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Abstract: Our study evaluated the morphological and functional outcomes, and the side effects, of
voretigene neparvovec (VN) gene therapy for RPE65-mediated inherited retinal dystrophies (IRDs) in
12 eyes (six patients) at the Oxford Eye Hospital with a mean follow-up duration of 8.2 (range 1–12)
months. All patients reported a subjective vision improvement 1 month after gene therapy. Best-
corrected visual acuity (BCVA) remained stable (baseline: 1.28 (±0.71) vs. last follow-up: 1.46 (±0.60);
p = 0.25). Average white Full-Field Stimulus Testing (FST) showed a trend towards improvement
(baseline: −4.41 (±10.62) dB vs. last follow-up: −11.98 (±13.83) dB; p = 0.18). No changes in central
retinal thickness or macular volume were observed. The side effects included mild intraocular
inflammation (two eyes) and cataracts (four eyes). Retinal atrophy occurred in 10 eyes (eight mild,
two severe) but did not impact FST measurements during the follow-up period. Increased intraocular
pressure (IOP) was noted in three patients (six eyes); four eyes (two patients) required glaucoma
surgery. The overall safety and effectiveness of VN treatment in our cohort align with previous VN
clinical trials, except for the higher occurrence of retinal atrophy and increased IOP in our cohort.
This suggests that raised IOP and retinal atrophy may be more common than previously reported.

Keywords: voretigene neparvovec; gene therapy; RPE65-mediated inherited retinal dystrophies; IRD;
functional outcomes; adverse effects; retinal atrophy; high IOP

1. Introduction

Inherited retinal dystrophies (IRDs) represent a significant cause of blindness among
the working-age population [1]. IRDs are known for their phenotypic and genotypic
heterogeneity, with over 280 genes being associated with various forms of IRD [2]. Biallelic
mutations in RPE65, which encodes the isomerase of the retinoid cycle, have been associated
with retinitis pigmentosa type 20 (RP) and Leber congenital amaurosis type 2 (LCA). RPE65
mutations are responsible for approximately 2–16% of mutations observed in patients
with LCA, and they account for 1–2.7% of mutations in patients with autosomal recessive
RP [3]. While the clinical presentation (e.g., age at onset, pattern, rate of progression), and
hence, diagnostic labels (RP, LCA, early-onset retinal dystrophy (EORD), etc.) can vary
between patients, the underlying disease caused by RPE65 mutations eventually leads to
complete blindness if left untreated. Until recently, no treatment options were available

Biomolecules 2023, 13, 1484. https://doi.org/10.3390/biom13101484 https://www.mdpi.com/journal/biomolecules

https://doi.org/10.3390/biom13101484
https://doi.org/10.3390/biom13101484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com
https://orcid.org/0000-0002-7980-4401
https://orcid.org/0000-0001-9878-4621
https://orcid.org/0000-0002-0424-5852
https://doi.org/10.3390/biom13101484
https://www.mdpi.com/journal/biomolecules
https://www.mdpi.com/article/10.3390/biom13101484?type=check_update&version=1


Biomolecules 2023, 13, 1484 2 of 13

and supportive measures were considered the best management for these patients. After
phase I/II and phase III studies demonstrated the safety and efficacy of gene replacement
therapy using voretigene neparvovec (VN) in patients with RPE65-mediated IRDs, the US
Food and Drug Administration (FDA) and the European Medicines Agency (EMA) granted
their approval for the first ocular gene therapy [4,5].

In the pivotal phase III study, which involved 21 patients receiving gene therapy
with VN and a control group of 10 patients, the primary efficacy endpoint was based on
multi-luminance mobility testing (MLMT), which demonstrated a statistically significant
improvement in the treated group after one year [5]. Furthermore, mean white Full-Field
Stimulus Testing (FST) revealed a significant improvement in the intervention group after
one month, and this improvement was sustained and remained stable at the one-year
follow-up [5]. Treatment with VN resulted in nearly a twofold increase in the average sum
of total degrees when assessed using the Goldmann visual field (GVF) [5]. On the other
hand, the intervention group did not demonstrate a statistically significant improvement
in best-corrected visual acuity (BCVA) [5]. The subsequent long-term results of this study
revealed sustained improvements in MLMT, FST and GVF for the full duration of the
follow-up reported (up to 4 years) [6]. Smaller retrospective studies confirmed improve-
ments following VN treatment in behavioral changes, including improved mobility and
reduced dependence on assistive devices, FST in the majority of patients and improved
BCVA and retinal sensitivity in some patients [7–12]. After VN treatment, two eyes showed
partial recovery in light-adapted 30 Hz flicker electroretinography (ERG), as documented
in one of the studies [11]. Significant improvements following the VN treatment were
primarily observed in younger pediatric patients with RPE65 mutations [9,11,12]. However,
the older population with a reduced number of viable retinal cells showed limited improve-
ment [9]. A case report of a 15-year-old patient with an RPE65 mutation who underwent
VN treatment demonstrated improvements in foveal retinal morphology that were partially
correlated with improvements in BCVA [13]. Another case report described the restoration
of the bisretinoid fluorescent signal, as observed on quantitative autofluorescence (AF), six
years following the VN treatment [14].

In the pivotal study, mild ocular side effects were reported during the one-year ob-
servation period following the VN treatment [5]. These included a transient increase in
intraocular pressure (20%), mild intraocular inflammation (10%), cataract formation (15%),
iatrogenic retinal tears (10%), macular holes (5%) and epiretinal membranes (5%). These
side effects were mostly associated with the surgical procedures involved, such as vitrec-
tomy and subretinal injection, and not related to the vector used [5]. The adverse effect
profile was similar in another gene therapy study that involved vitrectomy and subretinal
injection, but with a different vector [15]. This supports the assertion that the reported
side effects are linked to the vitrectomy and subretinal injection procedures rather than
the vector itself. A case report demonstrated macular fold development, resulting in the
irreversible loss of BCVA one day after a vitrectomy with subretinal VN application [16].
The development of an asymptomatic iatrogenic choroidal neovascular complex (CNV)
was also reported as a surgical adverse effect following gene augmentation therapy for
RPE65-mediated IRDs [17].

In 2022, Gange et al. first described the development of progressive retinal atrophy
following treatment with VN [18]. In another retrospective study, retinal atrophic changes
were observed in all 13 eyes that underwent VN treatment [10]. In 2023, Lopez et al. reported
the formation of subretinal deposits in three young patients one week after subretinal VN
application [19]. All patients demonstrated similar improvements in visual function after
the treatment, consistent with the findings reported in previous studies [5,6,19]. The authors
hypothesized that the formation of subretinal deposits could be attributed to an immune
response triggered by the adeno-associated viral vector [19].

In our study, we observed BCVA, FST, central retinal thickness and macular volume
outcomes and adverse effects of VN treatment for biallelic RPE65-mediated IRDs in a
cohort of patients from the Oxford Eye Hospital. Real-world studies like ours are crucial
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for confirming drug effectiveness across heterogeneous populations and offering insights
into long-term safety, especially concerning rare adverse events. Moreover, they provide
information about usage trends and their associated health and economic impacts [20]. We
highlight that patients with more advanced disease and a limited number of viable retinal
cells remaining experience less benefit. We confirm that retinal atrophy is an important
side effect and describe a case of retinal atrophy affecting the fovea. We also report that
glaucoma surgery (goniotomy or tube surgery) was required to control IOP after VN
treatment in two patients and that glaucomatous changes developed in one patient.

2. Methods
2.1. Study Design and Participants

Our retrospective study included 6 patients (12 eyes) with biallelic RPE65-mediated
IRDs treated with bilateral VN at the Oxford Eye Hospital, Oxford University Hospitals
NHS Foundation Trust. The study adhered to the tenets of the Declaration of Helsinki and
was approved by the West Midlands—Edgbaston Research Ethics Committee (reference
20/WM/0176). To be included in the study, participants had to meet the following three
criteria (as per label): a clinical diagnosis of inherited retinal disease, the presence of biallelic
RPE65 mutations, and sufficient viable retinal cells. All three criteria were reviewed by a
multidisciplinary team (MDT), confirming the indication for treatment. After discussing
the pros/cons of treatment with VN, patients provided informed consent for the treatment.
Separate informed consent was obtained for participation in the post-approval safety study
PERCEIVE, sponsored by Novartis [21].

2.2. Procedures

Patients were treated by two vitreoretinal surgeons (MDF and REM) who have ex-
tensive experience in the application of subretinal gene therapy, as described by Russell
et al. [5]. After performing a standard core vitrectomy, triamcinolone acetonide (Kenalog,
Bristol Myers Squibb, Princeton, NJ, USA) was utilized to visualize the remaining vitre-
ous as these IRD patients usually show significant vitreoschisis during posterior vitreous
detachment. A total of 300 µL of 1.5 × 1011 VN solution was slowly injected using a
foot-pedal-operated injection system, which had a maximum injection pressure of 10 psi,
over a duration of 30 to 60 s. The VN solution was directly injected into the subretinal space
without the use of a subretinal pre-bleb.

In all patients, foveal detachment was confirmed using intraoperative OCT (Zeiss
RESCAN 700, OPMI Lumera, Carl Zeiss, Oberkochen, Germany). Three eyes had one
bleb, one eye had two blebs, five eyes had three blebs, and two eyes had four blebs raised.
Patients began taking oral prednisolone as per the packaging instructions: 1 mg/kg/day
(max 40 mg/d) starting three days prior to surgery, which they continued for a duration of
seven days. This was followed by five days of 0.5 mg/kg/day (max 20 mg/d), followed by
0.5 mg/kg prednisolone (max 20 mg/d) every second day over five days. If the second
eye was treated within 14 days of the first, then the higher (pre-operative) dosing schedule
from the relevant day was followed instead. The second eye surgery was performed one
week after the first eye surgery in five patients, while in one patient, the second eye surgery
was performed after one year (due to the COVID-19 pandemic).

Patients underwent baseline examinations prior to surgery, and post-surgery follow-
up examinations were undertaken at 1 month, 3 months, 6 months, and 12 months after
the first eye surgery. Ophthalmological examinations included slit lamp examination via
fundoscopy, the measurement of BCVA and IOP, optical coherence tomography (OCT),
fundus autofluorescence (FAF), fundus wide-angle imaging and FST.
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2.3. Best-Corrected Visual Acuity

BCVA was assessed using optimal refraction correction and following the standard
protocol with the Early Treatment Diabetic Retinopathy Study (ETDRS) visual acuity chart
(Precision Vision, Woodstock, IL, USA) [22]. For patients with BCVA too poor to obtain
measurable responses using the ETDRS chart, the Berkeley Rudimentary Vision Test (BRVT)
was employed as an alternative [23]. For statistical analysis, logarithm of the minimum
angle of resolution (LogMAR) values were utilized.

2.4. Multimodal Imaging

Spectral domain (SD)-OCT and 488 nm AF images were obtained using the Spectralis
imaging platform (Heidelberg Engineering, Inc., Heidelberg, Germany). Volume OCT scans
were acquired, comprising 19 horizontal B-scans with fixation at the fovea. The macular
volume was determined within the 3 mm area defined by the ETDRS grid. The central
retinal thickness was automatically determined by the OCT software (Heidelberg Eye
Explorer 2.0) within a 1 mm radius around the foveola. In cases of inappropriate automatic
segmentation due to advanced retinal pathology, manual segmentation was performed by
a medical retina specialist. Pseudo-color wide-field fundus images were obtained using
Optos (Optomap P200; Optos plc, Dunfermline, UK).

2.5. Full-Field Stimulus Testing

Dark-adapted FST was performed following pupil dilation to assess retinal sensitivity
to 6500 K 4 s white flashes with an interstimulus interval of 5 s following 45 min dark
adaptation using the Diagnosys Espion system (Diagnosys LLC, Cambridge, UK). A value
of 0 dB was set to 0.01 cd/m2. The 2-button box was used with audible cues in a 2-force
choice algorithm using a staircase and Weibull fit function with a 50% probability of
detection in order to calculate the threshold. The eye not being tested was double-patched to
prevent light leakage. Each eye was tested four times with a period of 5 min of re-adaptation
in between each test. The first test was discarded as a learning test and subsequent tests
were averaged for the final result. The right eye was always tested first.

2.6. Statistical Analysis

To assess the statistical significance between variables before surgery and at the last
follow-up, the Wilcoxon signed-rank test was employed. A two-sided p-value threshold of
0.05 was used to determine statistical significance. The analysis was conducted using IBM
SPSS Statistics for Windows, version 28 (IBM Corp., Armonk, NY, USA).

3. Results

The average age of patients at the time of surgery was 36.3 years (range: 18–49 years);
the group comprised five males and one female. All patients underwent molecular genetic
analysis, which confirmed the presence of biallelic RPE65 mutations. In all patients, a
molecular genetic analysis using the RP 111 Gene Panel was performed to exclude other
mutations causing RP and LCA phenotypes. Clinically, four patients were diagnosed with
RP and two patients with LCA type 2. Biallelic RPE65 mutations were homozygous in four
patients and compound heterozygous in two patients (Table 1).

Subjective vision improvement was reported by all patients one month after the gene
therapy. Patient 1 (P1) reported improved visual function in low-light conditions. Patient 2
(P2), who had received gene therapy in the right eye a year prior to the left eye, reported an
increased peripheral visual field in the right eye and improved light sensitivity in the left
eye. Patient 3 (P3) described a significant improvement in eyesight, particularly noticeable
under dim lighting. P3 mentioned using lower brightness settings on her phone and being
able to see parked cars on the street in the dark after the gene therapy. Patients 4 (P4), 5 (P5)
and 6 (P6) all reported improved sensitivity to light.
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Table 1. Demographics and molecular genetic analysis in treated patients with biallelic RPE65
mutations.

Age at Surgery, Sex, Ethnicity Clinical Diagnosis RPE65 Mutation(s) Gene Mutation
Classification Functional Changes

P1, 18 years, Male,
Black British LCA2

Compound Heterozygous
RPE65 C.271C > T;
RPE65 C.1102T > C

Missense;
Missense

p.(Arg91Trp);
p.(Tyr368His)

P2, 49 years, Male, White RP20
Compound Heterozygous

RPE65 C.11 + 5G > A;
RPE65 C.1543C > T

Intronic;
Missense

Disruption of normal splicing;
p.(Arg515Trp)

P3, 19 years, female, Arabic LCA2 Homozygous
RPE65 C.271C > T Missense p.(Arg91Trp)

P4, 40 years, Male, Pakistani RP20 Homozygous
RPE65 C.179T > C Missense p.(Leu60Pro)

P5, 48 years, Male, Pakistani RP20 Homozygous
RPE65 C.179T > C Missense p.(Leu60Pro)

P6, 44 years, Male, White RP20 Homozygous
RPE65 C.560G > A Missense p.(Gly187Glu)

Retinitis pigmentosa (RP), Leber congenital amaurosis type 2 (LCA2).

The average BCVA, converted to LogMAR, remained relatively unchanged after VN
treatment, with a baseline value of 1.28 (±0.71) compared to 1.46 (±0.60) at the last follow-
up (p = 0.25). The average FST with white light showed improvement from −4.41 (±10.62)
dB at baseline to −11.98 (±13.83) dB at the final follow-up. However, this improvement
was not found to be statistically significant (p = 0.18). Central retinal thickness and macular
volume did not show significant changes after VN treatment, with baseline values of
187 (±33) µm and 3.22 (±2.43) mm3, respectively, compared to 177 (±28) µm and 3.04
(±2.97) mm3 at the last follow-up (p = 0.34, p = 0.39). These results can be seen in Table 2
and Figure 1.

Table 2. Functional and morphological outcomes in patients treated with voretigene neparvovec
(VN).

Prior to Gene Therapy At the Last Follow-up

BCVA
logMAR

FST (White)
dB CRT µm BCVA

logMAR
FST (White)

dB CRT µm Follow-up
Months

P1, 18 years, right eye 0.64 −2.9 227 0.69 −19.4 211 12

P1, 18 years, left eye * 0.78 1.9 219 0.9 −16.25 176 12

P2, 49 years, right eye * 1.8 −6 147 1.6 −4.7 174 12

P2, 49 years, left eye 2.8 −4.5 145 2.3 −6.5 143 12

P3, 19 years, right eye * 1.32 −1.3 139 1.2 −35.53 149 12

P3, 19 years, left eye 0.6 2.53 159 1.4 −30.95 154 12

P4, 40 years, right eye 0.6 −10.9 202 0.69 −1.2 131 6

P4, 40 years, left eye * 0.69 −8.4 207 1 −2.35 205 6

P5, 48 years, right eye * 1.5 10.35 198 2.3 6.15 181 6

P5, 48 years, left eye 1.4 10.5 169 2.3 7.06 187 6

P6, 44 years, right eye * 2.3 −19.3 232 1.66 −19.3 206 1

P6, 44 years, left eye 1 −24.9 204 1.54 −20.9 211 1

Best-corrected visual acuity (BCVA), Full-Field Stimulus Testing (FST), central retinal thickness (CRT), first eye
treated (*).
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Figure 1. (A) Mean best-corrected visual acuity (BCVA) (p = 0.25), (B) mean Full-Field Stimulus
Testing (FST, more negative values represent a higher threshold) (p = 0.18), (C) central retinal thickness
(CRT) (p = 0.34) changes from baseline to the last visit. Each datapoint represents an eye.

Retinal atrophy was defined as the development of new atrophy post gene therapy.
All subjects developed some retinal atrophy at the retinotomy (injection) site. A total of
10 out of 12 eyes also developed some retinal atrophy away from the areas of injection. In
eight eyes, the atrophic changes were subtle, asymmetrical and were located within the
area of the bleb. In a young patient (P3) who had substantial and consistent improvements
in FST, bilateral symmetrical retinal atrophic changes also developed outside the bleb area
and in addition to atrophic changes within the bleb area (Figure 2). In the same patient,
foveal retinal atrophy developed in the right eye (Figure 3)—without any loss in BCVA
and without an obvious impact on the visual field at 12 months. In a 44-year-old patient
(P6), retinal atrophy was observed as early as one week after the gene therapy. Atrophy
originated at the retinotomy and extended inferiorly (Figure 4).

Three patients (P4, P5, P6) (six eyes) developed an elevation in IOP. Initially, all three
patients were treated with acetazolamide 250 mg modified-release capsules twice daily
along with IOP-lowering drops. In the case of P6, the IOP increase was temporary and
effectively managed using the aforementioned therapy. For P4 and P5 (four eyes), surgical
intervention for glaucoma was necessary, involving either goniotomy or tube surgery in
order to control the elevated IOP. In P5, the elevated IOP was successfully controlled with
goniotomy in both eyes, six months after the gene therapy, without the patient displaying
any signs of glaucomatous changes. However, in the case of P4, even though tube surgery
in both eyes normalized IOP levels, glaucomatous optic disc changes were observed. P1
(both eyes) developed mild intraocular inflammation one month following gene therapy
with 1+ cells in the anterior chamber. This inflammatory response was effectively managed
with an extended course of topical steroid treatment. Visually significant cataracts with cor-
responding vision worsening were observed in two patients (P4, P5) (four eyes) following
the gene therapy. Cataract surgery was not performed during the study period. None of
our patients developed subretinal deposits.
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Figure 3. Worsening of fovea-involving retinal atrophy (Patient 3). Optical coherence tomography
images showing the fovea prior to gene therapy (A) and at the 12-month follow-up (B). Goldmann
visual field in the same patient prior to gene therapy (C) and at the 12 months follow-up (D);
best-corrected visual acuity (BCVA); Full-Field Stimulus Testing (FST).
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Figure 4. Development of retinal atrophy 1 week after gene therapy (Patient 6). Pseudo-color images
prior to gene therapy (A) and one week after (B). The green arrow indicates the touch-down site of
the subretinal cannula, the red arrows represent the area of new retinal atrophy, and the blue circle
indicates the area of the raised bleb.

4. Discussion

In our study, we present the functional, morphological outcomes and adverse effects
of VN treatment in 12 eyes from a cohort of six patients treated at the Oxford Eye Hospital.
We confirmed the efficacy of treatment regarding overall FST improvements. These im-
provements were primarily observed in younger patients, whilst older patients with more
advanced disease and fewer remaining viable retinal cells showed less improvement. We
confirmed retinal atrophy as an important adverse effect, as described in other reports, and
also described retinal atrophy affecting the fovea.

Patients with RPE65-associated IRDs often present with severe vision impairment or
blindness, nystagmus and night blindness from an early age [24]. Therefore, photoreceptor
degeneration, amblyopia and nystagmus are considered limiting factors for BCVA improve-
ments despite VN treatment [11]. Although a slight BCVA improvement was observed
in the pivotal study [5] and meta-analysis [25], no statistically significant difference was
observed after VN treatment in the previous studies, which is in concordance with our
study. VN treatment improvements in RPE65-associated IRDs are age-dependent [26],
which was confirmed by significant BCVA improvements in studies with pediatric pa-
tients, with the oldest patient treated at 16 years of age [8,11]. However, it is difficult to
determine whether an improvement in visual acuity in pediatric patients is due to direct
effects on cone function, a reduction in nystagmus or both. A study showed that VN
treatment in biallelic RPE65 IRDs markedly reduced the amplitude of infantile pendular
nystagmus [8,11], which is known to be associated with improved BCVA [27]. Therefore,
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BCVA might be underestimated in these patients prior to gene therapy. In our study, there
was a slight worsening in BCVA, but this change was not statistically significant. The slight
deterioration in BCVA was most likely associated with cataract development in four eyes
(P4, P5) and glaucomatous changes in two eyes (P5).

FST is a fixation-independent light sensitivity test that allows for the evaluation of
visual function in patients without stable fixation, very poor BCVA and a limited visual
field [28]. Since it evaluates the lowest illumination perceived throughout the entire
visual field when performed following dark adaptation, it is unaffected by the presence of
nystagmus, but lacks spatial resolution [5]. Significant and rapid improvements in mean
FST (white light) were observed within one month in the pivotal study [5] and real-world
studies [21,29]. A review article highlighted sustained FST improvements in patients after
VN treatment for up to 7.5 years [30]. In our cohort, the mean FST (white) also showed
improvement in line with previous reports. The lack of statistical significance is likely due
to the low number of participants and the baseline characteristics of our patient cohort.
Indeed, significant improvements in FST (at least −16.5 dB improvement) were observed
in all four eyes of the two younger patients (P1, P3). In contrast, FST improvements were
only minimal in the eyes of patients aged 40 years or above (P2, P4, P5, P6). Limited
FST improvements in older patients within our cohort may, in part, be due to cataract
development in two patients and glaucomatous optic nerve changes in one patient.

Regarding the morphological changes observed on OCT in our cohort, there was a
slight decrease in macular volume and central retinal thickness following VN treatment.
However, these changes did not reach statistical significance. A retrospective study of
27 eyes demonstrated a small, yet statistically significant, reduction in central retinal thick-
ness following VN treatment [29]. In a case report, it was observed that after VN treatment,
there was a swift improvement in foveal morphology, characterized by a distinct signal
attributed to the external limiting membrane on OCT and photoreceptors, as visualized via
adaptive optics retinal imaging [13]. Despite observing morphological improvement on
multimodal imaging, the central retinal thickness did not change significantly following
VN treatment [13]. In a retrospective review of six pediatric patients who underwent VN
treatment, notable improvements in BCVA were observed at the 6-month visit. Although
no significant changes were found in central retinal thickness at 6 months, there was a
significant increase in the outer nuclear layer thickness [8]. This suggests that outer nuclear
layer changes may serve as a better morphological biomarker for successful treatment
outcomes than central retinal thickness. A study corroborated this finding by highlighting
that assessing the entire retinal thickness is misleading, as it may be masked by the effects
of retinal remodeling [31].

The development of retinal atrophy following VN treatment was initially reported
by Gange et al. in 2022 [18]. It was defined as progressively enlarging retinal atrophy
beyond the retinotomy site [18]. It was observed within and outside the area of the bleb
in 55% of patients, and spared the fovea in all patients [18]. Despite the development of
retinal atrophy, patients demonstrated consistent improvements in FST and GVF; however,
23.1% of patients developed paracentral visual field loss associated with the atrophy [18].
Subsequently, another retrospective study described retinal atrophic changes in all 13 eyes
that underwent VN treatment [10]. Atrophy, which was preceded by AF changes, could
be observed as early as two weeks after VN treatment. This study further validated that
functional benefits (BCVA, FST, VF) were sustained despite the development of retinal
atrophy [10]. Several theories have been proposed as to the mechanism of retinal atrophy
development including: direct toxicity of the AAV2 vector associated with vector concen-
tration and the CAG promoter; clinical and/or subclinical inflammation associated with
gene therapy; or factors related to the technique of surgical delivery, including the size of
the cannula, speed of injection rate, or possible creation of a pre-bleb [10,18]. In our cohort
of patients, retinal atrophy developed in 10 out of 12 eyes treated with VN. Considering the
high prevalence of retinal atrophy reported in recent studies, including our own cohort, it
is surprising that no retinal atrophic changes were reported in the pivotal studies. It is not
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clear why the early clinical studies did not report the same adverse effect rates for retinal
atrophy and IOP changes. This may reflect detection bias by the investigators or simply a
chance result given the low number of patients treated in these trials. The pivotal phase
3 trial for VN included only 21 patients in the intervention group and 10 in the control
group and was thus significantly underpowered to robustly report on the frequency of
adverse effects [32]. Gange et al. reported that retinal atrophy developed in the perifoveal
area, while the fovea itself remained unaffected [18]. We present a single case with retinal
atrophy involving the fovea (P3, Figure 3). The foveal atrophy did not significantly affect
the patient’s subjective and objective visual function (including BCVA). This may seem
somewhat surprising, but can be explained by the pre-existing amblyopia, nystagmus and
poor fixation due to poor cone-mediated vision from birth.

Atrophy in this patient developed gradually and extensively outside the area of the
subretinal bleb (Figure 2). This observation indicates that slower contributing factors, such
as subclinical inflammation, may play a role in the development of retinal atrophy in this
patient, who had large improvements in FST in both eyes (around −34 dB). In contrast,
another young patient (P1) in our study demonstrated more moderate yet significant
improvements in FST in both eyes, with gains of approximately −18 dB in both eyes.
Notably, this patient did not exhibit any signs of retinal atrophy. These observations
lend themselves to the speculation that there may be an optimal range of moderate FST
improvements where the risk of significant retinal atrophy development is relatively low.
On the other hand, the patient in Figure 4 (P6) developed a rapid onset of retinal atrophy,
within the area of the subretinal bleb. Therefore, we postulate that early-onset retinal
atrophy may be associated with the subretinal injection procedure itself, while late-onset
retinal atrophy may be linked to subclinical inflammation.

In the pivotal study, it was observed that 20% of patients experienced a mild and
transient increase in intraocular pressure (IOP), which was successfully treated with topical
therapy [5]. This incidence rate of elevated IOP is similar to that reported in eyes following
vitrectomy (24.2%) [33]. Therefore, it is likely that the IOP elevation observed in the pivotal
study was associated with vitrectomy and subretinal injection. In contrast, our study
identified two brothers (P4, P5) (four eyes) who developed sustained elevation in IOP,
necessitating glaucoma surgery for effective IOP control. These patients had received
topical and perioperative oral steroids as per the protocol. In addition, Kenalog was
used to stain vitreous remnants during surgery, which adds to the steroid load of the
eye by contrast to the pivotal studies, where no staining agent for vitreous remnants was
used (personal communication with Dr. Russell). Previous studies have demonstrated
that patients with steroid-induced glaucoma may experience persistently elevated IOP
for several months, with approximately 26.5% of patients ultimately requiring surgical
intervention [34]. Therefore, we postulate that the sustained IOP elevation observed in our
two patients was a consequence of steroid-induced raised IOP presumed to be due to the
Kenalog, which was successfully lowered by glaucoma surgery.

The limitations of our study include its retrospective design, a relatively small sample
size, and the absence of a control group.

It is of great interest to all stakeholders—patients, doctors, payers, industry and
regulators—that the latest evidence from real-world studies is used to further refine patient
selection for VN therapy. Currently, the criteria for offering treatment with VN to patients
is based on a clinical diagnosis of an IRD with confirmed biallelic mutations in the gene
RPE65 and evidence of enough viable retinal cells. The latter is not well defined, leading
to variable interpretations even among experts. As a result, there is a lack of consensus
among ocular gene therapy centres regarding the most suitable candidates for treatment.
This highlights the need to conduct further studies aimed at identifying clinical, functional
or morphological biomarkers that can predict a favorable response to VN treatment. In
conclusion, our findings highlight significant functional improvements observed following
VN treatment in younger patients, while also noting the limited improvement observed in
patients with more advanced disease and fewer remaining viable retinal cells. However,
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stabilization may still be a valuable quality-of-life improvement for patients. Retinal
atrophy, which was observed in the majority of patients and was not associated with loss of
visual function, may be more prevalent than previously reported. Further studies should
focus on defining potential biomarkers such as age, baseline FST and outer nuclear layer
thickness that would predict a good response to VN treatment, to aid in the selection of
appropriate candidates for the therapy. More careful monitoring may be required in order
to aggressively treat high IOP in patients who respond to steroids and reduce the risks
of further complications. Therefore, our results showed that VN treatment remains an
important and effective therapy for RPE65-associated IRDs. It notably improves visual
function in patients, and thus, improves their quality of life. Although retinal atrophy is
a significant adverse effect following VN treatment, it was not associated with a loss of
visual function in our patients.
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