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Abstract: We consider F-term hybrid inflation (FHI) and SUSY breaking in the context of a B − L
extension of the MSSM that largely respects a global U(1) R symmetry. The hidden sector Kaehler
manifold enjoys an enhanced SU(1, 1)/U(1) symmetry, with the scalar curvature determined by
the achievement of a SUSY-breaking de Sitter vacuum without undesirable tuning. FHI turns out
to be consistent with the data, provided that the magnitude of the emergent soft tadpole term is
confined to the range (1.2–100) TeV, and it is accompanied by the production of B − L cosmic strings.
If these are metastable, they are consistent with the present observations from PTA experiments on
the stochastic background of gravitational waves with dimensionless tension Gµcs ≃ (1 − 9.2) · 10−8.
The µ parameter of the MSSM arises by appropriately adapting the Giudice–Masiero mechanism
and facilitates the out-of-equilibrium decay of the R saxion at a reheat temperature lower than about
71 GeV. Due to the prolonged matter-dominated era, the gravitational wave signal is suppressed at
high frequencies. The SUSY mass scale turns out to lie in the PeV region.
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1. Introduction

Supersymmetric (SUSY) hybrid inflation [1] based on F terms, henceforth called F-term
hybrid inflation (FHI) for short [2,3], is undoubtedly a well-motivated inflationary model: for
reviews, see Refs. [4,5]. The most notable reasons that support our statement above are
the following:

• FHI is tied to a renormalizable superpotential uniquely determined by a gauge and
global U(1) R symmetries.

• FHI does not require fine-tuned parameters and trans-Planckian inflaton values.
• FHI can be reconciled with the Planck data [6]—fitted to the standard power-law cosmo-

logical model with Cold Dark Matter (CDM) and a cosmological constant (ΛCDM)—if we
properly take into account not only radiative corrections (RCs) but also corrections origi-
nating from supergravity (SUGRA) [7–14], as well as soft SUSY-breaking terms [15–22].

• FHI can be naturally followed by a Grand Unified Theory (GUT) phase transition, which
may lead to the production of cosmological defects, if these are predicted by the
symmetry-breaking scheme. In the large majority of GUT-breaking chains, the forma-
tion [23] of cosmic strings (CSs) cannot be avoided.

Although the last feature above is often used to criticize the powerfulness of the
embedding of FHI in several GUTs (see, e.g., Ref. [24]), it has recently appeared as an
interesting ingredient in cosmological model building. This is because the announced data
from several pulsar timing array (PTA) experiments [25–27]—most notably the NANOGrav
15-year results (NANOGrav15) [28]—provide strong support for the discovery of a gravitational
wave (GW) background around the nanohertz frequencies.

Given that the interpretation of this signal in terms of the merging of supermassive
black hole binaries is somewhat disfavored [29], its attribution to gravitational radiation
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emitted by topologically unstable superheavy CSs—which may arise after the end of
FHI—attracts a fair amount of attention [30–39]. In particular, the observations can be
interpreted if the CSs are meta- [40,41] or quasi-stable [42,43]. Both types of topologically
unstable CSs arise from symmetry breaking G → H× U(1), which produces monopoles.
The subsequent U(1) breaking yields CSs that connect monopoles with antimonopoles.
Here, we assume that these last ones are inflated away but can appear on metastable CSs via
quantum pair creation. Therefore, metastable CSs can be easily achieved if a U(1) symmetry
is embedded in a gauge group with a higher rank, such as Pati–Salam [35,36], flipped
SU(5) [34] or SO(10) [31–33]. For this reason, in this work, we focus on FHI realized in a
B − L extension of the Minimal SUSY Standard Model (MSSM)—cf. Refs. [35,36,44]—which
dilutes possibly preexisting monopoles and is naturally accompanied by the production
of a network of CSs. On the other hand, we do not specify the mechanism of monopole
production or the metastability of CSs, as was the case, e.g., in Refs. [30,38,39].

We adopt the minimal possible framework [19,20] that supports observationally ac-
ceptable FHI. It employs minimal Kähler potential for the inflaton field, RCs and soft
SUSY-breaking terms. Among the last ones, the tadpole term plays a crucial role in estab-
lishing compatibility with data. Its magnitude can be explained by intertwining [45] the
inflationary sector (IS) with a hidden sector (HS) introduced in Refs. [46,47]. Contrary to earlier
attempts [48–54], this HS respects a mildly violated R symmetry that is compatible with
that adopted for FHI [1]. The consequences of the interconnection of the two sectors above
are the following:

• The R charge 2/ν of the goldstino superfield—which is related to the geometry of the
HS [47]—is constrained to values with 0 < ν < 1.

• SUSY breaking is achieved not only in a Minkowski vacuum—as in the cases of
Refs. [48–54]—but also in a de Sitter (dS) one, which allows us to control the notorious
Dark Energy (DE) problem by mildly tuning a single superpotential parameter to a
value of the order 10−12.

• The sgoldstino is stabilized [49–54] to low values during FHI. This fact, together with
the selection of a minimal Kähler potential for the inflaton, assists us in resolving
the η-problem. Note that Kähler potentials inspired by string theory were mainly
employed in earlier works [48–54].

• The solution to the µ problem [55] of the MSSM is achieved by suitably applying [46,47]
the Giudice–Masiero mechanism [56,57]. Contrary to similar attempts [48,58–60], the
µ term here plays no role during FHI but crucially controls the timely decay of the
sgoldstino (or R saxion).

• The energy density of the universe is dominated by the energy density of the sgold-
stino condensate, which decays [61–65] before the onset of Big Bang Nucleosynthesis
(BBN) at cosmic temperatures of (2–4) MeV [66] thanks to the aforementioned µ term.
Therefore, our scenario naturally results in prolonged matter domination, which
causes a reduction [67–70] in the spectra of GWs at high frequencies ( f > 0.1 Hz).
This fact is welcome since it assists us in avoiding any conflicts with the third run of
advanced LIGO-VIRGO-KAGRA (LVK) data [71].

• The SUSY mass scale m̃ is predicted to be close to the PeV scale [72]. It fits well with
the Higgs boson mass, discovered at the LHC, as it is estimated [73] within high-scale
SUSY if we assume a relatively low tan β and stop mixing. Note that the connection of
inflation with SUSY breaking has been extensively discussed in the literature [74–81]
over the last several years.

In this feature paper, we further review the model introduced in Ref. [45], focusing
exclusively on its implementation within a version of the MSSM endowed with a B − L
Higgs sector. We present the complete particle content of the model, paying special attention
to the computation of the GWs emerging from CS decay, under the assumption that those
are metastable. We also explain the generation of neutrino masses, taking into account
SUGRA contributions from Ref. [82].
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The remainder of the manuscript is organized as follows: In Section 2, we introduce
our framework. Then, we revise the salient features of our model as regards its vacuum
in Section 3 and the inflationary era in Section 4. Then, we study the reheating process in
Section 5 and the production of GWs from CSs in Section 6. Our predictions for the SUSY
mass scale are revealed in Section 7. Our conclusions are summarized in Section 8. Details
on the derivation of neutrino masses are given in Appendix A.

2. Model Set-Up

We focus on an extension of the MSSM invariant under the gauge group GB−L =
GSM × U(1)B−L, where GSM is the Standard Model gauge group. The charge assignments
under these symmetries of various matter and Higgs superfields are listed in Table 1. In
particular, the ith generation SU(2)L doublet left-handed quark and lepton superfields
are denoted by Qi and Li, respectively, whereas the SU(2)L singlet antiquark [antilepton]
superfields are denoted by uc

i and di
c [ec

i and Nc
i ], respectively. The electroweak Higgs

superfields that couple to the up [down] quark superfields are denoted by Hu [Hd]. Be-
sides the MSSM particle content, the model is augmented by seven superfields: a gauge
singlet S, three Nc

i s, a pair of Higgs superfields, Φ and Φ̄, which break U(1)B−L, and the
goldstino superfield Z. In addition to local symmetry, the model also possesses baryon
and lepton number symmetries and an R symmetry U(1)R. The latter plays a crucial role
in the construction of the superpotential (see Section 2.1) and the Kähler potential (see
Section 2.2).

Table 1. The representations under GB−L and the extra global charges of the superfields of our model.

SUPERFIELDS
REPRESENTATIONS GLOBAL SYMMETRIES

UNDER GB−L R B L
MATTER SUPERFIELDS

ec
i (1, 1, 1, 1) 0 0 −1

Nc
i (1, 1, 0, 1) 0 0 −1

Li (1, 2,−1/2,−1) 0 0 1
uc

i (3, 1,−2/3,−1/3) 0 −1/3 0
dc

i (3, 1, 1/3,−1/3) 0 −1/3 0
Qi (3̄, 2, 1/6, 1/3) 0 1/3 0

HIGGS SUPERFIELDS

Hd (1, 2,−1/2, 0) 2 0 0
Hu (1, 2, 1/2, 0) 2 0 0

ine S (1, 1, 0, 0) 2 0 0
Φ (1, 1, 0, 2) 0 0 −2
Φ̄ (1, 1, 0,−2) 0 0 2

GOLDSTINO SUPERFIELD

Z (1, 1, 0, 0) 2/ν 0 0

2.1. Superpotential

The superpotential of our model fully respects the symmetries in Table 1. Most notably,
it carries R charge 2 and is linear with respect to S and Zν. It naturally splits into five parts:

W = WI + WH + WGH + WMSSM + WMD, (1)

where the subscripts “I” and “H” stand for the IS and HS, respectively, and the content of
each term is specified as follows:

(a) WI is the IS part of W and reads [1]

WI = κS
(

Φ̄Φ − M2
)

, (2a)
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where κ and M are free parameters that can be made positive by field redefinitions.

(b) WH is the HS part of W and is written as [47]

WH = mm2
P(Z/mP)

ν. (2b)

Here, mP = 2.4 ReV is the reduced Planck mass—with ReV = 1018 GeV—m is a positive
free parameter with mass dimensions, and ν is an exponent that can, in principle, acquire
any real value if WH is considered an effective superpotential that is valid close to the
non-zero vacuum expectation value (v.e.v) of Z, ⟨Z⟩. We assume, though, that the effective
superpotential is such that only positive powers of Z appear. If we also assume that W is
holomorphic in S, then mixed terms of the form Sνs Zνz can be forbidden in W since the
exponent of such a term has to obey the relation

νs + νz/ν = 1 ⇒ νz = (1 − νs)ν,

leading to negative values of νz. This conclusion contradicts our assumptions above.

(c) WGH is a term that mixes the HS and the B − L gauge fields of the IS. It has the form

WGH = −λmP(Z/mP)
νΦ̄Φ (2c)

with λ being a real coupling constant. The magnitude of λ can be restricted by the DE
requirement, as we see below.

(d) WMSSM is the part of W that contains the usual trilinear terms of the MSSM, i.e.,

WMSSM = hijDdc
i QjHd + hijUuc

i Qj Hu + hijEec
i Lj Hd. (2d)

The selected R assignments in Table 1 prohibit the bilinear µHu Hd term of the MSSM
and other mixing terms—e.g., λµSHuHd [60], which is frequently employed to gener-
ate this µ term—from being present in WMSSM. This term is generated here via Kµ; see
Section 2.2 below.

(e) WMD is the part of W that provides masses to neutrinos:

WMD = hijN Nc
i Lj Hu + λiNc(S + (Z/mP)

ν)Φ̄Nc2
i . (2e)

The first term on the right-hand side of Equation (2e) is responsible for Dirac neutrino
masses, whereas for Majorana masses, cf. Refs. [19,24]. The scale of the latter masses is
intermediate since ⟨Φ̄⟩ ∼ 1 YeV and ⟨Z⟩ ∼ mP. The cooperation of both terms leads to the
light neutrino masses via the well-known (type I) seesaw mechanism; see also Appendix A.

2.2. Kähler Potential

The Kähler potential respects the GB−L, B and L symmetries in Table 1. It has the
following contributions:

K = KI + KH + Kµ + KD + |Yα|2, (3)

in which the left-handed chiral superfields of the MSSM are denoted by Yα, with α = 1, . . . , 7,
i.e.,

Yα = Q, L, dc, uc, ec, Nc, Hd and Hu,

where the generation indices are suppressed.
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(a) KI is the part of K that depends on the fields involved in FHI—cf. Equation (2a).
We adopt the simplest possible choice—cf. Refs. [2,19]—which has the form

KI = |S|2 + |Φ|2 + |Φ̄|2. (4a)

Higher-order terms of the form |S|2νS /m2νS−2
P with νS > 1 cannot be excluded by the

imposed symmetries but may become harmless if S ≪ mP and assuming low enough coef-
ficients.

(b) KH is the part of K devoted to the HS. We adopt the form introduced in Ref. [47],
where

KH = Nm2
P ln

(
1 +

|Z|2 − k2Z4
−/m2

P
Nm2

P

)
with Z± = Z ± Z∗. (4b)

Here, k > 0 mildly violates R symmetry, endowing the R axion with phenomenologically
acceptable mass. The selected KH is not motivated by string theory, but it can be considered
an interesting phenomenological option for two reasons: it largely respects the R symmetry,
which is a crucial ingredient for FHI, and it ensures—as we see in Section 3—a dS vacuum
of the whole-field system with a tunable cosmological constant for

N =
4ν2

3 − 4ν
with

3
4
< ν <

3
2

for N < 0. (5)

Our favored ν range, finally, is 3/4 < ν < 1. Since N < 0, KH parameterizes the
SU(1, 1)/U(1) hyperbolic Kähler manifold for k ∼ 0.

(c) Kµ includes higher-order terms that generate the needed mixing term between Hu
and Hd in the Lagrangian of the MSSM—cf. Refs. [46,47,56]—and has the form

Kµ = λµ

(
Z∗2ν/m2ν

P

)
Hu Hd + h.c., (6a)

where the dimensionless constant λµ is taken as real for simplicity.

(d) KD is an unavoidable term that mixes the observable sector with the HS as follows:

KD = λijD

(
Z∗ν/mν+1

P

)
Nc

i Lj Hu + h.c. (6b)

It provides (subdominant) Dirac masses for νi [82], as shown in Appendix A.
The total K in Equation (3) enjoys an enhanced symmetry for the Yα, S and Z fields,

namely,
∏

α

U(1)Yα × U(1)S × (SU(1, 1)/U(1))Z, (7)

where the indices indicate the moduli that parameterize the corresponding manifolds.
Thanks to this symmetry, mixing terms of the form Sν̃s Z∗ν̃z can be ignored, although they
may be allowed by the R symmetry for ν̃z = νν̃s. Most notably, U(1)S protects KI from
S-dependent terms, which violates the R symmetry, thereby spoiling the inflationary set-up.

3. SUSY and GB−L Breaking—Dark Energy

The vacuum of our model is determined by minimizing the F-term (tree-level) SUGRA
scalar potential VF derived [45] from W in Equation (1) and K in Equation (3). Note that
D-term contributions to the total SUGRA scalar potential vanish if we confine ourselves to
the period during FHI and to the vacuum along the D-flat direction

|Φ̄| = |Φ| which ensures VD =
g2

2

(
|Φ|2 − |Φ̄|2

)2
= 0. (8)
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Here, g is the unique (considered unified) gauge coupling constant of GB−L, and we
employ the same symbol for the various superfields Xα = S, Z, Φ, Φ̄ and their complex
scalar components.

As we can verify numerically, VF is minimized at the GB−L-breaking vacuum

|⟨Φ⟩| = |⟨Φ̄⟩| = M. (9)

It also has a stable valley along ⟨θ⟩ = 0 and ⟨θS/mP⟩ = π, where these fields are defined by

Z = (z + iθ)/
√

2 and S = σ eiθS/mP /
√

2. (10)

Substituting Equation (10) into VF and minimizing it with respect to the various directions,
we arrive at the following results:

σ = −2(1−ν)/2
(

λ(M2 + m2
P)− mmP

)
zν/m(ν+1)

P and ⟨z⟩ = 2
√

2/3|ν|mP, (11)

which yield the constant potential energy density,

⟨VF⟩ =
(

16ν4

9

)ν
(

λM2 − mmP

κm2
P

)2

ωN
(

λ(M2 + m2
P)− mmP

)2
with ω = e

⟨KH⟩
Nm2

P ≃ 2
3
(3 − 2ν). (12)

Tuning λ to a value λ ∼ m/mP ≃ 10−12, we may wish to identify ⟨VF⟩ with the DE energy
density, i.e.,

⟨VF⟩ = ΩΛρc = 7.3 · 10−121m4
P, (13)

where the density parameter of DE and the current critical energy density of the universe
are, respectively, given by [83]

ΩΛ = 0.6889 and ρc = 2.31 · 10−120h2m4
P with h = 0.6766. (14)

Therefore, we obtain a post-inflationary dS vacuum, which explains the notorious DE
problem. Moreover, Equation (11) yields ⟨σ⟩ ≃ 0.

The particle spectrum of the theory at the vacuum in Equations (9) and (11) includes
the gravitino (G̃), which acquires mass as follows [47]:

m3/2 = ⟨eKH/2m2
PWH/m2

P⟩ ≃ 2ν3−ν/2|ν|νmωN/2. (15a)

Diagonalizing the mass-squared matrix of the field system S − Φ − Φ̄ − Z, we also find
that the IS acquires a common mass:

mI = eKH/2m2
P
√

2
(

κ2M2 + (4ν2/3)ν(1 + 4M2/m2
P)m

2
)1/2

, (15b)

where the second term arises due to the coexistence of the IS with the HS—cf. Ref. [19].
Similar mixing does not appear in the mass spectrum of the HS, which contains the
(canonically normalized) sgoldstino (or R saxion) and the pseudo-sgoldstino (or R axion)
with the following respective masses:

mz ≃
3ω

2ν
m3/2 and mθ ≃ 12kω3/2m3/2. (15c)

Finally, applying the relevant formulas of Refs. [47,57], we find that Kµ induces a
non-vanishing µ term in the superpotential of the MSSM, whereas WMSSM and Kµ + |Yα|2
in Equations (2d) and (3) lead to a common soft SUSY-breaking mass parameter m̃ at the
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vacuum in Equation (11), which indicatively represents the mass level of the SUSY partners.
Specifically, we obtain

W ∋ µHuHd with |µ| = λµ

(
4ν2

3

)ν

(5 − 4ν)m3/2 and m̃ = m3/2. (16)

The variant forms of the terms |Yα| in K (see Equation (3)) do not significantly alter our
results [45,47].

4. Inflation Analysis

It is well known [1,4] that, in global SUSY, FHI takes place for sufficiently large |S|
values along the F- and D-flat directions of the SUSY potential:

Φ̄ = Φ = 0, where VSUSY(Φ = 0) ≡ VI0 = κ2M4 are HI =
√

VI0/3m2
P (17)

which are the constant potential energy density and corresponding Hubble parameter that
drive FHI; the subscript 0 means that this is the tree-level value. In a SUGRA context,
though, we first check—in Section 4.1—the conditions under which such a scheme can
be achieved, and then, in Section 4.2, we give the final form of the inflationary potential.
Lastly, we present our results in Section 4.4, imposing a number of constraints listed in
Section 4.3.

4.1. Hidden Sector’s Stabilization

The attainment of FHI is possible if Z is well stabilized during it. The relative mecha-
nism is pretty well known [52–54]. Due to VI0, Z is transported from its value in Equation (9)
to a value well below mP. To determine this, we construct the complete expression for VF
along the inflationary trajectory in Equation (17) and then expand the resulting expres-
sion for low S/mP values, assuming that the θ = 0 direction is stable, as in Equation (9).
Under these conditions, VF is minimized for the value

⟨z⟩I ≃
(√

3 · 2ν/2−1HI/mν
√

1 − ν
)1/(ν−2)

mP. (18)

This result is in good agreement with its precise value derived numerically. Note that ν < 1
ensures a real value of ⟨z⟩I with ⟨z⟩I ≪ mP since HI/m ≪ 1.

The (canonically normalized) components of the sgoldstino acquire masses squared,
respectively,

m2
Iz ≃ 6(2 − ν)H2

I and m2
Iθ ≃ 3H2

I − m2
(

8ν2m2
P − 3⟨z⟩2

I

)4ν(1 − ν)m2
P + (1 − 96k2ν)⟨z⟩2

I

23+ννm2ν
P ⟨z⟩2(2−ν)

I

, (19a)

whereas the mass of G̃ turns out to be

mI3/2 ≃
(

ν(1 − ν)1/2m2/ν/
√

3HI

)ν/(2−ν)
. (19b)

It is clear from the results above that mIz ≫ HI, and therefore, it is well stabilized during
FHI, whereas mIθ ≃ HI and gets slightly increased as k increases. However, the isocurvature
perturbation is expected to be quite suppressed since it becomes observationally dangerous
only for mIθ ≪ HI.

4.2. Inflationary Potential

Expanding VF for low S values, introducing the canonically normalized inflaton
σ =

√
2|S| and taking into account the RCs [1,4], we derive [45] the inflationary potential

VI, which can be cast in the form

VI ≃ VI0(1 + CRC + CSSB + CSUGRA). (20)
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The individual contributions are specified as follows:

(a) CRC represents the RCs to VI/VI0, which can be written as [2,4]

CRC =
κ2

128π2

(
8 ln

κ2 M2

Q2 + 8x2 tanh−1
(

2
x2

)
− 4(ln 4 − x4 ln x) + (4 + x4) ln(x4 − 4)

)
, (21a)

with x = (σ −
√

2λ⟨Z⟩ν
I m1−ν

P /κ)/M >
√

2, beyond which the expression above ceases to
be valid. Here, we take into account that the multiplicity of the waterfall fields is NG = 1
since these are U(1)B−L non-singlets.

(b) CSSB is the contribution to VI/VI0 from the soft SUSY-breaking effects [15–19] and
is parameterized as follows:

CSSB = m2
I3/2σ2/2VI0 − aS σ/

√
2VI0, (21b)

where the tadpole parameter reads

aS = 21−ν/2m
⟨z⟩ν

I
mν

P

(
1 +

⟨z⟩2
I

2Nm2
P

)(
2 − ν −

3⟨z⟩2
I

8νm2
P

)
. (21c)

The minus sign results from the stabilization of θ (see Equation (10)) at zero and the mini-
mization of the factor (S + S∗) =

√
2σ cos(θS/mP), which occurs for θS/mP = π (mod 2π);

the decomposition of S is shown in Equation (10). We further assume that θS remains
constant during FHI so that the simple one-field slow-roll approximation is valid. Possible
variation in θS was investigated in Ref. [20], where they found that acceptable solutions
with θS/mP ̸= π require a significant amount of tuning. The first term in Equation (21b)
does not play an essential role in our set-up due to low enough m3/2s— cf. Ref. [19].

(c) CSUGRA is the SUGRA correction to VI/VI0 after subtracting the one in CSSB. It
reads [15–19]

CSUGRA = c2ν
σ2

2m2
P
+ c4ν

σ4

4m4
P

with c2ν =
⟨z⟩2

I
2m2

P
and c4ν =

1
2

(
1 + ⟨z⟩2

I m2
P

)
. (21d)

Thanks to the minimality of KI in Equation (4a) and the smallness of ⟨z⟩I, the coefficients
above are low enough and allow for FHI to be established.

4.3. Observational Requirements

The analysis of FHI can be performed in the slow-roll approximation if we calculate
the slow-roll parameters [6]

ϵ = m2
P

(
V′

I√
2VI

)2

≃
m2

P
2
(
C′

RC + C′
SSB
)2 and η = m2

P
V′′

I
VI

≃ m2
PC′′

RC, (22)

where the derivatives of the various contributions read

C′
SSB ≃ −aS/

√
2VI0, (23a)

C′
RC ≃ kp2x

32Mπ2

(
4 tanh−1

(
2
x2

)
+ x2 ln

(
1 − 4

x4

))
, (23b)

C′′
RC ≃ κ2

32M2π2

(
4 tanh−1

(
2
x2

)
+ 3x2 ln

(
1 − 4

x4

))
. (23c)

The required behavior of VI in Equation (20) can be obtained thanks to the relation C′
RC ≃

−C′
SSB, which is established for carefully selecting κ (or M) and aS. Apparently, we have

C′
SSB < 0 and C′

RC > 0 for σ⋆ < σmax since |4 tanh−1(2/x2)| > |x2 ln(1 − 4/x4)|. On the
contrary, C′′

RC < 0, since the negative contribution 3x2 ln(1 − 4/x4) dominates over the first
positive one, and so we obtain η < 0, giving rise to acceptably low ns values.



Universe 2024, 10, 211 9 of 25

Our model of FHI can be qualified if we test it against a number of observational
requirements:

(a) Thenumber of e-foldings elapsed between the horizon crossing of the pivot scale
k⋆ = 0.05/Mpc and the end of FHI has to be adequately large for the resolution of the
horizon and flatness problems of standard Big Bang cosmology. Taking into account (see
Section 5) that FHI is followed, in turn, by matter- and radiation-dominated eras, the
relevant condition takes the following form [2,6]:

NI⋆ =
∫ σ⋆

σf

dσ

m2
P

VI

V′
I
≃ 19.4 +

2
3

ln
V1/4

I0
1 GeV

+
1
3

ln
Trh

1 GeV
, (24)

where the prime denotes derivation with respect to σ, σ⋆ is the value of σ when k⋆ crosses
outside the horizon of FHI, and σf is the value of σ at the end of FHI. This is normally
obtained by the critical point σc =

√
2|Sc|; i.e., the end of inflation coincides with the onset

of the B − L phase transition. Note that ⟨σ⟩ ≃ 0, as mentioned below in Equation (13),
and so it does not disturb the inflationary dynamics that govern the σ evolution for σ ≥ σc.

(b) The amplitude As of the power spectrum of the curvature perturbation generated
by σ during FHI must be consistent with the data [83] on the cosmic microwave background
(CMB), i.e.,

As =
1

12 π2m6
P

V3
I (σ⋆)

|V′
I (σ⋆)|2

≃ 2.105 · 10−9. (25)

The observed curvature perturbation is generated wholly by σ since the other scalars are
massive enough during FHI; see Section 4.1.

(c) The remaining observables—the scalar spectral index ns, its running αs and the
scalar-to-tensor ratio r—which are calculated by the standard formulas

ns = 1 − 6ϵ⋆ + 2η⋆, αs = 2
(

4η2
⋆ − (ns − 1)2

)
/3 − 2ξ⋆ and r = 16ϵ⋆, (26)

(where ξ ≃ m4
P V′

I V′′′
I /V2

I and all the variables with the subscript ⋆ are evaluated at
σ = σ⋆) must be in agreement with the data. We take into account the latest Planck release 4
(PR4) (including TT, TE, EE + lowE power spectra [83]), Baryon Acoustic Oscillations (BAO),
CMB-lensing and BICEP/Keck (BK18) data [84]. Fitting them with ΛCDM+r, we obtain
approximately

ns = 0.965 ± 0.009 and r ≲ 0.032, (27)

at a 95% confidence level (c.l.) with negligible |αs| ≪ 0.01.

4.4. Results

As deduced from Sections 4.1–4.3, the inflationary part of our model depends on
the parameters

κ, M, m, λ, ν, k and λµ.

Recall that N is related to ν via Equation (5). Enforcing Equation (13) fixes λ at a rather
low value that does not influence our remaining results. Moreover, k exclusively affects
mθ and mIθ via Equations (15c) and (19a). Throughout, we select the value k = 0.1, which
ensures the avoidance of massless modes. Here, we present the aS values as a function of
κ or M, which assist the comparison of FHI with data—cf. Ref. [19]—and postpone their
derivation from m and ν via Equation (21c) in Section 7. As regards Trh, which influences
Equation (24), we adopt a value close to those observed in our set-up, Trh ≃ 1 GeV.

Enforcing Equations (24) and (25), we can restrict M and σ⋆ as functions of our free
parameters κ and aS. It is apparent that the allowed ranges of parameters are similar to
those explored in Ref. [19], where the HS is not specified. Some deviations are only due to
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improvements in the determination of the ns values in Equation (27). The correct values
of that quantity are attained if FHI becomes of the hilltop type [19,20], i.e., if VI is non-
monotonic and develops a maximum at σmax and a minimum at σmin ≫ σmax. For σ > σmax,
VI becomes a monotonically increasing function of σ, and so its boundedness is ensured.
FHI takes place for σ < σmax. The position of σmax is predominantly dominated by C′

RC
and C′

SSB. On the other hand, σmin can be roughly found by the interplay of C′
SUGRA and

C′
SSB. Specifically, we obtain [45]

σmax ≃ κ3M2

4
√

2π2aS
and σmin ≃

(
aSm4

P√
2c4νκM2

)1/3

· (28)

Note that σmax is independent of CSUGRA and σmin of CRC. The attainment of successful
hilltop FHI requires the establishment of the hierarchy σc < σ⋆ < σmax. From our numerical
computation, we observe that, for constant κ and aS, ns decreases as σ⋆ approaches σmax.
To quantify these tuning values, we define the quantities

∆c⋆ = σ⋆/σc − 1 and ∆max∗ = 1 − σ⋆/σmax . (29)

The naturalness of hilltop FHI increases with ∆c⋆ and ∆max∗.
To obtain an impression of the required values of the parameters of the model, we

first construct a benchmark table (Table 2). There, we display the results of our analysis
for two benchmark points (BPs) with κ = 0.0005 (BPA) and κ = 0.001 (BPB) and ns fixed
at its central value in Equation (27). We also employ some representative ν and k values.
In all cases, we obtain NI⋆∼40 from Equation (24). From the observables listed in Table 2,
we infer that |αs| turns out to be of the order 10−4, whereas r is extremely tiny, of the
order 10−11, and therefore far outside the reach of the forthcoming experiments devoted to
detecting primordial GWs. From the entries in Table 2 related to ∆c⋆ and ∆max∗, we notice
that ∆max∗ > ∆c⋆; their values may be up to 10% and increase as aS or κ (and M) increases.
From the mass spectra arranged in Table 2 (see Section 4.1), we see that mI3/2 is similar to
aS∼TeV, whereas the other masses are of the order EeV, whereas at the vacuum, mI turns
out to be of the order 1 ZeV = 1012 GeV, whereas m3/2, mz and mθ lie in the PeV range;
see Section 3. In the same table, we find it convenient to accumulate the values of some
parameters related to the reheating process, specified in Section 5 below, and the formed
CSs (see Section 6).

To further explore the parameter space of our model allowed by the inflationary
requirements in Equations (24), (25) and (27), we present the gray-shaded regions in the
κ − aS and M − aS planes; see Figure 1a,b. The boundaries of the allowed areas in Figure 1
are determined by the dashed [dot-dashed] lines corresponding to the upper [lower] bound
on ns in Equation (27); note that, in Figure 1a, we obtain a very narrow strip from the ns
variation. We also display the allowed contours for ns = 0.965 by solid lines. The maximum
r values are encountered in the upper-right end of the dashed lines—corresponding to
ns = 0.974. On the other hand, the maximum |αs| values are achieved along the dot-dashed
lines, and the minimum value is αs = −3.2 · 10−4. Summarizing our findings from Figure 1
for a central ns in Equation (27), we end up with the following ranges:

0.07 ≲ M/YeV ≲ 2.6 and 0.1 ≲ aS/TeV ≲ 100. (30)

Within the margins above, ∆c⋆ ranges between 0.5% and 9.5% and ∆max∗ between 0.4% and
8.2%m with the relevant values increasing with M and aS, as deduced from Table 2, too.
The lower bounds of the inequalities above are expected to be displaced to slightly higher
values due to the post-inflationary requirements (see Equation (37) below), which are not
considered here for the sake of generality.
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Table 2. A benchmark table of our scenario. We fix ν = 7/8 (resulting in N = −49/8) and k = 0.1.
Recall that 1 PeV = 106 GeV, 1 EeV = 109 GeV, 1 ZeV = 1012 GeV and 1 YeV = 1015 GeV.

BENCHMARK BENCHMARK

POINT: A B POINT: A B
INPUTS

ine M (YeV) 1.4 2.1 κ 0.0005 0.001
m (PeV) 0.5 3.5 λ (10−12) 0.2 1.4

INFLATIONARY PARAMETERS

aS (TeV) 2.63 25.3 ∆c⋆ (%) 2.6 8.2
HI (EeV) 0.23 1.05 σmax/M 1.49 1.66

σ⋆/M 1.45 1.53 ∆max∗ (%) 2.7 7.7
NI⋆ 40.5 40.8 σmin/M 35.5 30.8

OBSERVABLES

ns 0.965 −αs (10−4) 2.4 3.1
r 9 · 10−13 1.8 · 10−11 Gµcs (10−7) 2.3 6

z V.E.V AND PARTICLE SPECTRUM

DURING FHI AT THE VACUUM ⟨z⟩ = 1.4mP

⟨z⟩I (10−3mP) 1.3 2 m3/2 (PeV) 0.9 6.2
mI3/2 (TeV) 1.2 11.2 mz (PeV) 1.2 8.8
mIz (EeV) 0.6 2.7 mθ (PeV) 0.9 5.6
mIθ (EeV) 0.08 0.5 mI (ZeV) 1.7 5.2

REHEATING PROCESS

µ/m̃ Tmax (PeV) µ/m̃ −τmax

3 0.3 2.2 3 66.6 67
1/3 0.1 0.7 1/3 67.4 67.6

µ/m̃ Trh(GeV) µ/m̃ −τrh

3 0.21 3.5 3 28.3 31.3
1/3 0.04 0.43 1/3 26.3 29.1
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Figure 1. Allowed (shaded) regions as determined by Equations (24), (25) and (27) in the κ − aS (a)
and M − aS (b) planes. The conventions adopted for the various lines are also shown.
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5. Reheating Process

Soon after FHI, the IS and z enter an oscillatory phase about their minima in Equations (9)
and (11) and eventually decay via their coupling to lighter degrees of freedom. Note that θ and
θS remain well stabilized at their values shown below Equation (9) during and after FHI,
and so they do not participate in the phase of damped oscillations. The commencement of
the z-dominated phase occurs for values of the Hubble rate HzI∼mz. Given that ⟨z⟩∼mP
(see Equation (11)), the initial energy density of its oscillations ρzI is comparable to the
energy density of the universe ρzIt at the onset of these oscillations since

ρzI ∼ m2
z⟨z⟩2 and ρzIt = 3m2

PH2
zI ≃ 3m2

Pm2
z . (31)

Therefore, we expect that z will dominate the energy density of the universe until com-
pleting its decay through its weak gravitational interactions. Due to the weakness of these
interactions, we expect that the reheating temperature Trh will be rather low. This is the
notorious cosmic moduli problem [61,62] that plagues the vast majority of SUGRA settings.

In our model, though, Trh adequately increases thanks to the sufficiently large mz and
µ originating from Kµ in Equation (6a). To show this fact, we estimate Trh by [85,86]

Trh =
(

72/5π2grh∗
)1/4

Γ1/2
δz m1/2

P , (32)

where grh∗ ≃ 10.75 − 100 serves as the effective number of relativistic degrees of freedom
at Trh. This is achieved for

τ̃rh ≃ −2
3

ln
2
5

√
3mPΓδzρ−1/2

zI , (33)

where τ̃ = ln(R/RI), with R being the scale factor of the universe and RI being its value
at the onset of the z oscillations. Also, Γδz is the total decay width of the (canonically
normalized) sgoldstino

δ̂z = ⟨K1/2
ZZ∗⟩δz with δz = z − ⟨z⟩ and ⟨KZZ∗⟩ = ⟨ω⟩−2 (34)

which predominantly includes contributions from its decay into pseudo-sgoldstinos, θ and
electroweak Higgs, Hu and Hd via the kinetic terms KXX∗∂µX∂µX∗, with X = Z, Hu and
Hd [62–65] of the Lagrangian. In particular, we have

Γδz ≃ Γθ + Γh̃, (35)

where the individual decay widths are found to be

Γθ ≃
λ2

θm3
z

32πm2
P

√√√√1 −
4m2

θ

m2
3/2

with λθ =
⟨z⟩
N

=
4ν − 3√

6ν
and Γh̃ =

24ν−1

32ν−1 λ2
µ

ω2

4π

m3
z

m2
P

ν4ν . (36)

From the expressions above, we readily recognize that Γδz is roughly proportional to
m3

z/m2
P, as expected for any typical modulus [61,62]. We explicitly checked that z-decay

channels into gauge bosons through anomalies and three-body MSSM (s)particles are
subdominant. On the other hand, we kinematically block the decay of δ̂z into G̃s, selecting
ν > 3/4, which ensures mz < 2m3/2; see Equation (15c). We do so in order to protect our
setting from the so-called [87,88] moduli-induced G̃ problem, i.e., the possible late decay of
the produced G̃, and problems with the abundance of the subsequently produced lightest
SUSY particles—cf. Ref. [62].
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If we enforce compatibility between the theoretical and observed values of light-
element abundances predicted by BBN, we achieve Ref. [66] a lower bound on Trh, which,
for large mz∼0.1 PeV, entails

Trh ≥ 4.1 MeV for Bh = 1 and Trh ≥ 2.1 MeV for Bh = 10−3, (37)

where Bh is the hadronic branching ratio. The bound above is a little softened for larger
mz values.

Taking the κ and mz values allowed by the inflationary part of our model in Section 4.4,
we evaluate Trh as a function of κ and delineate the regions allowed by the BBN constraints
in Equation (37); see Section 4.3 below. The results of such computation are displayed in
Figure 2, where we illustrate the allowed contours in the κ − Trh plane for ν = 7/8. This
is an intermediate value in the margin selected here (3/4 − 1). The boundary curves of
the allowed region correspond to µ = m̃/3 or λµ = 0.22 (dot-dashed line) and µ = 3m̃ or
λµ = 1.96 (dashed line), whereas the solid line is obtained for µ = m̃ or λµ = 0.65. Note
that the relation between λµ and µ/m̃ is given in Equation (16). We see that there is an
ample parameter space consistent with the BBN bounds in Equation (37), depicted with two
horizontal lines. Since the inflationary requirements increase the scale m with κ and since
m heavily influences mz and Trh (see Equation (32)), Trh increases with κ. The maximum
value of Trh for the selected ν is obtained for µ = 3m̃ and is estimated to be

Tmax
rh ≃ 19 GeV (38)

Obviously, decreasing µ below m̃/3 causes λµ, Γδz and Trh to decrease, too, and the slice
cut from the BBN bound increases.
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Figure 2. Allowed strip in the κ − Trh plane compatible with the inflationary requirements in
Section 4.3 for ns = 0.965. We take ν = 7/8 and µ = m̃ (solid line), µ = m̃/3 (dot-dashed line) or
µ = 3m̃ (dashed line). The BBN lower bounds on Trh for hadronic branching ratios Bh = 1 and 0.001
are also depicted by two thin lines.

It is worth emphasizing that the reheating stage is not instantaneous. In particular,
the maximum temperature Tmax during this period is much larger than Trh, which can
be better considered as the highest temperature during radiation domination [89]. To be
quantitative, Tmax can be calculated as [86]

Tmax = (3/8)3/20121/431/8m1/4
P Γ1/4

δz ρ1/8
zI /g1/4

rh∗ π1/2. (39)

It is achieved [86] for τ̃ = τ̃max = 0.39 ≪ τ̃rh. The large hierarchy between Tmax and Trh
can be appreciated by their numerical values displayed in Table 2 for BPA and BPB. We see
that Tmax∼1 PeV, whereas Trh∼1 GeV. As a consequence, the electroweak sphalerons are
still operative, and so baryogenesis via leptogenesis is, in principle, feasible.
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To obtain a more complete picture of our post-inflationary cosmological setting, we
introduce the logarithmic time τ, which is defined as a function of the redshift z (not to be
confused with saxion field z) or the scale factor R as [90]

τ = − ln(1 + z) = ln(R/R0), (40)

where the subscript 0 hereafter refers to present-day values. Tmax is achieved at τmax, which
can be found from

τmax = τ̃max − τ̃rh + τrh since Rmax/R0 = (Rmax/RI) · (RI/Rrh) · (Rrh/R0) (41)

taking into account Equations (33) and (39). For τ ≥ τrh, τ can be found using entropy
conservation through the relation

τ = − ln(gs∗/g0s∗)
1/3(T/T0) (42)

where gs∗ is the entropy effective number of degrees of freedom at temperature T, and
T0 = 2.35 · 10−13 GeV. Its precise numerical values are evaluated by using the tables
included in public packages [91,92] and assuming the particle spectrum of the MSSM. For
example, at BBN (T = 2 MeV), τBBN ≃ −23, and at the time of radiation–matter equidensity,
τeq ≃ −8.1, corresponding to zeq = 3387. The values of τrh and τmax are accumulated in
Table 2 for some sample Trh and µ/m̃ ratios. We remark that τmax values are similar for
both Trh, but τrh is smaller for larger Trh.

The energy density of the oscillating z condensate ρz, radiation ρr and matter ρm can
be evaluated as follows [85,90]:

ρz = ρrhe−3(τ−τrh), ρr =
π2

30
g∗T4 and ρm = Ωm0ρce−3τ, (43)

where Ωm0 = 0.311, and the energy density at reheating is given by ρrh = ρr(T = Trh).
Taking advantage of the formulas above, we illustrate our cosmological scenario in Figure 3.
In particular, we present the evolution of various log ρi—with ρi normalized to ρc given
in Equation (14)—as functions of τ, keeping, for simplicity, only the dominant component
of the universal energy density for each τ. As regards log ρi with i = z, we employ the
parameters of BPB in Table 2 besides µ, which is µ = 5m̃/4 for Trh = 1.5 GeV (dashed
line) or µ = 2m̃/5 for Trh = 0.5 GeV (dot-dashed line). We also use solid lines to show
log ρi, with i = r, m. From the plot, it is apparent that our scenario is distinguishable
from the standard scenario, according to which radiation domination commences after
a high Trh∼1 EeV, corresponding to τrh∼−50. We observe that log ρz and log ρm have
the same slope since both are proportional to −3τ, whereas log ρr is more stiff, since it is
proportional to −4τ. In the plot, we also localize the position of τmax, which is the same
for both Trhs, the two τrh values and the equidensity point τeq. Also shown is the τ value
that corresponds to the CS decay τdc for r1/2

ms = 8; see Section 6.2. It is located within the
radiation-dominated era.
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Figure 3. Evolution of log ρi with i = z—dashed line for Trh = 1.5 GeV and dot-dashed line for
Trh = 0.5 GeV—and i = r, m (solid lines) as a function of τ = − ln(1 + z). Also shown are τmax, τrh,
τeq and τdcfor κ = 0.001 and aS = 25.3 TeV.

6. Metastable CSs and Early Matter Domination

The U(1)B−L breaking that occurs for σ ≃ σc produces a network of CSs that may
be stable meta- or quasi- stable. This network has the potential to undergo decay via the
Schwinger production of monopole–antimonopole pairs, thereby leading to the generation
of a stochastic GW background. Below, we compute the tension of these CSs in Section 6.1
and their GW spectra in Section 6.2 under the assumption that they are metastable.

6.1. CS Tension

The dimensionless tension Gµcs of the B − L CSs produced at the end of FHI can be
estimated by [19,44]

Gµcs ≃
1
2

(
M
mP

)2
ϵcs(rcs) with ϵcs(rcs) =

2.4
ln(2/rcs)

and rcs = κ2/8g2 ≤ 10−2, (44)

where we take into account that (B − L)(Φ) = 2—cf. Ref. [45]. Here, G = 1/8πm2
P is the

Newton gravitational constant, and g ≃ 0.7 is the gauge coupling constant at a scale close
to M. For the parameters in Equation (30), we find

0.59 ≲ Gµcs/10−8 ≲ 9.2. (45)

To qualify the result above, we single out the following cases:

(a) If the CSs are stable, the range in Equation (45) is acceptable by the level of the CS
contribution to the observed anisotropies of the CMB, which is confined by Planck [93] in
the range

Gµcs ≲ 2.4 · 10−7 at 95% c.l. (46)

On the other hand, the results of Equation (45) are completely excluded by the recent PTA
bound, which requires [29]

Gµcs ≲ 2 · 10−10 at 95% c.l. (47)

(b) If the CSs are metastable, the explanation [29,40,41] of the recent NANOGrav15 data [25–28]
on stochastic GWs is possible for

M ≳ 0.9 YeV and κ ≳ 0.0003. (48)
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This is because the Gµcs values, obtained through Equation (44), from the ranges above are
confined to a range dictated by the interpretation of recent data [29]:

10−8 ≲ Gµcs ≲ 2.4 · 10−4 for 8.2 ≳
√

rms ≳ 7.5 at 95% c.l. (49)

where the metastability factor rms is the ratio of the monopole mass squared to µcs. Since we
do not investigate monopole formation in our work, the last restriction does not impact our
parameters. Moreover, the GWs obtained from CSs have to be consistent with the upper
bound on their abundance ΩGWh2 originating from the third advanced LVK observing
run [71]:

ΩGWh2 ≲ 6.96 · 10−9 for f = 32 Hz, (50)

where f is the frequency of the observation. At last, although not relevant for our com-
putation, let us mention for completeness that ΩGWh2 should be smaller than the limit
on dark radiation, which is encoded in an upper limit on ∆Neff from BBN and CMB
observations [94]

ΩGWh2 ≲
7
8

(
4

11

)4/3
Ωγ0h2 = 5.6 · 10−6∆Neff with ∆Neff ≲ 0.28 at 95% c.l., (51)

taking into account the TT, TE, EE + lowE + lensing + BAO datasets [83]. Here, Ωγ0h2 ≃
2.5 · 10−5 is the photon relic abundance at present, and we assume that ΩGWh2 develops
a flat shape in a broad range of f values such that the f dependence in Equation (51) is
very weak.

6.2. GWs from Metastable CSs with Low Reheating

We focus here on case (b) of Section 6.1 and compute the spectra of the GWs produced
by the CSs. The presence of the long-lasting matter domination obtained in our set-up due
to the z oscillations after the end of FHI (see Section 4) has important ramifications for the
shape of the spectra of GWs. This is because a decaying-particle-dominated era can be
approximated by matter domination, which leads to spectral suppression at relatively large
frequencies [67–70].

To verify this fact in the case of our model, we compute the emitted GW background
at a frequency f following the standard formula of Ref. [70]:

ΩGWh2 =
8πh2

3H2
0

f (Gµcs)
2

∞

∑
k=1

Ck( f )Pk with H0 =
√

ρc/3m2
P. (52)

Here, ρc is given in Equation (14), and Pk is the power spectrum of GWs emitted by the kth
harmonic of a CS loop. Assuming cusps as the main source of GWs, Pk is given by [70]

Pk ≃ Γ/ζ(4/3)k−4/3 with Γ = 50 and ζ(4/3) = 3.6. (53)

In Equation (52), ΩGWh2 is expressed as a sum of contributions from an infinite number of
normal modes. On technical grounds, however, we take the sum up to kmax∼105 to achieve
a sufficiently accurate result.

Following our cosmological scenario, the number of loops emitting GWs, observed at
a given frequency f , can be found from

Ck( f ) =
2k
f 2

(∫ τrh

τmax
dτe5τHznm +

∫ min{τeq,τdc}

τrh

dτe5τHstnr

+
∫ τdc

τeq
dτe5τHstnrmΘ(τdc − τeq) +

∫ τdc

τeq
dτe5τHstnmΘ(τdc − τeq)

)
, (54)
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where we use τ as an integration variable—cf. Ref. [70]—taking into account Equation (40)
and dz = −e−τdτ. Also, τmax, τrh and τeq are given in Section 5, and τdc corresponds to
the decay τ of the CS network, which is estimated from

τdc = − ln

(
(70/H0)

1/2(ΓΓdcGµcs)
1/4 + 1

)
with Γdc = 4Gµcsm2

Pe−πrms (55)

being the rate per unit length of metastable CSs [49]. For the loop number density per unit
length n(ℓ, t)—with mass dimension 4—we adopt the expressions [70]

nr(ℓ, t) =
0.18

t3/2ℓΓ
5/2 Θ(0.1t − ℓ), (56a)

nm(ℓ, t) =
0.27 − 0.45(ℓ/t)0.31

t2ℓ2
Γ

Θ(0.18t − ℓ), (56b)

nrm(ℓ, t) =
0.18t1/2

eq

t2ℓΓ
5/2 Θ(0.09teq − ℓΓ − ℓ), (56c)

where the subscripts r and m refer to CSs produced and radiating in radiation- and matter-
dominated eras, respectively, whereas rm means that the loops were produced during
radiation domination but were radiating during matter domination. Also, ℓΓ is the initial
length of a loop, which has a length ℓ at a cosmic time t and is given by

ℓΓ = ℓ+ ΓGµcst with Γ ≃ 50 and ℓ = 2keτ/ f . (57)

Here, Γ is related to the energy emission from CSs [67–69] and introduces some uncertainty
in the computation. The Hubble parameter during standard cosmological evolution, Hst,
and during z oscillations, Hz, can be found from the formulas [85,86,89,90]

Hst =
1√
3mP

(ΩΛρc0 + ρm + ρr)
1/2 and Hz = ρ1/2

z /
√

3mP, (58)

where the various ρi values are given in Equation (43). Lastly, cosmic time as a function of
τ is written as

t(τ) =
∫ τ

τmax

dτ′

Hz
Θ(τ− τmax)Θ(τrh − τ) +

∫ τ

τmax

dτ′

Hst
Θ(τ− τrh)

≃
{

2/3Hz for τmax ≤ τ < τrh,
2/3(1 + w)Hst for τ > τrh.

(59)

In particular, we have w = 1/3 or w = 0 for τrh < τ ≤ τeq or τ > τeq, respectively.
Armed with the formulas above, we compute ΩGWh2 for the GWs produced from the

CSs formed in our setting under the assumption that they are metastable. Employing the
inputs of BPB in Table 2—which yield Gµcs = 6 · 10−8—we obtain the outputs displayed
in Figure 4. In particular, in Figure 4a, we show ΩGWh2 as a function of f for r1/2

ms = 8
and µ = m̃/3, which yields Trh = 0.4 (dotted line) or µ = 3m̃, which results in Trh = 3.5
(solid line). On the other hand, for the GW spectra depicted in Figure 4b, we employ
µ = m̃, resulting in Trh = 1.2 GeV, and fix r1/2

ms at 7.9 (dotted line) 8 (solid line) and
8.2 (dashed line); see Equation (49). In both panels of Figure 4, we see that the derived
GW spectra can explain NANOGrav15 data shown with gray, almost vertical lines. We see,
though, that, as r1/2

ms increases, the increase in ΩGWh2 becomes sharper and provides a
better fit to the observations. Also, in both panels, the shape of the GW signal suffers
a diminishment above a turning frequency frh ∼ 0.03 Hz, which enables us to satisfy
Equation (50) more comfortably than in the case with high reheating—cf. Refs. [35,36,38,39].
As Trh decreases, the reduction in ΩGWh2 becomes more drastic, in accordance with the
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findings of Refs. [67–70]. The plots also show examples of sensitivities of possible future
observatories [95–104], which can test the signals at various f values. Needless to say,
the bound in Equation (51) is not depicted since it lies above the ΩGWh2 values displayed
in the plots.

It would be preferable to obtain larger M, and thus Gµcs, values (e.g., M ≃ 10 YeV
yields Gµcs ≃ 10−6) such that the resulting ΩGWh2 enters the dense part of the NANOGrav15

favorable region. This can be achieved (see, e.g., Refs. [21,35,36]) if we use θ = π and a
next-to-minimal version [2] for KI. However, the generation of aS from Z with θ = 0 in
Equation (21c) fixes the sign of the second term in Equation (21b) and does not allow for the
alternative arrangement mentioned above. On the other hand, next-to-next-to-minimal KI
may accommodate [2,3,13,14,21] such an augmentation of the M value without disturbing
the z stabilization during FHI: see Section 4.1. In that case, we expect that aS would not be
constrained by the requirements of successful FHI, and it could be selected so that Trh lies
at a convenient level that allows for the comfortable evasion of the exclusion limits from
the LVK [71] experiment. This setting opens up an interesting interconnection between the
GW experiments and m̃.
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Figure 4. GW spectra from B − L metastable CSs for the inputs of BPB and (a) r1/2
ms = 8 and µ = m̃/3

(dotted line) or µ = 3m̃ (solid line), (b) µ = m̃ and various metastability factors r1/2
ms indicated in the

plot. The shaded areas in the background indicate the sensitivities of the current—i.e., NANOGrav [28]
and LVK [71]—and future—SKA [95], THEIA [96], µAres [97], LISA [98], Taiji [99], TianQin [100],
BBO [101], DECIGO [102], ET [103] and CE [104]—experiments.

7. Predictions for the SUSY Mass Scale

The aS values displayed in Figure 1 and Equation (30)—which result from the obser-
vational constraints to FHI—give us the opportunity to gain information about the mass
scale of SUSY particles through the determination of m̃ = m3/2; see Equation (16). This aim
can be achieved by solving Equation (21c) with respect to m as follows:

m ≃
(

aS

21+ν(2 − ν)

)(2−ν)/2
(

3H2
I

(1 − ν)ν2

)ν/4

, (60)

where we take into account Equation (18) and the fact that ⟨z⟩I/mP∼10−3. As a conse-
quence, the analytic result above well approximates the numerical one, which is obtained
by consistently extracting m as a function of κ and M, determined by the conditions in
Equations (24) and (25). Note that an iterative process has to be realized while introduc-
ing a trial m value, which allows us to use the form of VI in Equation (20) as input. The
aforementioned smallness of ⟨z⟩I causes the diminishment of m compared to aS, therefore
rendering m̃ via Equations (16) and (15a) on the order of the PeV scale. Indeed, for fixed ν,
Equation (60) yields m, and then m3/2, mz and mθ can be easily estimated by Equations (15a)
and (15c), whereas m̃ and Trh can be obtained by Equations (16) and (32). Their numerical
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values are presented in BPs A and B in Table 2. The magnitude of the derived m̃ values and
the necessity for µ∼m̃, established in Section 5, hint toward the high-scale MSSM.

To numerically highlight our expectations above, we display the allowed (gray-shaded)
region in the κ − m̃ plane, fixing ns = 0.965 and varying ν and µ within their possible
respective margins, (0.75 − 1) and (1/3 − 3)m̃; see Figure 5. Along the solid line, we set
ν = 7/8. From Equation (60), we can convince ourselves that the lower boundary curve
of the displayed region is obtained for ν ≃ 0.751, whereas the upper one corresponds to
ν ≃ 0.99. Assuming µ = m̃ as well, we can determine the slice of the area that can be
excluded due to the BBN bound in Equation (37). Overall, we find that m̃ turns out to be
confined to the range

1.2 ≲ aS/TeV ≲ 100 and 0.34 ≲ m̃/PeV ≲ 13.6, (61)

whereas Tmax
rh ≃ 71 GeV, attained for µ = 3m̃ and ν ≃ 0.99. The derived allowed margin

of m̃ and the employed µ values render our proposal compatible with the mass of the
Higgs boson discovered at the LHC if we adopt the high-scale version of the MSSM as a
low-energy effective theory [73]. Indeed, within high-scale SUSY, the updated analysis
requires [73]

3 TeV ≲ m̃ ≲ 0.3 ZeV, (62)

for a degenerate sparticle spectrum, m̃/3 ≤ µ ≤ 3m̃, 1 ≤ tan β ≤ 50 and varying the stop
mixing. On the other hand, our setting does not fit well with natural [62] or split [73] SUSY,
which assumes µ ≪ m̃.
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Figure 5. The region allowed by Equations (24) and (25) in the κ − m̃ plane for m̃/3 ≤ µ ≤ 3m̃,
ns = 0.965 and 3/4 < ν < 1. The allowed contours for ν = 7/8 are also depicted. The hatched area is
the region excluded by BBN for Bh = 0.001.

8. Conclusions

We analyzed the implementation of FHI together with SUSY breaking and CS forma-
tion in a B-L extension of the MSSM. We adopted the superpotential and Kähler potential
in Equations (1) and (3), applying an approximate R symmetry. The model offers the
following interesting achievements:

• Observationally acceptable FHI of the hilltop type, adjusting the tadpole parameter aS
and the B − L-breaking scale M in the ranges of Equation (30).

• A prediction of the SUSY mass scale m̃, which turns out to be on the order of PeV.
• An interpretation of the DE problem without extensive tuning. We obtain λ∼10−12 in

Equation (2c).
• An explanation of the µ term of the MSSM with |µ|∼m3/2 (see Equation (6a)) by

invoking an appropriate modification of the Giudice–Masiero mechanism.
• Reheating generated due to the domination of the sgoldstino condensate after the end

of FHI. Since µ is on the order of PeV, the resulting Trh is higher than its lower bound
from BBN.
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• B − L CSs that, if metastable, explain the recent observations on GWs rather well.
A characteristic of the obtained spectra is their suppression at relatively large fre-
quencies ( f > 0.1 Hz), which is due to the long-lasting matter domination caused by
sgoldstino oscillations.

• The generation of neutrino masses via the type I seesaw mechanism supported by
WMD and KD in Equations (2e) and (6b).

A potential shortcoming of our proposal is that baryogenesis is made difficult due to
the low reheat temperature. Non-thermal leptogenesis is not operative since the sgoldstino
(with mass of order 1 PeV) is lighter than Nc

i , which acquires mass on the order of 1 ZeV—
cf. Ref. [19,24]—and so the direct decay of z into Nc

i is forbidden. However, there are
extensions of the MSSM [105] where the late decay of the sgoldstino may non-thermally
generate the baryon asymmetry of the universe. Alternatively, this problem may be
overcome by applying improved approaches [106] based on the idea of cold electroweak
baryogenesis [107,108]. As regards CDM, the candidacy of the lightest neutralino has to
be investigated thoroughly by precisely solving the relevant Boltzmann equations, as in
Ref. [85,86,109,110]. If the abundance is low, we can slightly open up the decay channel of
z into G̃ so that we obtain a controllable production of neutralinos. Another aspect is the
fate of the R axion, which remains stable throughout our setting [111,112].

As regards naturalness, it is a puzzle why SUSY should appear at such a scale, which
is higher than the electroweak scale, making the fine-tuning severe, while it is much smaller
than the fundamental energy scales, such as the GUT or Planck scales. Our scenario
provides a possible solution to this issue: this may be due to the inflationary selection. In
particular, the apparent fine-tuning could be a result of the combination of FHI and a bias
toward high-scale SUSY in the landscape.
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v.e.v: Vacuum expectation value

Appendix A. Dirac and Majorana Masses of Neutrinos

Here, we check whether the presence of KD in Equation (3)—which is absent in other
similar settings [19,24]—has some impact on the derivation of the neutrino masses. This is
because KD in Equation (6b) contributes to Dirac neutrino masses according to the formulas
of Ref. [82]. In our case, the non-vanishing contributions are

mαβ =
1
2

(
⟨∂2

αβWMD⟩ − ⟨KZZ∗
H ∂3

αβZ∗KHO∂ZWH⟩
)

− m3/2

2

(
⟨KZZ∗

H ∂3
αβZ∗KHO∂ZKH⟩ − ⟨∂2

αβKHO⟩
)

, (A1)

where ∂α := ∂/∂Yα, ∂Z := ∂/∂Z, and we define

KHO = KH + Kµ + KD + |Yα|2 with Yα = Hu, Hd, Φ, Φ̄, L and Nc. (A2)

If we confine ourselves to the case of the third generation, we obtain the following mass
matrix for the neutrino masses: 0 mKD + mWD

mKD + mWD mM

, (A3)

where the various contributions read

mWD = hN⟨Hu⟩/2 & mM = (2ν)ν M/3ν/2 (A4)

mKD =
4nm

3nmP
λDν2ν⟨Hu⟩ω

(
ωN/2−2

(
1
2
− ν +

2
3

ν2
)
− 3

8

)
, (A5)

from which those in the first line come from the terms of Equation (2e), whereas those in
the second line originate from Equation (6b). Note that ω is given in Equation (12). For the
inputs of BPB in Table 2, from the well-known (type I) seesaw formula (see, e.g., Ref. [24])
for the mass of the third-generation neutrino, we obtain ν3, Nc and Nc

3 :

m3ν ≃ m2
WD/M ≃ 0.05 eV and M3Nc ≃ 63 ZeV if h3N = 0.5 and λ3Nc = 0.03. (A6)

The obtained m3ν is phenomenologically acceptable if we assume that the three active νis
have the normal mass hierarchy so that m3ν is equal to the mass induced by atmospheric
νi experiments. For the sample values above, we remark that mWD∼40 GeV dominates
over mKD∼0.01 eV. However, if the terms in WDM are prohibited, then mKD could naturally
account for the neutrino masses thanks to the high m3/2 ∼ PeV [72]. Indeed, the resulting
mKD takes the correct value for λD ≃ 2.05.

In conclusion, our model ensures acceptable neutrino masses from the superpoten-
tial term in Equation (2e) without sizable contributions from the terms of Equation (6b)
emerging in K.
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