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Abstract: Being a vital component of electrical power systems, transformers significantly influence
the system stability and reliability of power supplies. Damage to transformers may lead to significant
economic losses. The efficient identification of transformer faults holds paramount importance for
the stability and security of power grids. The existing methods for identifying transformer faults
include oil chromatography analysis, temperature assessment, frequency response analysis, vibration
characteristic examination, and leakage magnetic field analysis. These methods suffer from limitations
such as limited sensitivity, complexity in operation, and a high demand for specialized skills. In this
paper, we propose a method to identify external short-circuit faults of power transformers based on
fault recording data on short-circuit currents. It involves analyzing the current signals of various
windings during faults, extracting appropriate features, and utilizing a classification algorithm based
on a support vector machine (SVM) to determine fault types and locations. The influence of different
kernel functions on the classification accuracy of SVM is discussed. The results indicate that this
method can proficiently identify the type and location of external short-circuit faults in transformers,
achieving an accuracy rate of 98.3%.

Keywords: power transformer; external short-circuit fault; fault identification method; SVM

1. Introduction

As a pivotal core component of power systems, transformers play a crucial role in
the transmission of electrical energy. Transformer malfunctions may lead to the risk of
power outages and safety hazards, resulting in economic losses. Therefore, the proper
implementation of transformer fault identification is highly important in ensuring the stable
operation of power systems, mitigating losses, and optimizing equipment maintenance [1].

According to the different state quantities, the existing fault identification methods for
transformers mainly focus on the analysis of dissolved gases in oil, temperature, vibration
characteristics, leakage magnetic field, and so on [2–5]. An imprecise probability-based ap-
proach for transformer fault identification has been proposed in the literature [6], utilizing
the imprecise Dirichlet model and naive credal classifier. In [7], a novel fault identification
method was introduced, leveraging a hypersphere multi-class support vector machine
(HMSVM) and Dempster–Shafer (D–S) evidence theory (DET). Additionally, Ref. [8] system-
atically explored and compared interpretation methods for dissolved gas analysis (DGA),
encompassing both conventional and intelligent approaches. The authors of [9] introduced
a novel multi-input, multi-output polynomial neural network (PNN). Furthermore, in [10],
a new method for transformer fault identification was proposed, based on correlation
coefficient density clustering.

Huang [11] proposed that during transformer faults, there are unique heat distribu-
tions and characteristics. Building on this foundation, a new fault recognition solution
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based on the fault overlay method was suggested. The fault recognition capability was
achieved by training a convolutional neural network (CNN) model, leading to the suc-
cessful recognition of faults. In [12], machine learning was utilized to estimate hotspot
temperatures, facilitating thermal state monitoring. Transformer fault recognition was ulti-
mately achieved through a thermal anomaly detection algorithm. Cheng [13] established a
static aging failure model based on the winding hot spot temperature (HST), utilizing the
Weibull distribution and Arrhenius reaction law. The objective of this model was to assess
the failure rates and life expectancy of transformers by characterizing the aging mecha-
nism of transformers and estimating the winding HST. The authors of [14] introduced a
fault identification method based on the inversion of transformer top oil temperature rise.
Transformer fault detection was accomplished in [15] by combining advanced thermal
modeling and thermography with image processing methods. This involved comparing
top oil and radiator temperatures. Furthermore, in [16], the internal temperature variations
of transformers were investigated, leading to the proposal of a sensor-based online decision
prediction fault identification method.

A new method for transformer fault identification was proposed in [17]. This method
entailed establishing a mathematical model to address the transformer vibration phe-
nomenon and presenting a unique approach for analyzing the vibration spectrum. The
authors of [18] presented a unique approach to transformer fault identification for analyz-
ing the vibration characteristics of windings under various fault conditions. The vibration
characteristics of transformers under the influence of load current were investigated in [19],
leading to the proposal of a novel approach for transformer fault identification. Addition-
ally, the authors of [20] suggested collecting the vibration signal of transformers under
fluctuating operating conditions as the characteristic quantity. These features were then
processed using the linear discriminant analysis (LDA) algorithm to identify faults.

The authors of [21] proposed the utilization of the magnetic field leakage waveform at
the measuring point of the simulated transformer winding, coupled with a convolutional
neural network classification model, for identifying transformer faults. Distinctive changes
in magnetic flux leakage during fault conditions were identified as representative features
through the modeling and analysis of transformers in [22]. In [23], the online analysis of
transformer magnetic flux leakage served as the basis for identifying transformer faults.
For transformer fault location identification, the authors of [24] detected an asymmetric
structure in the distribution of magnetic flux leakage.

The analyses above indicate that the existing methods for transformer fault identifica-
tion primarily focus on gas analysis, temperature assessment, vibration analysis, magnetic
flux leakage, and similar factors. Research on fault identification based on current char-
acteristics during short-circuit processes is relatively limited. In this paper, we propose
a method for identifying external short-circuit faults in power transformers based on the
fault recording data. This method analyzes the short-circuit current signals of each phase,
extracts reasonable feature quantities, and employs the support vector machine (SVM)
classification algorithm to determine fault types. Due to the limited availability of actual
fault recording data, the classification algorithm may lack the required sample size. In
this study, a “field-circuit” coupling model is developed according to a specific power
transformer. The short-circuit currents for various external short-circuit fault conditions
are computed, serving as data samples. The proposed method’s effectiveness is validated
using test samples and fault recording data. This research provides a feasible solution
for the precise identification of external short-circuit faults using electrical quantities. It
contributes to enhancing the safety and stability of power systems and offers valuable
theoretical support for practical applications in electrical engineering.

The rest of this paper is structured as follows. In Section 2, the SVM-based fault
identification method is introduced. In Section 3, the data collection procedure is presented,
including the establishment and verification of the “field-circuit” coupling model and
the computation of short-circuit currents. In Section 4, the algorithmic process of the
fault identification method is outlined and the impact of different kernel functions on
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identification accuracy is discussed. The results of fault identification are described in
Section 5. In Section 6, the paper is summarized.

2. Fault Identification Method Based on SVM

Artificial intelligence algorithms have become a prominent research focus in fault iden-
tification. Numerous algorithms such as decision trees, Bayes classifiers, neural networks,
and SVM have been widely employed in fault identification. SVM is rooted in statistical
learning theory, operating on the principle of structural risk minimization. This principle
facilitates the derivation of decision rules based on limited sample training, ensuring mini-
mal errors even when applied to independent test sets. Due to its outstanding performance
in high-dimensional space and its robust fault classification ability, this paper adopts a
multi-class SVM algorithm for external short-circuit fault identification in transformers.

2.1. Basic Principle of SVM

A multi-class SVM involves a dataset comprising N samples, represented as
X = {(x1, y1), (x2, y2), · · · , (xN, yN), xn ∈ Rn, yn ∈ (1, 2, · · · , M)}, where yn represents
the class label for each sample and M represents the number of classes in the sample data.
The goal of the multi-class SVM is to find hyperplanes defined by ωTx + b = 0, where ω
denotes the normal vector to the hyperplane and b signifies the distance from the origin
to the hyperplane. These hyperplanes should correctly separate the N samples into M
classes. This scenario is referred to as linear separability. However, in practice, the obtained
samples are often not linearly separable. Therefore, a kernel function, K(xi, xj), is intro-
duced to map these N samples into a higher-dimensional space. Each sample, xi, in this
higher-dimensional space, is represented as a feature vector, φ(xi). The decision function,
f (x), is then applied to correctly classify these samples.

The decision function can be expressed as follows:

f (x) = ωT φ(x) + b (1)

The kernel function is defined as follows:

K(xi, xj) = φ(xi)
T φ(xj) (2)

For training samples that do not satisfy the constraint, slack variables, ξi, and a penalty
factor, c, are introduced to measure the constraint violation degree for individual samples
in the training set. The optimal objective function and constraints are as follows: min

ω,b,ξ

(
1
2 ωTω + c

N
∑

i=1
ξi

)
s.t. yi(ω

T φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0 i = 1, 2, . . . , N
(3)

By introducing Lagrange multipliers, αi, the dual form of the SVM can be obtained
as follows: 

max
α

(
− 1

2

N
∑

i=1

N
∑

j=1
αiαjyiyjK(xi, xj) +

N
∑

i=1
αi

)
s.t. 0 ≤ αi ≤ c i = 1, 2, . . . , N

N
∑

i=1
αiyi = 0

(4)

The corresponding optimal classification function can be obtained as follows:

f (x) = sgn(
N

∑
i=1

αi
∗yiK(xi, xj) + b∗) (5)
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Commonly employed kernel functions encompass the linear kernel (LN), polynomial
kernel (PL), radial basis function kernel (RBF), and sigmoid kernel (SIG). The definitions of
each kernel function are as follows:

K(xi, xj) = xi
Txj (6)

K(xi, xj) = (γxi
Txj + r)

p
, γ > 0 (7)

K(xi, xj) = exp
(
−γ
∥∥xi − xj

∥∥2
)

, γ > 0 (8)

K(xi, xj) = tanh(vxT
i xj + c) (9)

2.2. Parameter Optimization Method

The key to using SVM for transformer fault identification is to obtain the corresponding
parameters in the decision function, f (x). The model exhibits excellent accuracy on both the
training and test sets when the parameters are within a reasonable range.

If the model demonstrates high accuracy on the training samples, but low accuracy on
the testing samples, it is overfitting. When the model’s accuracy is low on both the training
and testing samples, it is underfitting.

To improve the accuracy of fault identification, this paper employs K−fold cross-
validation (K−CV) to evaluate the performance indicators of the classification model. This
approach helps to find the optimal parameter combination. K−CV involves dividing the
original data sample into K equal parts. During each iteration, K−1 parts are used for
training and the remaining part is utilized for testing. After each validation, an accuracy
score representing the classifier’s performance is obtained. This process is repeated K
times, ensuring that each part of the dataset serves as the validation set once. The overall
performance of the classifier under a specific set of parameters in K−CV is then represented
by the average of the K accuracy scores. When the highest accuracy score is obtained,
its corresponding parameters are considered the optimal parameter combination for the
classification model. This study employs 3-fold cross-validation (Figure 1).
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3. Data Collection

Existing fault identification methods overly rely on on-site operation and experimental
data. When on-site data are insufficient, fault identification is constrained and may struggle
to fulfill its purpose. This limitation also affects its effectiveness in giving early warnings
of transformer faults. Therefore, we construct a finite element simulation model, using
an actual transformer, and verify its correctness. The model is used to simulate various
external transformer fault conditions, and the short-circuit currents are obtained as the
original data. This approach addresses the challenge of limited on-site data.

3.1. Establishment of Transformer Model

In this study, we use three actual power transformers as simulation objects. A field–
circuit coupling model of the transformer is established to calculate the short-circuit current.
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Figures 2 and 3 illustrate the structural model and the external circuit of the transformer,
respectively. The neutral points of the No. 1 and No. 2 units remain ungrounded, while
the No. 3 transformer’s neutral points are grounded at both high-voltage and medium-
voltage sides. The transformer windings include medium-voltage (MV) winding 1, voltage-
regulating (VR) winding, high-voltage (HV) winding, medium-voltage winding 2, and
low-voltage (LV) winding components. The high-, medium-, and low-voltage ratings are
220 kV, 115 kV, and 10.5 kV, respectively. Table 1 provides an overview of the electrical
parameters of the transformer, including the rated capacity, voltage, current, connection
group number, and the number of turns for each winding. Table 2 outlines the structural
dimensions of the transformer, encompassing the diameter and window height of the core,
center distance, yoke height, winding height, and the diameter range for each winding.
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Table 1. Electrical parameters of transformer.

Name Parameter Value Name Parameter Value

rated capacity (MVA) 240/240/80 HV winding turns 533
rated voltage (kV) 220/115/10.5 MV winding turns 280
rated current (kA) 0.63/1.2/4.4 LV winding turns 44

connection group number YNyn0d11 VR winding turns 64
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Table 2. Structural dimensions of transformer.

Name Parameter Value Name Parameter Value

core diameter (mm) 1200 MV winding 1 diameter (mm) 1040–1085
core window height (mm) 1800 VR winding diameter (mm) 975–990

center distance (mm) 2300 HV winding diameter (mm) 825–925
yoke height (mm) 1200 MV winding 2 diameter (mm) 730–775

winding height (mm) 1600 LV winding diameter (mm) 650–680

3.2. Verification of Transformer Model

To verify the correctness of the model, the B-phase grounding fault occurring on the
medium-voltage side is compared with the fault recording data. Figures 4 and 5 show the
comparison of the three-phase voltage and current of the medium-voltage side between
the simulated results and fault recording data.
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Figure 4 shows a noticeable reduction in the peak voltage of the fault phase and
little change in the peak voltages of the other two phases. The simulation results of the
medium-side voltage are highly consistent with the fault recording data. The simulation
results reveal significant increases in the peak values of the three-phase currents (Figure 5).
In particular, the peak current of phase B increased the most, reaching 5.8 kA, which
was 14 times higher than before the fault. In addition, the peak currents of phase A and
phase C reached 1.81 kA and 2.37 kA, which were 4.8 times and 6.6 times those before the
fault, respectively.
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The simulation results of three-phase currents also match well with the actual fault
recording data, and a detailed comparison is shown in Table 3. The current simulation data
before the fault are highly consistent with the recorded wave data, with an error of only
1.5%. After the fault, the current simulation data are slightly different from the recording
data, with a maximum error of 7.4%.

Table 3. Comparison of current simulation results and fault recording data.

Parameter Simulation
Results (kA)

Fault Recording
Data (kA) Error%

before fault
phase A current 0.393 0.387 1.5
phase B current 0.393 0.387 1.5
phase C current 0.393 0.387 1.5

after fault
phase A current 1.81 1.84 1.6
phase B current 5.8 5.45 6.4
phase C current 2.37 2.56 7.4

The good agreement between the above simulation results and the fault recording
data shows that the simulation model is accurate and feasible in simulating the external
short-circuit fault of the power transformer. Therefore, this simulation model is utilized
to simulate various external short-circuit fault conditions and generate current data as
original data for collection. In this study, typical external transformer short-circuit faults
are simulated, encompassing single-phase grounding fault (single-phase GF), two-phase
short-circuit fault (two-phase SCF), two-phase grounding fault (two-phase GF), and three-
phase grounding fault (three-phase GF), yielding 210 sets of current data for transformer
external short-circuit faults. In the subsequent analysis, 150 sets of data are used as training
samples and 60 sets of data serve as testing samples. The data set distribution is shown in
Table 4.

Table 4. Data set distribution.

Fault Type Number of
Total Fault Data

Number of
Testing Fault Data

Number of
Training Fault Data

HV-side single-phase GF 21 6 15
HV-side two-phase SCF 21 6 15
HV-side two-phase GF 21 6 15

HV-side three-phase GF 7 2 5
MV-side single-phase GF 21 6 15
MV-side two-phase SCF 21 6 15
MV-side two-phase GF 21 6 15

MV-side three-phase GF 7 2 5
LV-side single-phase GF 21 6 15
LV-side two-phase SCF 21 6 15
LV-side two-phase GF 21 6 15

LV-side three-phase GF 7 2 5

4. The Algorithm Flow and Impact of Kernel Functions on Identification Accuracy
4.1. Algorithm Flow of Transformer Fault Identification

The flowchart in Figure 6 illustrates the process of transformer fault identification
based on SVM. This process mainly consists of five steps:

(1) Extract features from all obtained fault data as training and testing samples. For each
short-circuit fault, the total variation rate of the peak currents on the HV side, MV
side, and LV side of the three phases are extracted separately, resulting in nine features
and forming a nine-dimensional feature vector. This feature vector corresponds to
φ(x) in Equation (1).
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(2) Use all training samples to train the fault-side classification model to establish high-
, medium-, and low-voltage fault classification models, which can determine the
fault side. For these three categories, labels 1, 2, and 3 are assigned, respectively,
corresponding to yi in Equations (3)–(5).

(3) Use HV-, MV-, and LV-side fault samples to train fault-type classification models,
respectively. Taking the MV side as an example, the MV fault-type classification
model can classify the input samples into MV single-phase GF, MV two-phase SCF,
MV two-phase GF, and MV three-phase GF.

(4) Use single-phase GF samples, two-phase SCF samples, and two-phase GF samples to
train fault-phase classification models, respectively. These models can determine the
fault phase.

(5) Input the external short-circuit testing samples into the fault-side, fault-type, and
fault-phase classification models in sequence to obtain the fault side, the fault type,
and the fault phase.
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In this paper, nine characteristic features are defined for each fault current data, and
the specific definition methods are as follows:

HA = |IHA−IHA+ |
IHA

+ |IHA−IHA− |
IHA

HB = |IHB−IHB+ |
IHB

+ |IHB−IHB− |
IHB

HC = |IHC−IHC+ |
IHC

+ |IHC−IHC− |
IHC

(10)

MA = |IMA−IMA+ |
IMA

+ |IMA−IMA− |
IMA

MB = |IMB−IMB+ |
IMB

+ |IMB−IMB− |
IMB

MC = |IMC−IMC+ |
IMC

+ |IMC−IMC− |
IMC

(11)
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LA = |ILA−ILA+ |
ILA

+ |ILA−ILA− |
ILA

LB = |ILB−ILB+ |
ILB

+ |ILB−ILB− |
ILB

LC = |ILC−ILC+ |
ILC

+ |ILC−ILC− |
ILC

(12)

In the definition of the above characteristic features, HA, HB, and HC represent the
total variation rate of the three-phase current peak values on the HV side; MA, MB, and
MC indicate the total variation rate of the three-phase current peak values on the MV side,
respectively; and LA, LB, and LC represent the total variation rate of the three-phase current
peak values on the LV side.

IHA represents the peak current of phase A on the HV side before the fault. IHA+ and
IHA− indicate the first positive and negative half-cycle peak currents on the HV side after
the fault, respectively. IHB, IHB+, IHB− and IHC, IHC+, IHC− represent the corresponding
variables of phase B and phase C on the HV side, respectively. IMA, IMA+, IMA−, IMB,
IMB+, IMB−, IMC, IMC+, IMC− and ILA, ILA+, ILA−, ILB, ILB+, ILB−, ILC, ILC+, ILC− represent the
corresponding parameters of the MV side and the LV side, respectively.

4.2. The Impact of Kernel Functions on Identification Accuracy

The SVM algorithm employs kernel functions to map input data into a higher-
dimensional space, making them linearly separable. Different kernel functions handle
data mapping in various ways, so the chosen kernel function should take into account
the attributes of the data and the nature of the problem. In this section, we analyze the
identification accuracy of four different kernel functions, including the LN, the PL, the RBF,
and the SIG, whose definitions are described in Section 2.1.

A total of 30 testing samples were used to discuss the influence of kernel functions.
Figure 7 depicts the influence of the four different kernel functions on identification ac-
curacy. The identification accuracies of the LN, the PL, and the RBF all reach 100% in
fault-side identification, while the performance of the SIG is relatively worse. In fault-type
identification, the PL and the RBF perform well, achieving an identification accuracy of
96.7%, while the other two kernel functions are slightly inferior. When identifying the fault
phase, all four kernel functions achieve a 96.7% identification accuracy. In general, the
identification accuracies of the PL and the RBF are higher than those of the other two kernel
functions. Due to the outstanding generalization ability and fewer parameter requirements,
the radial basis function kernel is adopted in this paper.
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5. Identification Results
5.1. Identification Results Based on Simulation Data
5.1.1. Fault-Side Identification Results

According to the fault identification flow shown in Figure 6, fault-side identification is
carried out first. The distribution of testing samples is presented in Table 5.

Table 5. The distribution of testing samples for fault-side identification.

Sample Labels 1 2 3

fault side HV side MV side LV side
number of testing samples 20 20 20

The fault-side identification results and confusion matrix are displayed in Figure 8.
It can be observed that the identification accuracy can reach 100% when determining the
fault side on the HV side, MV side, and LV side.
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5.1.2. Fault-Type Identification Results

The second step is to identify the fault type. The distribution of testing samples for
fault-type identification is displayed in Table 6, with the identification results depicted
in Figure 9. The identification accuracy for fault types on the HV side is 95%, and the
identification accuracy of the MV and LV side can reach 100%.

Table 6. The distribution of testing samples for fault-type identification.

Sample Labels 1 2 3 4

fault type Single-phase GF Two-phase SCF Two-phase GF Three-phase GF
number of testing

samples of HV side 6 6 6 2

number of testing
samples of MV side 6 6 6 2

number of testing
samples of LV side 6 6 6 2
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For the high-voltage side, the detailed fault-type identification results and confusion
matrix are shown in Figure 10. The identification performance is good when recognizing
single-phase GF, two-phase GF, and three-phase GF types. However, during the identifica-
tion of two-phase SCF, one sample is misclassified as a single-phase GF.
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5.1.3. Fault-Phase Identification Results

The third step is to identify the fault phase. Taking the two-phase SCF of the HV side as
an example, Table 7 shows the distribution of testing samples for fault-phase identification.

Table 7. The distribution of testing samples for fault-phase identification.

Sample Labels 1 2 3

fault phase A/B Two-phase SCF A/C Two-phase SCF B/C Two-phase SCF
number of testing samples 2 2 2

The detailed fault-phase identification results and confusion matrix are shown in
Figure 11. Only one of the six samples has an incorrect identification result: one of the
samples with a B/C two-phase SCF is judged as an A/C two-phase SCF.
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Figure 12 illustrates the fault-side, fault-type, and fault-phase identification accuracies
of all tested samples. One can see that the fault-side identification accuracy is 100% and the
fault-type and fault-phase identification accuracies are both 98.3%. The total identification
accuracy reaches 98.3%, verifying the effectiveness of the SVM-based fault identification
method proposed in this paper.
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5.2. Comparison of Different Algorithms

To validate the applicability of the SVM algorithm in this research, random forest
(RF) and decision tree (DT) algorithms are employed to identify the external faults of
transformers, and the results are compared with those of SVM.

Figure 13 illustrates the accuracy of the three different algorithms in identifying
the fault side, fault type, and fault phase. SVM exhibits superior performance in fault-
side and fault-phase identification, achieving accuracies of 100% and 98.3%, respectively,
surpassing RF and DT. In fault-type identification, all algorithms demonstrate relatively
close accuracies, with SVM and RF slightly outperforming DT. These results suggest that
SVM may have advantages in fault identification.
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5.3. Identification Results Based on Fault Recording Data

To further validate the efficacy of the identification method proposed in this study, an
examination based on fault recording data was conducted. In this case, the fault recording
data originated from an actual external short-circuit transformer fault that occurred in
a substation. Specifically, the fault is a B-phase GF on the medium-voltage side. The
actual recorded current waveform for this fault is shown in Figure 14. Table 8 shows
the current characteristic features extracted from fault recording data according to the
method described in Section 4.1. Utilizing the method proposed in this paper, the accurate
determination of the fault side, fault type, and fault phase is achievable, further validating
the effectiveness of this method.
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Figure 14. Recorded current waveform of B−phase GF on the MV side.
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Table 8. Current characteristic features of fault recording data.

Name HA HB HC MA MB MC LA LB LC

parameter values 0.606 12.911 2.176 8.155 28.034 0.606 12.911 2.176 8.155

The above analysis demonstrates that the method proposed in this paper can accurately
identify the fault side, fault type, and fault phase of external transformer faults. Therefore,
this method has significance in transformer fault identification and can be widely applied
in practical engineering.

6. Conclusions

To accurately identify the external short-circuit faults of transformers, we propose a
fault identification method based on SVM. By extracting features from fault currents, three
classification models are utilized to precisely identify the fault side, fault type, and fault
phase. The main conclusions are as follows:

(1) A method for extracting features from external short-circuit fault currents is defined,
comprising nine features, namely the total variation rates of three-phase peak currents
for the HV, MV, and LV sides. The results indicate that this method of defining features
is suitable for identifying external short-circuit faults in transformers.

(2) The influence of four different kernel functions on the accuracy of SVM classification
models is discussed, including the LN, the PL, the RBF, and the SIG. The identification
accuracy of the RBF is higher than the other kernel functions.

(3) The identification results for external transformer faults are analyzed using 60 sim-
ulation data as testing samples, with an identification accuracy of up to 98.3%. Fur-
thermore, the classification model is validated by using a set of actual fault current
recording data, where the fault side, fault type, and fault phase can be identified
correctly. The method proposed in this paper was demonstrated to accurately identify
the external short-circuit fault of transformers.

This research provides a feasible solution for the precise identification of external short-
circuit faults, which can be widely applied in practical engineering. This method utilizes
the change rate of peak short-circuit current as a characteristic feature. In future research,
incorporating more features, such as the frequency, phase angle, and characteristics of
zero-sequence current signals, can further enhance the accuracy of fault identification.
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