem, aiming to discover a set of parameters that ensure good floorplan quality. Chen
and Yoshimura [13] used extended Sequence Pairs (SP), specifically Partition Sequence
Pairs (P-SP), to represent 3D floorplans. They proposed a simulated annealing-based fixed-
outline 3D IC floorplanning algorithm and demonstrated that the number of configurations
for multilayer layouts is fewer than for 2D layouts. Xu et al. [14] proposed a two-stage
approach combining an ant colony system algorithm and SA for handling 2D and 3D IC
floorplanning with fixed-outline constraints. Guler and Jha [15] proposed the first simulated
annealing-driven hybrid monolithic 3D IC floorplanner, which characterized different
monolithic implementations of the OpenSPARC T2 processor core and compared their
area, wirelength, power consumption, and thermal effects. Zhu et al. [16] proposed a two-
stage 3D floorplanning method based on SA. The first stage focuses on layer assignment,
while the second stage concentrates on optimizing the area and wirelength. It separates
layer assignment from the optimizing area and wirelength, without considering their
correlation, inevitably leading to suboptimal solutions. Shanthi et al. [17] proposed a
three-stage 3D floorplanning algorithm based on GA and SA, with layer assignment, intra-
layer floorplanning, and inter-layer floorplanning being conducted in each of the three
stages. Lin et al. [18] proposed a thermal-aware floorplanning and TSV-planning method
for mixed-type modules in a fixed-outline 3D IC. Kadambarajan et al. [19] proposed a
GPU implementation of thermal-aware 3D IC floorplanning, optimizing TSV count, area,
wirelength, and thermal effects. Meitei et al. [20] proposed a rapid 3D IC floorplanning
method incorporating thermal management for hard macros, utilizing a genetic algorithm
comprising the best combination of crossover and mutation operations to determine the
optimal solution for design variables. Guan et al. [21] proposed a rapid 3D IC floorplanning
method incorporating thermal management for hard macros, utilizing a genetic algorithm
comprised of the best combination of crossover and mutation operations to determine the
optimal solution for design variables.

However, these methods fail to achieve performance levels comparable to human ex-
pertise, leaving significant room for improvement in both wirelength and area optimization.
With decreasing feature sizes and increasing performance demands, these technologies face
enormous challenges when applied to modern chips.

In recent years, some studies have applied machine learning methods to solve floor-
planning problems. He et al. [22] explored the potential of acquiring local search heuristics
through a learning mechanism. Specifically, they train an agent using a novel deep Q-
learning algorithm to navigate the search space by selecting neighboring solutions at each
step while minimizing reliance on prior human knowledge. Similarly, Xu et al. [23] em-
ployed a comparable strategy but utilized a distinct representation learning technique and
reinforcement learning algorithm. Their agent, composed of GraphSAGE Networks, is
trained via the advantage actor–critic approach to determine the probability of accepting
or rejecting neighboring solutions. In Noah’s method [24], a proximal policy optimization
agent iteratively optimizes the position of each block. Hypergraph convolution networks
are employed for graph representation learning, and an innovative dot-product structure is
introduced to handle large discrete action spaces, accommodating diverse states and actions
across different netlist circuits. However, they are all 2D works, and machine learning
methods have not yet been applied to 3D floorplanning.

In this paper, we focus on discussing the 3D floorplanning problem with the stacking
methodology of F2F bonded. In the problem, we aim to optimize at least three aspects
including area, wirelength, and ITV count. Traditional approaches often utilized linear
weighted sums to consolidate multiple optimization objectives into one, neglecting non-
linear relationships and interactions among these objectives. This approach complicates
addressing conflicts between objectives. Moreover, as optimization effectiveness signifi-
cantly relies on weight selection, considerable trial and error is necessary to identify suitable
weights. In the article [25], we frame 2D floorplanning as a Multi-Objective Optimization
(MOO) problem and propose a reinforcement learning-assisted Multi-Objective Simulated
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Annealing (MOSA) method to address this issue. Experimental results demonstrate that
the multi-objective optimization approach facilitates synergistic optimization of area and
wirelength. In this paper, we aim to apply the MOSA method to the task of 3D floorplanning.

The main contributions of this paper can be summarized as follows:

• Three-dimensional floorplanning is set as a multi-objective optimization problem and
applies a MOSA method to optimize area, wirelength, and via count. By generating
neighboring solutions through random perturbations and exploring the solution
space, heuristic decision criteria are formulated based on the dominance relationship
of solutions.

• The heuristic search process is divided into two stages. In the first stage, all objec-
tives including area, wirelength, and via count are optimized synchronously. Both
inter-layer and intra-layer perturbations are performed simultaneously. Inter-layer
perturbations encourage the algorithm to spontaneously explore layer assignment
schemes, enabling them to better adapt to area and wirelength optimization. In the
second stage, only intra-layer perturbations are retained, without adjusting the layer
assignment scheme, focusing solely on optimizing area and wirelength.

• The test results on the GSRC [26] benchmark indicate that compared to other similar
studies, the method proposed in this paper achieves more favorable outcomes in terms
of area and wirelength.

2. Background
2.1. Three-dimensional Floorplanning

The input for floorplanning consists of a set of functional blocks and their intercon-
nections in the netlist. The task of 3D floorplanning is to select the layers for placing these
blocks and determine their positions on that layer to optimize area utilization, approximate
wirelength, and the number of ITVs. The basic description of the 3D floorplanning problem
is as follows:

Assume there is a set of block collections B = {bi | 1 ≤ i ≤ n}, where each block bi has
specified width wi and height hi. Simultaneously, given a netlist N = {netj | 1 ≤ j ≤ m},
each net describes the connection relationships among blocks, represented as a set of block
collections. The objective is to find a reasonable floorplan, assigning tiers ti and coordinates
(xi, yi) to each block bi, ensuring compliance with the two constraints. The first is the
non-overlapping constraint. There should be no overlapping regions between all blocks.
The second is fixed-outline constraint. All blocks should be placed within the fixed-outline.
The fixed-outline is predefined, and its width and height are calculated according to the
following formula:

W0 =
√
(1 + γ)(A/l)λ, H0 =

√
(1 + γ)(A/l)/λ,

where, λ is the desired aspect ratio, l is the number of layers, A is the sum of the areas of
all blocks, and γ is the maximum white space ratio. The white space ratio indicates the
proportion of blank areas to the entire floorplan area, and the maximum white space ratio
is the main criterion for setting the fixed outline size.

Then, there are two objectives that need to be optimized:

• Minimize via count. In 3D IC with F2F stacking, the number of layers is 2 (l = 2). If a
net spans both two layers, it requires an ITV.

• Minimize Half-Perimeter Wirelength (HPWL). HPWL model [11] is the most commonly
used approximation for evaluating circuit wirelength. Its expression is as follows:

HPWL = ∑
netj

[(xmax − xmin) + (ymax − ymin)], (1)

where xmax denotes the maximum x-coordinates of all the pins involved in a net,
and similar meanings apply to xmin, ymin, and ymax.
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Figure 2 shows the concept of the HPWL model. Assume a net consists of four blocks:
m, n, k, and p, where m, n are on the first layer, and k, p are on the second layer. According
to the block coordinates, we construct the corresponding bounding box of each net as
shown by the dashed lines. The HPWL of the net equals (xp − xm) + (yp − ym).

Figure 2. HPWL model.

In order to represent 3D structures of floorplans, researchers have employed various
approaches, with some utilizing an array of 2D representations to depict 3D structures for
3D floorplanning purposes. Examples include the multi-layer BSG (Bounded Slice-line
Grid) [27] and Partitioned Sequence Pair [28], where each 2D representation corresponds
to a floorplan of a single tier. Alternatively, other researchers have extended existing
2D representations to represent genuine 3D structures. For instance, Yamazaki et al. [29]
employed the sequence three times, Cheng et al. [30] utilized the 3D slicing tree, and Ma
et al. [31] introduced 3D-CBL (Corner Block List) for encoding 3D structure topologies.
However, these authentic 3D representations lead to a significant increase in the number of
possible floorplan configurations, resulting in a high degree of redundancy that undermines
efficiency. In this paper, P-SP is adopted as the representation for the floorplan structure.

P-SP is an extension of the well-studied sequence pairs [11] used to represent 2D
floorplans. An SP can be represented as a tuple (X, Y), where X and Y are two ordered
sequences. In general, the sequence pair imposes the following relationships between each
pair of blocks:

(< . . . bi . . . bj . . . >,< . . . bi . . . bj . . . >) ⇒ bi is left to bj,

(< . . . bj . . . bi . . . >,< . . . bi . . . bj . . . >) ⇒ bi is below bj.

Given an SP, the block packing can be computed by applying the well-known longest
path algorithm for the vertex-weighted directed acyclic graph [11]. Its computational time
complexity is O(n2). Later, Tang et al. [32] proposed a fast longest common subsequence
algorithm, which reduces the time complexity of transforming SP into a planar graph to
O(n log log n). Therefore, we adopt the latter.

One sequence pair can generate multiple partitioned sequence pairs, and each sub-
sequence pair in the P-SP represents a floorplan of the corresponding layer. The difference
is that the number of blocks in these sub-sequence pairs is variable. An example of the P-SP
is shown in Figure 3. Specifically, for the floorplanning of two layers, P-SP contains 2 sets
of sequence pairs: (X1, Y1), (X2, Y2).
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Figure 3. The block position allocation corresponding to the P-SP (< 1, 3, 2 >,< 1, 2, 3 >), (< 5, 4 >,
< 4, 5 >).

2.2. Multi-Objective Optimization

MOO is a specialized field dedicated to addressing optimization problems charac-
terized by multiple conflicting objectives [33]. In contrast to traditional single-objective
optimization, which focuses on minimizing or maximizing a single objective function, MOO
aims to identify a set of solutions that represent a compromise among conflicting objectives.

Let X denote the decision variable space, Y represent the objective space, and fi : X →
R denote the i-th objective function. In the context of minimization problems, the following
principles are considered:

• Pareto Dominance. Given two solutions x1 and x2, if x1 is at least as good as x2 in all
objectives and strictly better in at least one objective, then x1 dominates x2, denoted as
x1 ≺ x2. The dominance relation is defined as

x1 ≺ x2 ⇔ ∀i, fi(x1) ≤ fi(x2) ∧ ∃j, f j(x1) < f j(x2).

• Pareto Front. The Pareto Front (PF) is the set of solutions in the decision variable
space that are not dominated by any other solution. This represents a collection
of different balanced solutions where no solution is superior in all objectives. It is
formally expressed as

PF = {x ∈ X | ∄x′ ∈ X, x′ ≺ x}.

• Diversity and Balance. MOO aims to find a set of solutions that form a balance in the
objective space. Let F(x) = [ f1(x), f2(x), ..., fk(x)] denote the vector of objectives for
solution x. The objective is to find a set of non-dominated solutions that are widely
distributed in the objective space, representing the Pareto Front.

• Hypervolume Indicator. For a given set of points P on the Pareto front, the hypervol-
ume indicator HI(P; r) is the Lebesgue measure of the hypervolume covered by all
boxes with points from P as upper corners and the reference point r as the lower corner.

• Methods. Dealing with MOO problems involves various traditional methods, in-
cluding Pareto-based methods and metaheuristic approaches. MOSA is a heuristic
algorithm suitable for MOO problems. Introducing the idea of SA [34] into the field of
MOO has led to various approaches of MOSA [35–37].

In comparison to single-objective optimization, MOO provides a more comprehensive
understanding and balance among multiple objectives, thus improving the overall perfor-
mance of solutions. Moreover, MOO facilitates the identification of a Pareto front within
the design space, resulting in a diverse range of solutions, offering numerous trade-off
possibilities, and enhancing flexibility in decision making.
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3. Methods
3.1. Objective Function

There are four cost functions defined. First, the wirelength cost function directly
utilizes the HPWL model [11], so its expression is the same as Equation (1):

min wire = ∑
netj

[(xmax − xmin) + (ymax − ymin)].

Second, for each layer, an area cost is set, and they are defined using the same method
of 2D floorplanning [38]. Thus, the area cost for the t-th layer is represented as

act = EW + EH · λ + C1 · max(EW , EH · λ) + C2 · max(Wt, Ht · λ),

in which EW = max(Wt − W0, 0) and EH = max(Ht − H0, 0) represent the excessive width
and height of the floorplan. Their visual representation is depicted in Figure 4. Wt and
Ht represent the width and height of the t-th layer floorplan. C1 and C2 are user-defined
constants, with C1 generally greater than C2. Drawing from the experience of [38], we
set C1 = 1 and C2 = 1/16. By employing this formula, we not only penalize excessive
width and height but also ensure the effectiveness of the area cost when integrated with
other objectives.

Figure 4. Schematic diagrams of excessive width and excessive height.

In this work, we set the aspect ratio λ to 1.0 and the white space ratio γ to 12%.
After computing the area cost for each layer, their average is used to represent the total area
cost function:

min ac =
1
2
(ac1 + ac2).

The average is taken here instead of the maximum because optimization on any layer
needs to reflect on the area cost function.

Third, the via cost function is defined as the total number of required ITVs:

min via = #ITV.

Fourth, to achieve a good area, the distribution of block areas across layers should be
relatively balanced. Therefore, balance cost is necessary as it helps prevent the acceptance
of poor layering schemes. We denote the sum of the areas of blocks located on the t-th layer
as At. Then, the balance cost function is defined as follows:

min balan = |A1 − A2|/A.
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3.2. Overall Flow

In this paper, heuristic search is used to find the optimal solution. In order to explore
a better floorplan, the neighboring solution is generated based on the current solution by a
random perturbation. Given the orientation of all blocks and the P-SP as (X1, Y1), (X2, Y2),
the following five perturbations are defined, including four intra-layer perturbations and
one inter-layer perturbation:

1. In any layer t, randomly swap a pair of blocks in either sequence Xt or Yt.
2. In any layer t, randomly swap the same pair of blocks in both sequences Xt and Yt.
3. In any layer t, randomly select a block and place it in a new position in both sequences

Xt and Yt.
4. In any layer t, randomly select a block and rotate its orientation by 90 degrees.
5. Select a block in any layer t and place it in a new random position on another layer.

This is the only type of inter-layer perturbation. To avoid excessively large jumps in
a single perturbation, we restrict the selection of blocks within a defined range. We
ensure that the increase in ITV count in a single perturbation does not exceed 1%,
and it does not result in At being less than 0.475A.

For each perturbation generated, calculations are required, including transforming
P-SP into a floorplan and computing the cost function. In the computation of the cost
function, the majority of time is spent on calculating the HPWL. Assuming there are m
nets in the design, with an average of k pins per net, the time complexity for calculating
the semi-perimeter is O(mk). Meanwhile, the time complexity of transforming P-SP into a
floorplan is O(n log log n), where n is the number of blocks. Therefore, the time complexity
for computing one disturbance is O(n log log n + mk). In the benchmark dataset utilized in
this article, it holds that k < 3.

The overall flow is depicted in Figure 5. For the initial solution, a clustering method
called Modified Hyperedge Coarsening (MHEC) [39] is employed for initial layer parti-
tioning, then P-SP and the orientation of all blocks are randomly generated. MHEC is a
clustering method. It describes blocks and their connectivity relationships using hyper-
graphs, allowing closely connected blocks to cluster together and complete the initial layer
allocation. After initializing the solution, the MOSA method is applied in two stages. In the
first stage, we enable all the perturbations to simultaneously optimize area, wirelength,
and ITV count. Good layer partitioning schemes will be discovered during the search
process. In the second stage, inter-layer perturbations are disabled, and only intra-layer
perturbations are retained. During this stage, the layer partitioning scheme has been
determined, and the focus shifts to optimizing area and wirelength.

Figure 5. Overall flow.
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3.3. Multi-Objective Simulated Annealing

After generating neighboring solutions through perturbation, MOSA criteria are
employed to determine how to update the solutions. The MOSA setting in this paper is a
variant of the setting in [25], primarily selecting various strategies based on the dominance
relationship of solutions. This diversity in strategies increases the flexibility of exploring
the solution space.

In the decision-making process, if the neighboring solution is a new Pareto solution,
it is accepted, thereby updating the PF. Alternatively, if the new solution fails to qualify
as a new Pareto solution, three cases are considered based on the dominance relationship
between the neighboring solution and the current solution:

• The neighboring solution dominates the current solution. In this case, the neighboring
solution is accepted.

• The neighboring solution and the current solution are mutually non-dominated. In this
case, the neighboring solution is accepted with a probability:

p =
1

1 + exp(−∆HV/temp)
,

where ∆HV represents the hypervolume improvement of the neighboring solution
relative to the current solution, and temp represents the annealing temperature, which
decreases gradually as the search process progresses. It is similar to a sigma function,
where the acceptance probability is 1/2 when ∆HV equals 0, and as ∆HV increases,
the acceptance probability also increases. When the temperature is low enough,
for ∆HV greater than 0, the acceptance probability approaches 1, and for ∆HV less
than 0, the acceptance probability approaches 0.

• The neighboring solution is dominated by the current solution. In this case, the neigh-
boring solution is refused.

Furthermore, in the event that the PF remains unchanged for a long time, a randomly
chosen solution from the PF is updated as the current solution. The entire MOSA process is
illustrated in Figure 6.

Next, we introduce the definition of the hypervolume improvement ∆HV. To facilitate
the computation of hypervolume, normalize all the four cost functions, obtaining four
maximization objectives:

Ac =
W0

ac
, Wire =

m(W0 + H0)

wire
,

Via =
m − via

m
, Balan = 1 − balan,

where m is the number of nets. This normalization method transforms all minimization
costs into maximization objectives. Among them, area and wirelength cost are normalized
in inverse proportion, amplifying the change in costs at lower states. It is beneficial for
exploring higher quality solutions when the solution is good.

For a given solution s, the hypervolume HV(s; r) is defined as the Lebesgue measure
of the hyper-volume covered by the box with point s as upper corners and the reference
point r as the lower corner. Especially, choosing the origin as the reference point r, then
HV(s; r) can be represented as

HVs = Ac ∗ Wire ∗ Via ∗ Balan.

HV is expressed as the product of every objective. It is fair to each objective, and the
improvement rate of any objective is directly reflected in HV. Geometrically, HV is a high-
dimensional feature of the four objectives, which collects information from all objectives
without relying on the adjustment of weights.
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Figure 6. MOSA process.

Then, the improvement of HV from the current solution to the neighboring solution
can be defined as

∆HV = HVneighboring − HVcurrent.

Obviously, when the neighboring solution dominates the current solution, ∆HV > 0;
when the current solution dominates the neighboring solution, ∆HV < 0.
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4. Results

In the field of 3D floorplanning, we use the commonly used [13,14,18,19] three bench-
mark datasets in public available GSRC benchmark: n100, n200, and n300. The compre-
hensive details of these datasets are elaborated on in Table 1. During the computation of
HPWL, all terminals are projected to the edges of the floorplan, ensuring their placement at
the minimum Manhattan distance position.

Table 1. Benchmarks.

Circuit # Blocks # Terminals # Nets

n100 100 334 885
n200 200 564 1585
n300 300 569 1893

In our method, using n to represent the number of blocks, the steps for the first MOSA
stage is set as n ∗ 200, where inter-layer perturbations account for approximately 1/5.
And the search steps for the second MOSA stage are set as n ∗ 1000. In the experiments, our
method achieved a 100% success rate in satisfying the fixed-outline constraint and obtained
favorable area and wirelength. The visualization of the test results on n100 and n200 is
shown in Figure 7.

Figure 7. Visualization example of test results on GSRC benchmark. (a) n100; (b) n200.
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Next, we will compare our test results with those of other similar methods. Firstly,
to demonstrate the superiority of 3D floorplanning, we present the test results of the
MOSA method in a 2D floorplanning work [25], which shares similar MOSA criteria with
our work but does not consider layering factors, focusing solely on optimizing area and
wirelength. Note that this is for single-layer floorplanning, which means l = 1. Additionally,
the maximum white space rate γ is set to 10%. We name this method as “2D-MOO”.

Additionally, we implement a single-objective optimization 3D floorplanning method [16].
In this method, the overall cost is described as the weighted sum of specific cost functions,
and a single-objective SA method is used for the heuristic search. The heuristic search
process is also divided into two stages, but they separate layer allocation from area and
wirelength optimization. In the first stage, they only optimize via count and area bal-
ance, while in the second stage, they optimize area and wirelength. For fair comparison,
the search steps in the first stage are set to n ∗ 40, roughly equivalent to the number of
inter-layer perturbations in our method. Additionally, the search steps in the second stage
are set to n ∗ 1160 to ensure that the total number of search steps is equal. We chose this
method for comparison because both our method and this method are two-stage heuristic
search methods, and both use P-SP to represent floorplans. The difference lies in its use of
single-objective optimization and the separate optimization of layer assignment from the
optimization of area and wirelength. It helps to underscore the value of the contributions
made in this paper. We name this method as “3D-SOO” (3D Single-Objective Optimization).

Finally, we implement a multi-objective optimization scheme with priority layer par-
titioning. In this scheme, a hypergraph partitioning tool, hMETIS [40], is used to generate
the initial layer allocation scheme. The hMETIS tool implements a hypergraph partitioning
method and is a commonly used open-source partitioning tool in the circuit domain. It can
find high-quality partitioning schemes without violating area balance, ensuring minimal
connectivity between different partitions. In addition to replacing the initial layering with the
hMETIS tool, the first MOSA stage is also eliminated, and the search steps in the second stage
are set to n ∗ 1160, roughly equivalent to the total number of intra-layer perturbations in our
method. We name this method “3D-MOOHL” (3D MOO hMETIS Layering).

We name our original method “3D-MOOFP” (3D MOO Floorplanning). All the
detailed test results are shown in Table 2, in which “Succ” denotes the success rate in
satisfying the fixed-outline constraint, and HPWL is measured in micrometers (µm). All
results are obtained by averaging the outcomes of 10 independent test runs.

Table 2. Test results.

2D-MOO [25] 3D-SOO [16] 3D-MOOHL 3D-MOOFP

Succ HPWL Succ HPWL #ITV Succ HPWL #ITV Succ HPWL #ITV

n100 100% 221,576 100% 180,681 145 100% 175,125 150 100% 173,092 141
n200 100% 405,712 70% 329,488 302 100% 321,034 283 100% 319,528 293
n300 100% 566,190 60% 457,464 379 100% 451,628 321 100% 449,872 395

When setting fixed-outline, the maximum white space rate γ for single-layer 2D
floorplanning is 10%, while for double-layer 3D floorplanning, it is set at 12%. Therefore,
compared to 2D floorplanning, 3D floorplanning optimizes approximately 49% area. Fur-
thermore, all 3D methods achieved better wirelength compared to 2D methods. Specifically,
3D-MOOFP showed an average improvement of approximately 21%.

The 3D-SOO [16] performs overall worse in all three optimization objectives compared
to the other two 3D methods. In terms of success rate, only n100 achieves 100%. Regarding
wirelength, it lags behind across the board. In terms of via count, only n100 is better than
3D-MOOHL, and only n300 is better than 3D-MOOFP. In comparison with 3D-SOO [16], our
3D-MOOFP achieves an average improvement of about 3% in wirelength and achieves the
success rate of 100% for n200 and n300 datasets in terms of area. The visual comparison of
tests on n300 is shown in Figure 8. It is evident that there is less empty space in our method.
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The 3D-MOOHL performs as well as 3D-MOOFP in terms of area, achieving a 100%
success rate. However, it slightly lags behind 3D-MOOFP in terms of wirelength opti-
mization. Regarding via optimization, it outperforms 3D-MOOFP overall, only slightly
underperforming on the n100 dataset.

In summary, 3D-MOOFP exhibits the most outstanding overall performance. Our
method has achieved a success rate of 100% in 3D floorplanning and is leading in optimizing
wirelength. Additionally, it also exhibited the best performance in via count optimization
for the n100 dataset.

Figure 8. The visual comparison of tests on n300. (a) 3D-MOOFP; (b) 3D-SOO.

5. Discussion and Conclusions

We have conducted the following analysis of the test results:

• Due to the 3D stacking technology, 3D approaches have achieved significant advance-
ments in both area and wirelength optimization compared to the 2D method [25].

• Compared to 3D-SOO [16], 3D-MOOFP leads across all objectives overall, benefiting
from the advantages of multi-objective optimization. It only falls behind in optimiz-
ing via count for n300, which might be attributed to sacrifices made for area and
wirelength optimization.

• Compared to 3D-MOOHL, 3D-MOOFP excels across all objectives in wirelength
optimization. It benefits from the synergistic optimization of all objectives in the
first MOSA stage. When employing the hMETIS [40] tool for layer partitioning, it is
restricted to optimizing via count solely under the condition of relatively balanced
area, without taking into account the potential impact of this partitioning scheme
on area and wirelength. In contrast, our approach enables the consideration of all
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optimization objectives simultaneously. This allows us to identify layer partitioning
schemes that are more conducive to wirelength optimization.

• In terms of via count optimization, the performance difference between the 3D-
MOOFP and 3D-MOOHL methods is quite noticeable. It may be attributed to fun-
damental differences in the partitioning approach. In 3D-MOOHL, a professional
partitioning tool is for layer assignment, which may be more proficient in via count
optimization. In 3D-MOOFP, layer assignment is explored step by step through a
heuristic approach, hence it performs well only on datasets with simpler structures.
For the entire floorplanning approach, we provide an effective approach.

In conclusion, we introduce a method that simultaneously conducts layer partitioning
and multi-objective collaborative optimization during the optimization process to address
the F2F 3D floorplanning problem. We explore neighboring solutions by intra-layer or inter-
layer perturbations and then determine strategies based on the dominance relationship of
solutions, achieving synergistic optimization of area, wirelength, and ITV count. The test
results on the publicly available GSRC benchmark demonstrate that our method effectively
addresses the 3D floorplanning problem. Multi-objective optimization facilitates synergistic
optimization among objectives, leading to excellent solutions.
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PF Pareto Front
FOFP Fixed-Outline Floorplanning
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HPWL Half Perimeter Wirelength
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MOSA Multi-Objective Simulated Annealing
MHEC Modified Hyperedge Coarsening
SOO Single-Objective Optimization
MOOHL Multi-Objective Optimization hMETIS Layering
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