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Abstract: Ion channels play a crucial role in a wide range of biological processes, including cell cycle
regulation and cancer progression. In particular, the transient receptor potential (TRP) family of
channels has emerged as a promising therapeutic target due to its involvement in several stages
of cancer development and dissemination. TRP channels are expressed in a large variety of cells
and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal,
and chemical stimuli under physiological and pathological conditions. Some members of the TRP
superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA),
have been investigated in different types of cancer, including breast, prostate, lung, and colorectal
cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion,
angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have
been mechanistically associated with the signaling of cancer pain. Understanding the cellular and
molecular mechanisms by which TRP channels influence cancer provides new opportunities for
the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under
initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of
these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer
treatment, providing new perspectives for the development of effective targeted therapies.

Keywords: ion channel; transient receptor potential (TRP) channels; calcium; tumor proliferation;
tumor metastasis

1. Introduction

According to the World Health Organization (WHO), cancer comprises a large group
of diseases characterized by the rapid growth of abnormal cells that invade neighboring
parts of the body, with the capacity to spread to other organs. More than 100 types of cancer
have been identified so far [1]. Cancer represents a leading cause of death worldwide,
causing nearly 10 million deaths in 2020 [2]. The leading cause in the development of cancer
is an abnormal proliferation of cancer cells, which, rather than responding appropriately to
the signals that regulate normal cell behavior, grow and divide in an uncontrolled manner.
However, because of the large variability in cancers, tissues, organs of origin, predisposing
or causal agents, genetic influence, and differential response to pharmacological treatments,
the identification of common causes, mechanisms, and treatments is practically impossible.
Notwithstanding, an improved knowledge of specific transduction signaling pathways
may offer novel possibilities for innovative targeted treatments.

Ion channels are integral membrane proteins containing an aqueous pore that facilitates
the mobilization of certain ions between cell compartments playing an essential role in cell
functioning [3]. They regulate different cellular pathways, including cell proliferation, migration,
apoptosis, and differentiation, to maintain normal tissue homeostasis. During the phenotypic
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changes that lead from a normal epithelial towards a cancer cell, a series of genetic/epigenetic
changes, among other functions, may affect the activity of the ion channels [4]. Ion transport
across the cell membrane has a crucial role in fundamental tumor cell functions [5], such as cell
migration and cycle progression [6], cell volume regulation, proliferation, and death [7,8], which
play critical roles in tumor cell survival and metastasis [9].

Increasing awareness of the ion channel’s role in tumor progression has led to the
consideration of cancer as a channelopathy, or as a disease characterized by a profound
alteration in ion channel function [10]. A special family of ion channels, called mechano-gated
ion channels, includes the prototypical mechanosensitive piezo channels, which respond
to mechanical stimuli such as changes in membrane tension or force [11]. Another family
of ion channels, the transient receptor potential (TRP) channels, are opened by physical
(mechanical and thermal) and chemical stimuli [12]. The great sensitivity of mechanosensitive
ion channels to modifications in matrix stiffness is another significant feature [13]. Mechanical
signals that operate through mechanosensitive ion channels during tumor growth have an
impact on the microenvironment as well as cancer cells [14]. It has been reported that there is
an association between gliomas and piezo channels in the regulation of tissue stiffness and
tumor mitosis. Piezo1 sustains focal adhesions and supports integrin focal adhesion kinase
(FAK) signaling, tissue stiffening, and extracellular matrix control [15].

Calcium (Ca2+), potassium (K+), and sodium (Na+) channels are examples of channels
involved in tumor growth and metastasis [16]. Ca2+ is an important second messen-
ger whose intracellular levels control several downstream signaling pathways, such as
apoptosis and cell migration, functions that typically affect cancer growth [17]. In some
hormone-sensitive cancers, such as breast cancer, the presence of channels in metastatic cells
is regulated by positive feedback mechanisms, induced by hormone action [18]. Therefore,
those ion channels represent a promising target for tumor treatment [19].

TRP channels are ionic channels permeable to monovalent and divalent cations, with a
conserved structure and a higher selectivity for K+, Na+, and Ca2+ [20]. They have a crucial
role in several pathologies, including metabolic, cardiovascular, and cancer diseases [21,22].
Recently, in a study evaluating transcriptomic and genomic alterations in TRP genes across
more than 10,000 patients, it was found that 27 of 28 TRP genes are correlated with at least
one hallmark of cancer in 33 different tumor types [23]. Furthermore, antagonists and
agonists of TRPs have been used in association with chemotherapy in many tumor models,
although side effects due to a lack of tissue specificity were observed [24–28].

Until now, altered levels in the function of TRP proteins in cancer have been reported,
rather than mutations in the TRP genes [29]. Depending on the stage of the cancer, de-
creased or increased levels of the expression of the normal TRP protein can be detected [30].
Thus, these proteins could represent important markers for predicting tumor progression
and, consequently, potential therapeutical targets [31–35]. Changes in TRP channel ex-
pression have also been associated with the staging of tumor progression [12,36–38]. In
this review article, we summarize the latest research on the involvement of different TRP
channels in cellular processes, such as proliferation, differentiation, migration, invasion,
and angiogenesis, in different cancer subtypes.

2. TRP Channels

The TRP channel family is grouped into seven main subfamilies: ankyrin (with only
one representative, TRPA1), canonical (TRPC1–7), melastatin (TRPM1–8), mucolipins
(TRPML1–3), non-mechanoreceptor potential C (NOMP-like, TRPN1), polycystins (TRPP1–
5), and vanilloid (TRPV1–6) [39] (Figure 1). Except for TRPN1, which has only been
detected in fruit flies and zebrafish [3,6], the other TRP channels have also been detected
in mammals. The mammalian TRP superfamily comprises 28 channels with a conserved
primary structure that consists of six transmembrane domains (S1–S6) containing carboxy
and amino terminal regions located on the intracellular side with the pore-forming loop
located between S5–S6. The main differences between the seven TRP channel subfamilies
are found in the N- and C-terminal cytosolic domains, which contain putative protein inter-
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action and regulatory motifs [40]. TRP channels are activated in several ways: directly by
endogenous agents, including diacylglycerols [41], phosphoinositides [42], eicosanoids [43],
anandamide [44], and reactive oxygen species (ROS) and their byproducts [45,46], and by an
unprecedented series of exogenous compounds, such as capsaicin [47], icilin [48], allicin [49],
allyl isothiocyanate (AITC) [50,51], isopetasin [52], umbellulone [53,54], parthenolide [55],
and acrolein [56], or indirectly, by intracellular mediators produced by the activation of G
protein-coupled receptor (GPCR) or tyrosine kinases receptor [57].
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TRP channels, almost ubiquitously expressed in cells and tissues, play important roles
in health and disease [12,58], including neurological, cardiovascular, metabolic, pulmonary,
psychiatric, and cancer disorders [28,59].

3. TRPs in Cancer
3.1. TRPA1 in Cancer

TRPA1, the only member of the ankyrin subfamily, is a polymodal channel that
can be activated by a wide variety of noxious external stimuli, such as irritants, often
associated with pain and inflammation, and intense cold [60–63]. TRPA1 can also be gated
by several endogenously produced reactive chemical species, including oxidative stress
by-products, such as ROS, reactive nitrogen (RNS), and carbonylic (RCS) species [45,62].
TRPA1 is predominantly expressed in the primary sensory neurons of the dorsal root (DRG),
vagal (VG), and trigeminal (TG) ganglia, where it signals diverse pain stimuli [64–68].
TRPA1 expression has also been reported in non-neuronal cells, including the mouse
inner ear and the organ of Corti [69], vascular endothelial cells [70], enterochromaffin cells
of the respiratory tract [60,71], keratinocytes and melanocytes, synoviocytes, and dental
pulp and gingival fibroblasts [72,73], as well as mast cells, epithelial, and pancreatic β

cells [74–81]. More recently, the presence of TRPA1 in glial cells, such as astrocytes [82],
oligodendrocytes [83], and Schwann cells [84,85], has been reported. In addition, the
expression of TRPA1 has been observed in different cancer cells, including pancreatic
adenocarcinoma and melanoma cells [86,87].

In cancer, TRPA1 activation in prostate tumor endothelial cells acts as a modulator of
angiogenesis, since its activation promotes neovascularization, endothelial cell migration,
and tubulogenesis in vitro in models of human prostate cancer [88]. TRPA1 activation in
lung epithelial cancer cells (A549) can induce a decrease in cell invasion by inhibiting the
cyclooxygenase-2 (COX-2)/prostaglandin E2 pathway in hypoxic cancer cells in vitro [89].
In breast and lung cancer spheroids, TRPA1 activates Ca2+-dependent antiapoptotic path-
ways by promoting ROS resistance [90]. Specifically, TRPA1 upregulated by nuclear factor
erythroid 2-related factor 2 (NRF2), a transcription factor that, by encoding proteins with
antioxidant and anti-inflammatory functions, promotes an adaptive process involving non-
canonical oxidative stress defense and canonical ROS defense mechanisms [90]. Furthermore,
TRPA1 inhibition attenuates xenograft tumor growth and increases chemosensitivity [90].

The TRPA1 protein has been identified in benign human skin lesions (dermal melanocytic
nevi and dysplastic nevi), in cutaneous thin (pT1) and thick (pT4) melanomas, and in two
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different melanoma cell lines (SK-MEL-28 and WM266-4) [87]. In samples of skin lesion
and melanoma, the presence of TRPA1 has been correlated with a progressive increase
in oxidative stress and melanocytic transformation, as well as tumor severity. In vitro
experiments on melanoma cell lines have shown that TRPA1 activation is associated with
the release of H2O2, an observation in line with previous findings that have indicated the
channel as an oxidative stress sensor and amplifier, a function that might affect tumor cells
and proliferation [87].

3.2. TRPA1 in Cancer in Cancer Pain

Recent studies have underlined the role of TRPA1 in cancer pain. In a mouse model
of cancer induced by the subcutaneous inoculation of melanoma B16-F10 cells, neuronal
TRPA1 has been proposed to mediate mechanical and cold hypersensitivity and thigmotaxis
behavior [91]. However, in mouse models of neuropathic pain induced by sciatic partial
nerve ligation or ischemia and reperfusion, a prominent role of TRPA1 expressed in Schwann
cells has been proposed [84,92]. Hematogenic macrophages recruited by increases in C-C
Motif Chemokine Ligand 2 (CCL2) at sites of nerve injury generated a first burst of oxidative
stress that, targeting the peripheral glial cell TRPA1, initiated a feed-forward mechanism
that, via a Ca2+-dependent NADPH oxidase-1 (NOX1), amplified the oxidative stress to
sustain pain signals [84,92]. Schwann cell TRPA1 has been similarly implicated in cancer-
related pain by regulating, via a macrophage colony-stimulating factor (M-CSF), macrophage
expansion and oxidative stress amplification, finally targeting neuronal TRPA1 to signal
pain. In this mouse cancer model evoked by the inoculation of melanoma cells in the mouse
paw, neuroinflammation and mechanical/cold hypersensitivity are maintained by a feed-
forward mechanism, which requires continuous interaction between Schwann cell TRPA1
and expanded endoneurial macrophages throughout the entire sciatic nerve trunk [93].

Pain is also a recurrent symptom of cancer that becomes more frequent and debilitating
in the presence of bone metastases, which are a common consequence of many primary
tumors, including breast cancer [94]. A prominent role for the TRPA1 channel has also
been reported in the development of mechanical hypersensitivity in a mouse model of
metastatic bone cancer pain induced by the intramammary inoculation of breast carci-
noma cells [95,96]. More recently, TRPA1 has been shown to be a regulator of metastatic
bone cancer pain via insulin-like growth factor 1 receptor (IGF-1R) signaling in Schwann
cells [97]. IGF-1, derived from osteoclast activation in osteolytic lesions caused by metastatic
growth, targets its receptor expressed in Schwann cells, thus promoting an endothelial nitric
oxide synthase-mediated TRPA1 activation and ROS release that, via M-CSF-mediated
endoneurial macrophage expansion, sustains proalgesic responses.

3.3. TRPC

There are seven known members of the TRPC family, from TRPC1 to TRPC7. TRPC
channels are widely expressed in many tissues and cells, including neurons, muscle cells, and
epithelial cells. TRPC channels are involved in various physiological processes, such as sensory
perception, smooth muscle contraction, hormone secretion, and cell migration [28]. TRPC
channels can be activated by various signals, including G-protein-coupled receptors (GPCRs),
receptor tyrosine kinases, and intracellular second messengers, such as diacylglycerol (DAG) and
inositol trisphosphate (IP3) [98,99]. Upon activation, TRPC channels allow for the influx of Ca2+

ions into the cytoplasm, leading to an increase in the intracellular Ca2+ concentration. This Ca2+

influx triggers downstream signaling pathways and modulates the activity of various enzymes
and transcription factors, ultimately influencing cell function. Aberrant TRPC channel activity
has been associated with several diseases and pathological conditions, including cardiovascular
disorders, neurodegenerative diseases, and cancer. Therefore, TRPC channels have emerged as
potential therapeutic targets, and efforts are underway to develop drugs that modulate their
activity for the treatment of these conditions.
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3.3.1. TRPC1

TRPC1 is expressed in various types of cancer, including breast, pancreatic, lung, and
glioblastoma multiforme. Its dysregulation has been proposed as a prognostic marker for
some types of cancer [100], including breast cancer, as its expression is modulated by tumor
development and metastasis [101–103]. An increased expression of TRPC1 is has been
positively correlated with epithelial–mesenchymal transition (EMT), a complex process
that induces tumor cells to spread and fight apoptosis, thus conferring a more aggressive
phenotype [104,105]. Recently, it has been reported that TRPC1 overexpression increases
markers for an EMT-like phenotype, such as zinc finger proteins, SNAI1 (SNAIL) and
SNAI2 (SLUG), and VIMENTIN, by increasing invasiveness in mouse breast cancer cell
lines in vitro [106]. TRPC1 is also expressed in human lung carcinoma, and high protein
levels have been correlated with cancer differentiation and proliferation [107].

Aberrant Ca2+ signaling has been implicated in glioma pathogenesis and cell biology influ-
encing cell proliferation, migration, invasion, and angiogenesis [108]. TRPC1 channels, acting
as Ca2+-permeable channels, have been shown to regulate Ca2+ influx in glioma cells [109]. In-
creased Ca2+ influx through TRPC1 channels activates downstream signaling pathways, leading
to cell proliferation and survival [109]. A loss of function of TRPC1, mediated by pharmacological
or genetic inhibition, was found to reduce the proliferation of multinucleated glioma cells, mainly
due to the suppression of store-operated Ca2+ entry (SOCE) [109].

TRPC1 channels have been found to promote glioma cell migration through their
association with focal adhesion proteins and cytoskeletal rearrangement. Furthermore,
TRPC1-mediated Ca2+ signaling can activate proteases and matrix metalloproteinases, facil-
itating the breakdown of the extracellular matrix and promoting glioma cell invasion [110].
TRPC1 channels have been shown to promote the release of pro-angiogenic factors, such as
vascular endothelial growth factor (VEGF), from glioma cells, thus inducing endothelial
cell proliferation and migration and leading to the formation of new blood vessels within
the tumor microenvironment [111].

3.3.2. TRPC3

The TRPC3 protein might contribute to the development of tumor senescent phe-
notypes. Its downregulation in stromal cells promotes cellular senescence, sustaining
inflammation and tumor growth in vivo [112]. TRPC3-mediated Ca2+ influx has been
suggested as an endothelial cell attraction factor in prostate cancer, thus promoting angio-
genesis [88,113]. TRPC3 overexpression has been detected in triple-negative breast cancer
cells, and its activation induces an RAS P21 protein activator 4-mitogen-activated protein
kinase (RASA4-MAPK) signaling cascade that plays a crucial functional role in preserving
proliferation and resistance to apoptosis. A TRPC3 blocker attenuates proliferation, induces
apoptosis, and sensitizes cell death to chemotherapeutic agents [114]. The TRPC3 channel
is also highly expressed in gastric cancer specimens, and its expression is correlated with
malignant progression by modulating the calcineurin B-like 2/glycogen synthase kinase-3
beta/nuclear factor of the activated T cells 2(CNB2/GSK3β/NFATc2) signaling pathway
and controlling cell cycle, apoptosis, and intracellular ROS generation [115].

3.3.3. TRPC5

An aberrant Wnt/β-catenin signaling cascade facilitates cell renewal, proliferation, and
differentiation in several cancer types [116]. The activation of this intracellular pathway
increases the production of the ATP-biding cassette, subfamily B, member 1 (ABCB1), a mul-
tidrug efflux transporter that attenuates the effect of cytotoxic drugs in cancer cells. TRPC5
was found to be overexpressed together with ABCB1 in colorectal cancer cells resistant to 5-
fluorouracil (5-Fu). TRPC5 silencing inhibits Wnt/β-catenin signaling, thus reducing ABCB1
and consequently reverting resistance to 5-Fu [117]. In a similar manner, TRPC5 channel
expression is increased in breast cancer cell lines together with P-glycoprotein (P-gp), another
pump overexpressed by cancer cells to remove cytotoxic drugs. TRPC5 suppression reduces
P-gp levels and causes a reversal of drug resistance in cells [118]. The mechanism by which
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TRPC5 regulates P-gp seems to be specifically controlled through the activation of the nuclear
factor of activated T cells isoform c3 (NFATc3) [119]. In addition, in breast cancer cells, TRPC5
activation promotes autophagy and chemoresistance via the Ca2+/calmodulin-dependent
protein kinase beta/adenosine monophosphate-activated protein kinase alpha/mechanistic
target of rapamycin (CaMKKβ/AMPKα/mTOR) pathway [120]. It has also been shown that
TRPC5 is highly expressed in human breast cancer after long-term chemotherapy treatment,
and its presence has been correlated with an increase in the transcription of vascular endothe-
lial growth factor, which, in turn, stimulates tumor angiogenesis [121]. The TRPC5 channel
seems to promote metastasis in colon cancer. Colon cancer patients with a high expression
of TRPC5 display poorer overall and metastasis-free survival [122]. TRPC5 overexpres-
sion, by increasing intracellular Ca2+ concentration and mesenchymal biomarker expression,
promotes cell migration, invasion, and proliferation [122].

3.3.4. TRPC6

Growing evidence has reported that the pattern of the expression of TRPC6 proteins
is upregulated in several pathophysiological conditions, including cancer. TRPC6 has
been found to be overexpressed in breast cancer biopsy tissues compared to normal breast
tissues [123]. Human breast cancer cells in vitro also display significant levels of TRPC6
expression, and its silencing results in a significant reduction in cell growth [123]. In human
hepatocellular carcinoma cells, transforming growth factor beta (TGFβ) is a mediator of
motility, invasion, and metastases via the stimulation of Na+/Ca2+ exchanger 1 (NCX1),
and TRPC6 activation regulates TGFβ, thus inducing the formation of a TRPC6/NCX1
molecular complex [124]. The expressions of both TRPC6 and NCX1 are markedly increased
in human hepatocellular carcinoma tissues, and their expression levels positively correlate
with migration, invasion, and intrahepatic metastasis [124]. An increased TRPC6 channel
in cervical cancer cell lines induces cell proliferation, suggesting that channel inhibition
might reduce the malignant behavior of the cancer. TRPC6 might be a new target for the
prevention and treatment of cervical cancer [125].

3.4. TRPM

TRPM channels are a family of ion channels that regulate sensory perception, cellular
homeostasis, and signal transduction. TRPM channels respond to a broad array of stimuli,
including temperature, touch, pain, osmolarity, and chemical signals. They are expressed
in various tissues and cell types throughout the body, highlighting their importance in
numerous physiological functions. TRPM channels have gained significant attention in
the field of cancer research due to their potential involvement in tumor progression and
metastasis. Several members of the TRPM channel family have been implicated in cancer
development and are investigated as potential therapeutic targets [126,127].

3.4.1. TRPM1

TRPM1 gene expression has been identified in benign nevi, dysplastic nevi, and
cutaneous melanomas, with a negative association between its presence and melanoma
aggressiveness [128,129]. In contrast, TRPM1 protein expression is associated with tumor
progression and survival in acral melanoma, supposedly because of the activation of
Ca2+/calmodulin-dependent protein kinase II (CaMKII), which facilitates the binding of
CaMKII with protein kinase B (AKT) and activates AKT, promoting melanoma cell colony
formation, mobility, and an increase in tumor growth [130].

3.4.2. TRPM2

TRPM2 is highly expressed in many human cancers (neuroblastoma, breast, gastric,
lung, pancreatic, prostate cancer, squamous cell carcinoma, and T-cell leukemia), where its
activation increases malignant cell survival [131]. The modulation of TRPM2 via oxidative
stress in several pathological conditions has been reported [132]. One additional product
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derived from oxidative stress, ADP-ribose (ADPR), binds to the C- and N-termini of TRPM2,
an action that results in channel activation [133–135].

Channel activation also modulates oxidative stress production. TRPM2 opening
modulates the hypoxia-inducible transcription factor 1/2α (HIF-1/2α) signaling cascade,
including proteins involved in oxidant stress, glycolysis, and mitochondrial function in
neuroblastoma xenograft models [136]. TRPM2 inhibition or depletion reduces cell and
mitochondria Ca2+ influx and decreases activity, autophagy, antioxidant response, and
mitochondrial function, thus impairing tumor cell survival [136–141]. TRPM2 also has
immunomodulatory functions and can influence the tumor microenvironment. TRPM2 ac-
tivation in immune cells, such as macrophages and dendritic cells, affects their polarization
and cytokine production, leading to a modulation of the anti-tumor immune response [142].
Additionally, TRPM2-mediated Ca2+ influx influences the release of inflammatory media-
tors that promote tumor growth and angiogenesis.

3.4.3. TRPM3

TRPM3 plays pleiotropic roles in cellular Ca2+ signaling and homeostasis [143]. TRPM3 has
been identified in several cancer types in mammals, including kidney cell carcinoma, glioma,
melanoma, and melanoma-associated retinopathy (MAR) [144–146]. The TRPM3 channel sup-
ports the growth of clear cell renal cell carcinoma by promoting autophagy [144]. An increased
expression of TRPM3 in renal cell carcinoma leads to Ca2+ influx, which elicits the activation of
CaMKII, 5′-AMP-activated protein kinase (AMPK), and Unc-51-like autophagy-activating kinase
1 (ULK1), as well as the formation of phagophore [147].

MiR-204 is an intron micro-RNA (miRNA) located between exons 7 and 8 of the TRPM3
gene. A reduction in miR-204 induced by the higher methylation of host gene TRPM3 in gliomas
can promote cell migration and enhance cell stemness [148]. It has been shown that TRPM3
interacts with the signal transducer and activator of transcription 3 (STAT3) via the activation of
STAT3-suppressing miR-204 expression. Furthermore, the downregulation of miR-204 via the
methylation of the promoter of its host gene TRPM3 leads to the activation of the Src-STAT3-NFAT
pathway, promoting glioma stem cell invasion and stem cell-like phenotype [149].

3.4.4. TRPM4

In physiological conditions, TRPM4 controls cell migration [150]. It regulates the
activation of T lymphocyte and mast cells, together with the migration of dendritic and mast
cells [151,152]. Under inflammatory conditions, TRPM4 is involved in vascular endothelial
cell migration and ROS production [153]. TRPM4-mediated effects on cell migration are
at least partially due to the activation of Rac family small GTPase 1 (Rac1-GTPase), a key
regulator of cytoskeletal dynamics and cell polarity [154].

TRPM4 channel expression has been described in several cancers, including
prostate [155–157], urinary bladder [158], cervical [159], colorectal [160,161], liver [162],
and large B cell lymphoma [163]. In cancer cells, TRPM4 upregulation is associated with
cancer cell migration, proliferation, and invasion. A recent study has shown that TRPM4
upregulation and its conductivity control the viability and cell cycle of colorectal cancer
cells [164]. Another study revealed that TRPM4 gene defects mechanically engaged intestinal
barrier integrity by depressing the generation of ROS and decreasing mucus production, thus
promoting chronic bowel inflammation, a risk factor for colorectal cancer [160]. A more recent
study indicated that an attenuated expression of TRPM4 is associated with the development
of endometrial carcinoma and breast cancer through the hyperactivation of the phospho-
inositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR)
pathway, which regulates cell transcription, translation, migration, metabolism, proliferation,
and survival [165]. In addition, within normal lymphoid tissues, including the tonsils, lymph
nodes, and appendix, human normal B cells express low levels of TRPM4, while in diffuse
large B cell lymphoma, a higher TRPM4 protein level has been detected, which confers signif-
icantly poorer patient outcomes [163]. Similarly, a higher level of TRPM4 protein correlates
with a higher risk of recurrence following radical prostatectomy [157].
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3.4.5. TRPM6

TRPM6 is mostly expressed in the kidneys, distal small intestine, and colon [166]. The
TRPM6 channel is permeable to magnesium (Mg2+), thus assuming a relevant role in epithe-
lial Mg2+ transport and active Mg2+ absorption, especially in the gut and kidneys [167]. Hy-
pomagnesemia is evidenced in cancer patients after cisplatin-based chemotherapies [168],
and it has emerged as the most notable adverse effect of the anti-epidermal growth factor
receptor (EGFR) monoclonal antibody, cetuximab, which is used widely for the treatment
of advanced colorectal cancer cells [169]. The downregulation of the TRPM6 channel is
present in 80% of primary tumors in colorectal cancer cells, whereas its high expression
increases patient survival [170].

3.4.6. TRPM8

TRPM8, also defined as a “cold receptor”, as it is activated by chemical cooling
agents (such as menthol) [171], exhibits an increased expression in several cancer subtypes,
including colon, breast, and prostate tumors, and it is considered to be a useful prognostic
marker [172–174]. TRPM8 channels in cancer prognosis are associated with the modulation
of cell viability, proliferation, migration, and apoptosis. For example, TRPM8 activation
may regulate AMPK activity by modifying cellular autophagy to control the proliferation
and migration of breast cancer cells. TRPM8 knockdown decreases basal autophagy, while
TRPM8 overexpression increases basal autophagy in several mammalian cancer cell types.
The activation of autophagy-associated signaling pathways for AMPK and unc-51-like
kinase 1 (ULK1), as well as the production of phagophores, are part of the TRPM8 strategy
for controlling autophagy [175].

TRPM8 involvement in the death and apoptosis of bladder cancer cells is due to the
modulation of mitochondrial activity [176,177]. It has also been reported that, in glioblas-
toma, TRPM8 channels modulate the expression of apoptosis-related factors through the
p38/MAPK pathway [178,179]. In colon, oral, esophageal, bladder, and breast cancers,
TRPM8 seems directly involved in invasiveness and metastasis via the regulation of the
epithelial–mesenchymal transition process (EMT) [173,180–182].

3.5. TRPML

The endolysosomal TRPML subfamily consists of the TRPML1, TRPML2, and TRPML3
proteins. TRPMLs share roughly 40% of amino acid sequence similarity and have impor-
tant roles in ion homeostasis, membrane trafficking, exocytosis, and autophagy [183,184].
Two pore channels (TPCs) and TRPMLs are endolysosomal channels regulating the au-
tophagy/lysosome system, which is intensely associated with both cancer progression and
cancer escape from immunosurveillance [185]. Several recent reports have clearly proved
an emerging role for the TRPML channel in cancer development and progression, and a
clinical prognostic role has been suggested [25,185,186].

3.5.1. TRPML1

TRPML1, mainly located in lysosomes, promotes cation efflux into the cytosol [187],
thus controlling lysosomal storage, transportation, and pH homeostasis. TRPML1 mutations
alter lysosomal storage, and lysosomal impairment is responsible for autophagy distortions.
TRPML1 can also be negatively regulated by the target of rapamycin (TOR) with a conse-
quent autophagy reduction, thus supporting a central role of TRPML1 in this process [188].
TRPML1 also regulates the exocytosis of intracellular contents via the endosomal lysosomal
pathway [189,190]. Recent studies have revealed that TRPML1 is significantly increased in
HRAS-positive tumors and oppositely correlated with patient prognosis. The knockdown,
or selective inhibition, of TRPML1 abolishes the proliferation of cancer cells that express
oncogenic HRAS [191]. An increased expression of the TRPML1 gene is also observed in
melanoma cells compared to normal melanocytes, and TRPML1-deficient melanoma cells
exhibit decreased survival, proliferation, and tumor growth [192].
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Recently, an increased TRPML1 expression level has been correlated with poor clinical
outcomes of pancreatic ductal adenocarcinoma patients [193], significantly lowering overall
survival. A role of TRPML1 in pancreatic ductal adenocarcinoma progression has been fur-
ther investigated by using an in vitro cell model, and the results show that the proliferation
of pancreatic ductal adenocarcinoma cells is blocked by TRPML1 depletion. Parallel to this
result, in a pancreatic ductal adenocarcinoma mouse model, TRPML1 was crucial for the
formation and growth of tumors [193]. Altogether, these studies suggest that TRPML1 is
upregulated in cancer cells to promote tumorigenesis. In line with this conclusion, another
study suggests that TRPML1-mediated lysosomal exocytosis, which releases high levels
of ATP to the extracellular space, promotes triple-negative breast cancer cell invasion and
metastasis [194]. Conversely, another recent study proposes that TRPML1 activation in
glioblastoma cell lines reduces cell viability by inducing caspase-3-dependent apopto-
sis [195]. Thus, the loss of TRPML1 expression is strongly correlated with a short survival
in glioblastoma patients, suggesting that a reduction in TRPML1 expression represents a
negative prognostic factor in glioblastoma patients [195].

3.5.2. TRPML2

While TRPML1 is mainly localized in late endosomes and lysosomes in all tissues,
TRPML2 is primarily expressed in myeloid and lymphoid cell lineages as recycling endo-
somes [196]. Due to its higher expression in immune cells compared to other endolysosomal
ion channels, a role for the channel in innate immune responses has been postulated [197,198].
TRPML2-knockout mice display an impaired recruitment of peripheral macrophages in
response to inflammation, suggesting a potential defect in the immune response.

A link between TRPML2 expression and cancer has been investigated in different
tumor types. Overall, a pro-tumorigenic role of TRPML2 has recently been proposed [199].
TRPML2 silencing decreases proliferation and cell viability by abolishing AKT/ERK1/2
phosphorylation and provokes apoptosis in glioma cell lines. Moreover, a role for TRPML2
in prostate cancer has recently been reported [200]. Via the regulation of the interleukin-1
beta/factor nuclear kappa B (IL-1β/NF-κB) pathway, TRPML2 activation promotes cancer
cell proliferation, migration, and invasion.

3.5.3. TRPML3

Differing from TRPML1, which is ubiquitously expressed in all tissues, TRPML3
is mainly expressed in specific organs, such as the kidneys, lungs, back skin, and thy-
mus [201,202]. TRPML3 was discovered in plasma membrane and multiple intracellular
compartments, including autophagosomes, early and late endosomes, and lysosomes,
where channel activation is involved in autophagy regulation [203]. Although its role in
cancer has been poorly explored, a detailed analysis in ‘The Cancer Genome Atlas’ (TCGA)
revealed that the downregulation of TRPML3/MCOLN3 is associated with a relatively
better survival in several types of cancers, including adrenocortical, breast invasive, uterine
corpus endometrial, kidney renal clear cell, and kidney papillary cell carcinomas, colon,
lung, lung squamous cell, rectal, and stomach adenocarcinomas, pheochromocytoma, and
paraganglioma, thymoma, and uterine carcinosarcoma [204].

3.6. TRPP

The TRPP family consists of three members: TRPP2, TRPP3, and TRPP5. TRPP2 has
been demonstrated to be an active coordinator in TRP channel heteromerization. The
physical interaction of TRPP2, also known as polycystin-2 (PKD2), with polycystin-1
(PKD1) was identified 26 years ago [205]. A study reported that PKD1 is present in stem
cells of variable origins. The overexpression of PKD1 enhances the cell mobility and
differentiation in umbilical-cord-blood-derived stem cells [206]. Functionally, TRPP2 is
involved in the regulation of smooth muscle contraction, cell proliferation, and mechanical
sensation [207]. It has been reported that TRPP2 activation enhances the metastasis of
laryngeal squamous cell carcinoma, regulating the EMT [208]. The silencing of TRPP2
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significantly suppresses ATP-induced Ca2+ release, wound healing, and cell invasion,
which collaboratively diminishes the SMAD family member 4 (Smad4), STAT3, SNAIL,
SLUG, and TWIST expression.

3.7. TRPV

TRPV channels are a group of ion channels that play crucial roles in sensory signaling
and are involved in a wide range of physiological processes. These channels are named after
their founding member, vanilloid 1 (TRPV1), which deorphanized the so-called receptor for
capsaicin, the spicy ingredient of chili peppers [209,210]. TRPV channels are widespread
in various tissues throughout the body, including neurons, epithelial cells, and immune
cells. They are non-selective cation channels, allowing for the influx of Ca2+, Na+, and K+

across the cell membrane. TRPV channels are characterized by their sensitivity to multiple
physical and chemical stimuli, including temperature, pH, mechanical stress, and various
endogenous and exogenous compounds.

TRPV channels have been increasingly involved in cancer development and progres-
sion. Emerging evidence suggests that these channels play significant roles in various
aspects of cancer biology, including tumor cell proliferation, migration, invasion, angio-
genesis, and resistance to therapy. The dysregulation of TRPV channels in cancer suggests
their potential as therapeutic targets. Modulating the activity of TRPV channels could help
to inhibit tumor growth and metastasis and enhance the efficacy of existing therapies.

3.7.1. TRPV1

The TRPV1 channel is the selective molecular target of the vanilloid capsaicin, but it
can also be gated by acid (pH < 6.5), ethanol, and heat [209,211,212]. Although TRPV1 is
mainly localized to the plasma membrane, it can also be detected in the endoplasmic and
sarcoplasmic reticulum [213,214], providing a pathway for the release of Ca2+ from these intra-
cellular stores. The capsaicin-induced stimulation of TRPV1 triggers the apoptosis of human
urothelial cancer cells via the activation of the ataxia telangiectasia mutated/CHK2/p53DNA
damage response and Fas/CD95-mediated apoptotic pathways [215]. In tumor cells, pro-
liferation, invasion, and metastasis are controlled by Ca2+ signaling. TRPV1 is functionally
expressed in human esophageal squamous cells, and thermo-TRPVs might play an important
role in the development of esophageal squamous cells [216]. It has been reported that TRPV1
overactivation supports the proliferation and/or migration of esophageal squamous cells.

An elevated TRPV1 expression has been proven in squamous cell carcinoma of the
human tongue, lung cancer, and breast cancer [217–219]. TRPV1 exceptionally suppresses
the development of gastric cancer through a novel Ca2+/CaMKKβ/AMPK pathway, and
its downregulation has been associated with poor survival in human gastric cancer patients.
Thus, TRPV1 upregulation and its downstream signaling may represent promising targets
for gastric cancer prevention and therapy [220]. Little is known about TRPV1 and cancer-
induced chemosensitivity.

3.7.2. TRPV2

While TRPV1 expression is primarily localized to the plasma membrane [221], TRPV2
is found in intracellular membranes [222]. TRPV2 is implicated in the signaling pathways
that mediate cell survival, proliferation, and metastasis. In leukemia and bladder cancer, the
oncogenic activity of TRPV2 relates to a different expression profile of the receptor. It can be
overexpressed in cancerous cells, increasing tumor aggressivity, and its silencing or blocking
can trigger apoptosis and cell cycle arrest [223]. Oxidative stress generated by TRPV2 in
human hepatoma cell lines induces cell death, involving the inhibition of pro-survival signaling
proteins and the activation of pro-death signaling proteins [224]. The higher expression of
TRPV2 in gastric cancer patients has been proposed as a prognostic biomarker and potential
therapeutic target [225]. TRPV2 expression has been evaluated in epidermal melanocytes, two
human malignant melanoma, and two metastatic melanoma cell lines [226]. TRPV2-mediated
melanoma cell death via channel activation favors the antitumor process.
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In multiple myeloma patients, TRPV2 overexpression is associated with bone tissue
damage and a poor prognosis. A loss or inactivation of TRPV2 also increases glioblastoma
cell proliferation and provokes resistance to CD95-induced apoptotic cell death [145]. TRPV2
mediates cell adhesion, migration, and invasion by stimulating adrenomedullin in prostate
and urothelial cancer [227]. Adrenomedullin induces prostate and urothelial cancer cell
migration and invasion through TRPV2 translocation to the plasma membrane and an
ensuing increase in the resting Ca2+ level. In prostate cancer, TRPV2 overexpression is also
correlated with castration-resistant phenotype and metastasis [228]. Recent analyses have
demonstrated that high expressions of TRPV2 and TRPM4 are negatively correlated with the
prognosis of uveal melanoma patients [165]. TRPV2 overexpression is also linked to high
relapse-free survival in triple-negative breast cancer, where the reverse is found in patients
with esophageal squamous cell carcinoma or gastric cancer. Overall, these findings validate
TRPV2 as a potential candidate for a cancer biomarker and future therapeutic target [223].

3.7.3. TRPV3

TRPV3 is a Ca2+-permeable nonselective cation channel broadly expressed in skin ker-
atinocytes, along with oral and nasal epithelia [229]. Although the role of TRPV3 in cancer has
not been extensively studied, emerging evidence suggests its potential implications in cancer
development and progression. Several studies have reported altered expression patterns of
TRPV3 in various cancer types, indicating its possible involvement in oncogenic processes. In
some cancers, such as non-small lung cancer, melanoma, squamous cell carcinoma, and breast
cancer, TRPV3 expression has been found to be upregulated. An increased TRPV3 expression
has been associated with cancer cell proliferation, survival, and invasion [230,231]. The activation
of TRPV3 has been shown to promote cancer cell growth by triggering the intracellular signaling
pathways involved in cell proliferation, such as the ERK1/2 pathway. Additionally, TRPV3
activation can induce the expressions of genes associated with cancer progression and metastasis,
including matrix metalloproteinases (MMPs) and VEGF.

3.7.4. TRPV4

The TRPV4 channel is a non-selective cation channel that is extensively expressed in
several tissues, where it acts as a molecular sensor and a transducer that regulates a variety
of functional activities [232–236]. Like other channels, the modulation of TRPV4 channel
expression is observed to be closely related to tumor formation progression and metastasis.
TRPV4 is overexpressed in colorectal, lung, and gastric cancer cells, but in other tumors,
including prostate, skin, and esophageal cancer cells, TRPV4 channel expression appears to
be normal [237,238]. The latest findings indicate that TRPV4 induces apoptosis via p38 MAPK
in human lung cancer cells. TRPV4 overexpression in human lung cancer cell lines induces
cell death and inhibits cell proliferation and migration. The inhibition of p38 MAPK reduces
TRPV4’s effects on the cell proliferation, apoptosis, and migration of those cells. Collectively,
this can imply that TRPV4 is a candidate target for human lung cancer therapy [239].

An abnormal TRPV4 expression is linked to gastric, liver, pancreatic, colorectal, lung,
and breast cancers [237,240]. The upregulation of TRPV4 has been identified in breast cancer
cell lines with the potential to metastasize, and its expression appears to increase with tumor
grade and size, and to correlate with poor survival [241,242]. Furthermore, TRPV4 has been
linked to cell proliferation through the CaMKII pathway and the regulation of apoptosis in
distinct cancer models [243,244]. According to recent studies, tumor growth and metastasis
are significantly increased in a syngeneic Lewis lung carcinoma tumor model of endothelial-
specific TRPV4 knockout (TRPV4-ECKO) mice compared to wild-type mice [245]. This tumor
growth is accompanied by increased tumor angiogenesis and metastasis compatible with the
abnormal leaky vessels observed. Mechanistically, in TRPV4-ECKO mouse tumors, proteins
that are related to endothelial structure and cell proliferation, such as vascular endothelial
growth factor receptor 2 (VEGFR2), p-ERK, and MMP-9 expression, are increased. Thus,
endothelial TRPV4 emerges as a subtle modulator of vascular integrity and an inhibitor of
tumor angiogenesis, given that the deletion of TRPV4 promotes tumor angiogenesis, growth,
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and metastasis [245]. TRPV4 expression is higher in breast metastatic lesions compared to
normal breast tissue and invasive ductal carcinomas, and its expression increases with tumor
grade and size [246]. Conversely, TRPV4 is markedly downregulated in keratinocytes in the
premalignant lesions of non-melanoma skin cancer, such as solar keratosis and Bowen’s dis-
ease, and in basal and squamous cell carcinoma [247]. The suppression of TRPV4 expression
in keratinocytes has been correlated with the increase in cytokines and prostaglandins within
the tumor milieu [247].

3.7.5. TRPV5

TRPV5 is a Ca2+-selective ion channel widely expressed in many tissues, including
urinary bladder and kidney, where it acts as a gatekeeper of active Ca2+ reabsorption [248,249].
Altered TRPV5 expression has been identified among the different renal cell carcinoma
histopathological subtypes. An altered vitamin D receptor expression may be associated
with renal cell carcinoma carcinogenesis via TRPV5/6 [250].

Ca2+ deficiency triggers abnormal colonic growth and increases colon cancer risk with
well-known mechanisms [251]. The parathyroid glands play an overall regulatory role
in systemic Ca2+ homeostasis. There was a presence of TRPV5 and TRPV6 in sporadic
parathyroid adenomas and normal parathyroid glands co-localized with Ca2+-sensing
receptors on the membrane surface, although immunoreactivity was present in the cytosol
and around the nuclei. An increased expression of both channels in adenoma compared
to normal glands implies a relationship between cell Ca2+ signaling and pathological pro-
cesses [252]. A recent study showed that low Ca2+-induced IGF signaling is mediated by
TRPV5-associated membrane depolarization. These results disclose a novel signaling mech-
anism that results in abnormal epithelial proliferation associated with Ca2+ deficiency [253].
A reduced TRPV5 expression in tumor tissues is detected in non-small-cell lung cancer
patients and associated with a shorter median survival time after surgical resection. The
combined expression of TRPV5 and TRPV6 in tumor tissues exhibited promising prognostic
value in non-small-cell lung cancer patients [254].

3.7.6. TRPV6

TRPV6 is a membrane Ca2+ channel widely expressed by the epithelial tissues of many
tissues, such as the intestines, kidneys, placenta, epididymis, and exocrine glands [255].
The expression of the TRPV6 gene is remarkably upregulated in several human malig-
nancies, including the most common cancers: prostate and breast cancer [34,256]. TRPV6
appears to be expressed in various cancer cell lines, but a direct identification of the TRPV6
protein using mass spectrometry has only been shown in the human breast cancer cell line,
T47D [257], and in the human lymph node prostate cancer cell line, LNCaP [258].

Mechanistically, TRPV6-mediated Ca2+ influx maintains the inactive state by targeting
IGF-mediated AKT-TOR and ERK signaling. A recent study showed that, in zebrafish
epithelia and human colon carcinoma cells, TRPV6 diminishes intracellular Ca2+ levels
and activates protein phosphatase 2A (PP2A), which downregulates IGF signaling and
endorses the inactive state. This suggests that TRPV6 mediates a constitutive Ca2+ influx
into epithelial cells to continuously suppress growth factor signaling and maintain the
quiescent state [259]. In addition, TRPV6 activates NFATc2 by increasing the nuclear factor
of activated T cells 2 interacting protein (NFATc2IP) phosphorylation, and CDK5 may be the
candidate for performing this phosphorylation. Consequently, activated NFATc2 escalates
breast cancer metastasis by upregulating ADAM metallopeptidase with thrombospondin
type 1 motif 6 (ADAMTS6) expression. These findings indicate that TRPV6 increases
NFATc2 transcriptional activity by targeting NFATc2IP phosphorylation, which finally
upregulates ADAMTS6 expression to stimulate breast cancer metastasis [260]. One study
has revealed a co-expression pattern between TRPV5 and TRPV6 channels in the human
myeloid leukemia cell line K562, which proposes that the channel interaction contributes to
intracellular Ca2+ signaling [261] (Table 1).
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Table 1. TRP channels and cancer types.

TRP Channel Cancer Type Cell Type Effect Relative Expression Reference

TRPA1

Pancreatic adenocarcinoma Panc-1 cells Not exact outcome Upregulated [86]

Melanoma SK-MEL-28 and WM266-4 Amplifies the oxidative stress signal that affects
tumor cell survival and proliferation - [87]

Prostate cancer Prostate tumor endothelial cells (PTEC) Angiogenic factor Upregulated [88]

Breast cancer Invasive ductal breast carcinoma
Upregulates Ca2+

dependent anti-apoptotic
pathway

Upregulated [90,96]

Lung cancer Human pulmonary epithelial A549 cells Suppresses
hypoxia-induced COX-2 Activated [89]

Bone cancer 4T1 breast cancer cell line Induces production of inflammatory substances Activated [95]

TRPC

Breast cancer Human breast ductal adenocarcinoma (hBDA),
Small breast epithelial mucin (SBEM) - Upregulated [101–103,106]

TRPC1

Lung carcinoma Non-small cell lung cancer (NSCLC), A549
cell line

Enhances Ca2+ influx and
proliferation

Upregulated [107]

Glioblastoma Multiforme D54MG (GMB cell line) Reduces Ca2+ influx and
proliferation

- [100]

Glioma Malignant glioma cell line, U-87 MG cells Hypoxia-induced VEGF
expression Unchanged [108,110,111]

TRPC3

Prostate cancer Human prostate tumor-derived ECs (TECs) Endothelial prostate cancer
attraction factor Upregulated [88,113]

Breast cancer Triple-negative breast cancer (TNBC) cell line
MDA-MB-231 Ca2+-promoted Ras-MAPK pathway suppressor Upregulated [114]

Gastric cancer Clinical GC specimens
Regulates ROCE-AKT/GSK3β-CNB2/NFATc2

cascade for cell cycle checkpoint, apoptosis, and
intracellular ROS production

Upregulated [115]

TRPC5

Colorectal cancer CRC cell line HCT-8 and Lo Vo Increases nuclear β-catenin accumulation for
chemotherapy resistance Upregulated [117]

Breast cancer MCF-7, T47D, and MDA-MB 231 cells Promotes drug resistance via
CaMKKβ/AMPKα/mTOR Upregulated [118–121]

Colon cancer SW620, RKO, SW1116, HT29, and HCT116
cell lines Promotes tumor metastasis via the HIF-1α-Twist Upregulated [122]

TRPC6
Breast cancer Breast cancer biopsy tissue, MCF-7 and

MDA-MB-231 cell line - Upregulated [123]

Hepatocellular carcinoma HepG2 and Huh7 cell lines Mediates TGFβ-driven cell migration and invasion Upregulated [124]
Cervical cancer HeLa and SiHa cell lines - Up-regulated [125]
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Table 1. Cont.

TRP Channel Cancer Type Cell Type Effect Relative Expression Reference

TRPM

TRPM1 Acral melanoma Tumor specimens Promotes tumor progression and malignancy by
activating Ca2+CaMKIIδ/AKT pathway Upregulated [130]

TRPM2
Neuroblastoma TRPM2-depleted SH-SY5Y neuroblastoma cells Modulates cell survival through mitochondrial ROS Downregulated [136]
T-cell leukemia 4T1, LLC, 4T07, and 168FARN cancer cell line - Upregulated [142]

TRPM3

Renal cell carcinoma 786-O and A498 cell lines The von Hippel–Lindau tumor suppressor (VHL)
represses TRPM3 through miR-204 - [144,147]

Glioma LN382T and SNB19 cell line Loss in glioma Downregulated [145]
Melanoma Retinal - Upregulated [146]

Melanoma-associated
retinopathy (MAR) Retinal Pigment Epithelium (RPE) - Upregulated [146]

TRPM4

Prostate cancer PC3 and LnCaP cell lines Induces the expression of Snail1 gene and EMT Upregulated [155–157]

Urinary bladder cancer Samples from patients diagnosed with bladder
cancer - No difference [158]

Cervical cancer
HT-3, ME-180, CaSki, MS751, C-4I, C-33A,

SW756, HeLa, and SiHa cell lines and primary
tumor specimens

Enhances tumorigenesis Upregulated [159]

Colorectal cancer Tumor specimen from CRC patients Contributes to proliferation and invasion of
tumor cells Upregulated [160,161,164]

Hepatocellular carcinoma - Contributes to proliferation, adhesion, and migration of
tumor cells - [162]

Large B cell lymphoma Diffuse large B cell lymphoma (DLBCL) - Upregulated [163]

Endometrial carcinoma Specimens from
patients with EC

Strongly associated with pro-cancer signaling
pathways such as P13K-AKT-Mtor Upregulated [165]

Breast cancer MDA-MB-231, MCF7, MCF10A, and T47D - Upregulated [165]

TRPM6 Colorectal cancer Human colon cancer samples - Downregulated [169,170]

TRPM8

Colon cancer Tumor samples from colon cancer patients and
CT26 cell line Promotes colon cancer liver metastasis via Akt/GSK3 Upregulated [180]

Breast cancer Breast cancer cell line MCF-7
Channel expression is
regulated by estrogen

receptor-α
Upregulated [172,173]

Prostate tumor Human neoplastic prostatic tissue, BPH-1,
LNCaP, C4-2B, VCaP, and NCI-H660 cell lines

Promotes hypoxic growth adaptation of cancer cells
via RACK1-mediated stabilization of HIF-1α Upregulated [174,262]

Bladder cancer Human bladder cancer cell line T24 Induces mitochondrial
membrane depolarization and cell death Upregulated [176,177]

Glioblastoma Human glioblastoma cell line U251 Contributes to survival, proliferation, apoptosis, and
local tumor invasion Upregulated [178,179]

Esophageal cancer
Human esophageal cancer cell line: EC109,

KYSE-150, TE1, and TE10. Also, tissues from
patients diagnosed with esophageal cancer

Mediates activation of the calcineurin-NFATc3
signaling pathway and PD-L1

expression
Upregulated [182,262]
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Table 1. Cont.

TRP Channel Cancer Type Cell Type Effect Relative Expression Reference

TRPML

TRPML1

Melanoma Melanoma specimen from patients Promotes protein homeostasis in melanoma cells by
negatively regulating MAPK and mTORC1 Upregulated [192]

Pancreatic ductal
adenocarcinoma

Fresh samples from patients with PDAC and
human pancreatic cancer lines PANC-1

and BxPC-3
- Upregulated [193]

Breast cancer MCF10, MDA-MB-231, MCF7, Hs 578 T, and
SUM159PT breast cancer cell line

Regulates cancer development by promoting
mTORC1 and purinergic signaling Upregulated [194]

Glioblastoma Biopsies from patients and T98 and U251
cell lines

Releases intracellular Ca2+ autophagy and apoptotic
cell death

Downregulated [195]

TRPML2
Glioma T98 and U251 cell lines Promotes cancer progression Upregulated [199]

Prostate cancer Human PCa cell lines PC-3, DU145, and LNCaP Promotes cancer progression via
IL-1β/NF-κB pathway Upregulated [200]

TRPML3

Adrenocortical, Breast
invasive, Uterine corpus

endometrial, Kidney renal
clear cell, and Kidney

papillary cell carcinomas,
Colon, Lung, Lung

squamous cell, rectal, and
Stomach adenocarcinomas,
Pheochromocytoma, and

Paraganglioma, Thymoma,
and Uterine carcinosarcoma

- Regulates autophagy and autophagosome formation Downregulated [204]

TRPP Laryngeal squamous cell
carcinoma Human LSCC tissue and Hep 2 cell line TRPP2 siRNA significantly decreased Smad4, STAT3,

SNAIL, SLUG, and TWIST expression Upregulated

TRPV TRPV1

Bladder cancer Human urothelial cell lines J82, EJ, and TCCSUP Induces Fas/CD95-mediated intrinsic ad
extrinsic pathways Downregulated

Esophageal squamous
cell carcinoma Human ESCC cell lines Eca109 and TE-1 Promotes cellular proliferation and migration Upregulated [216]

Lung cancer A549 cell line
Induces chemoresistance by upregulation of ABCA5

drug transporter gene and increases IL-8 signaling and
cell survival

Upregulated [218]

Breast cancer Breast cancer tissues from patients and
SUM149PY cell line Enhances apoptosis Upregulated [219]

Gastric cancer Human primary GC tissues Suppresses GC development through
Ca2+/CaMKKβ/AMPK Downregulated [220]

Oral cancer Fresh tissues from patients with tongue SCC or
epithelial leukoplakia - Upregulated [217]
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Table 1. Cont.

TRP Channel Cancer Type Cell Type Effect Relative Expression Reference

TRPV

TRPV2

Leukemia K562, U937, and THP-1 cell lines Promotes cell survival and growth Upregulated [223]

Hepatocellular carcinoma HepG2 and Huh7 cell lines Promotes cytotoxicity of H202- via activation of p38
and JNK1 Upregulated [224]

Gastric cancer Gastric Cancer patients Maintains intracellular Ca2+ at low concentration
and cell resistance to apoptosis

Upregulated [225]

Malignant Melanoma A2058 and A375 cell lines Regulates AKT pathway and antitumor process Upregulated [226]

Glioblastoma GBM patient tumor Reduces cell proliferation and enhances Fas-induced
apoptosis via ERK Upregulated [145]

Prostate and
urothelial cancer

Human PCa cell line PC-3 and urothelial cancer
cell line T24/83

Mediates adrenomedullin stimulation, cell adhesion,
migration, and invasion Upregulated [227,228]

Uveal Melanoma Patient samples and A2058 cell line Mediates cell invasion via Ca2+-sensitive
protease calpain

Upregulated [165]

Esophageal squamous
cell carcinoma TE5, TE8, TE19m, and TE15 cell line Regulates cancer progression via WNT/β-catenin or

basal cell carcinoma signaling Upregulated [223]

Breast cancer MCF-7, BT-474, and MDA-MB-231 cell line - Upregulated [223]

TRPV3
Non-small lung cancer Specimens from patients with NSCLC and A549

and H1299 cell lines

Modulates cell cycle arrest
via reduction of

Cyclin A, D1, and E
Upregulated [230,231]

Squamous cell carcinoma A549 and H1299 lung cancer cell lines Modulates intracellular Ca2+ influx and facilitates
phosphorylation of CaMKII

Upregulated

TRPV4

Colorectal cancer Specimens from patients with
colon adenocarcinoma

Regulates Ca2+ homeostasis for cell proliferation,
differentiation, apoptosis, and migration

Upregulated [237]

Lung cancer A549 and H460 human lung cancer cell line Induces apoptosis via p38 MAPK Upregulated [239]

Esophageal cancer Primary epithelial cells
Reduces ATP,

cell proliferation,
and migration

Downregulated [238]

Breast cancer Patient samples and 4T07 cell line Activates AKT and downregulates E-cadherin Upregulated [241,242,246]

Pancreatic cancer Fresh tissues from patients with PDAC Modulates Ca2+ mobilization and mitochondrial
depolarization

Upregulated [240]

Lewis lung carcinoma Primary mouse endothelial cells and
endothelial-specific TRPV4 knockout mice line

Prevents tumor growth and metastasis via
modulation of tumor angiogenesis Downregulated [245]

TRPV5

Renal cell carcinoma Fresh-frozen primary tumor from renal cell
carcinoma patients

Inhibits tumor growth, angiogenesis, and metastasis
via Vitamin D receptor Downregulated [250]

Non-small lung cancer Fresh tumor samples collected from Non-small
lung cancer patients - Downregulated [254]

Colon cancer Colon Adenoma, adenocarcinoma Facilitates the onset and progression of cancer Upregulated [251,252]
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Table 1. Cont.

TRP Channel Cancer Type Cell Type Effect Relative Expression Reference

TRPV TRPV6

Breast cancer Breast cancer cell line T47D Promotes cancer cell growth or survival Upregulated [256,257,260]

Prostate cancer Prostate tissue from patients with prostate cancer Increases apoptosis resistance and proliferation of
cancer cells Upregulated [34]

Colon carcinoma Human LoVo colon carcinoma cell Promotes proliferation by decreasing intracellular
Ca2+ and activation of IGF Downregulated [259]

Acute myeloid leukemia Human myeloid leukemia K562 cells Promotes Ca2+ homeostasis and proliferation of
cancer cells

Upregulated [261]
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4. Translational Approaches

First, promising clinical studies were directed to test novel TRP channel modulators
for treating inflammation and pain. However, the improved understanding of the role of
these channels in different pathophysiological functions has indicated their major involve-
ment in specific phases of cancer progression, thus suggesting that they are promising as
potential targets.

To date, there are only two clinical trials for TRPA1 related to cancer. An ongoing
interventional study (NCT05024383) aims to investigate the role of the TRPA1 channel
in oral cancer pain. In particular, the study evaluates the mechanical (von Frey testing)
and chemical (capsaicin and AITC) response in oral cancer patients and compares their
sensitivities to healthy subjects. Another interventional study (NCT04923412) aims to
investigate TRPA1 and TRPV1 expression in non-small cell lung cancer (NSCLC) patients
before and after surgery to quantitatively measure injuries of the vagus nerve during
mediastinal lymph node dissection. A lobectomy with lymph node dissection represents
the standard surgical method. However, about 60% of patients experience postoperative
chronic cough during the first year after surgery. In this trial, the investigators provide a
new basis for safe and effective new surgical techniques, as well as possible new biomarkers
(TRPA1 and TRPV1) related to postoperative cough and pulmonary complications.

Regarding TRPV1, two cancer clinical trials have been reported so far. A phase III study
(NCT04572776) is currently investigating the role of TRPV1 in intractable cancer pain through
a single epidural administration of resiniferatoxin vs. the standard of care. A small prospec-
tive study (NCT02666976) evaluates the modulation of inflammatory biomarkers, including
TRPV1, in patients affected by gastrointestinal subepithelial tumors. One observational study
(NCT05507879) evaluates the role of TRPC6 as a predictive biomarker of chemotherapy-
related cardiac toxicity in patients with breast cancer. A small interventional phase I clinical
trial (NCT01578564) tests the safety and tolerability of a TRPV6 inhibitor in subjects with
advanced ovarian cancer or other cancers known to overexpress the TRPV6 channel.

5. Conclusions

Over the years, researchers have revealed that TRP channels play crucial roles in cellu-
lar homeostasis and represent an efficient and timely interface between the environment
and the body. The dysregulation of TRP channels has been associated with numerous
cancer types, highlighting their potential as therapeutic targets [22,23].. The role of TRPA1
in sustaining chronic cancer pain in rodent models is supported by robust data [92,94].
Emerging evidence suggests that TRP channels are implicated in cancer progression and
metastatic processes. TRP channels have been also proposed as biomarkers for cancer
diagnosis and prognosis, providing valuable insights into patient stratification and person-
alized medicine approaches [23–28]. However, due to the broad tissue distribution and
multiple functions of TRPs in the same types of cancer and healthy tissues, their inhibition
may result in systemic toxicity. Thus, the identification of the specific TRP channel and its
selective cellular localization implicated in a given pro-oncogenic function is of paramount
importance for the development of safer and better anticancer drugs. New insights into
tumor biology driven by TRP channels clearly require further effort and dedicated study.
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