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Abstract: The interplay between the immune system and cancer underscores the central role of
immunotherapy in cancer treatment. In this context, the innate immune system plays a critical
role in preventing tumor invasion. Myeloid differentiation factor 88 (MyD88) is crucial for innate
immunity, and activation of MyD88 promotes the production of inflammatory cytokines and induces
infiltration, polarization, and immune escape of immune cells in the tumor microenvironment.
Additionally, abnormal MyD88 signaling induces tumor cell proliferation and metastasis, which are
closely associated with poor prognosis. Therefore, MyD88 could serve as a novel tumor biomarker
and is a promising target for cancer therapy. Current strategies targeting MyD88 including inhibition
of signaling pathways and protein multimerization, have made substantial progress, especially in
inflammatory diseases and chronic inflammation-induced cancers. However, the specific role of
MyD88 in regulating tumor immunity and tumorigenic mechanisms remains unclear. Therefore, this
review describes the involvement of MyD88 in tumor immune escape and disease therapy. In addition,
classical and non-classical MyD88 inhibitors were collated to provide insights into potential cancer
treatment strategies. Despite several challenges and complexities, targeting MyD88 is a promising
avenue for improving cancer treatment and has the potential to revolutionize patient outcomes.
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1. Introduction

Myeloid differentiation factor 88 (MyD88), a key intracellular signaling cytoplasmic
adaptor protein located on chromosome 3, mediates a variety of toll-like receptors (TLRs),
such as interleukin-1 receptor (IL-1R) [1] and interleukin-18 receptor (IL-18R) [2,3]. As
an intracellular protein, it connects the TLR family to the IL-1R-associated kinase (IRAK)
family through protein–protein interactions [4]. Meanwhile, the activation of IRAK leads
to multiple functional outputs, including nuclear factor-κB (NF-κB), mitogen-activated
protein kinase (MAPK), and protein 1 activation, all of which make MyD88 a critical node
in immunomodulation-related pathways [4]. Therefore, the transduction function of this
protein has attracted extensive attention.

Recently, an increasing number of studies have shown that MyD88-driven cytokines
are closely associated with cancer [5]. MyD88 induces an anti-tumor immune response,
thus inhibiting tumor development [6]. On the contrary, uncontrolled innate immune
signals may provide a microenvironment for cancer cell proliferation and evasion during
immune surveillance, leading to further tumor deterioration [7–10]. In addition, the loss of
MyD88 accelerates the development of colon tumors induced by azomethane-glucan sulfate
sodium [5] and stimulates the development of skin and liver cancer [11]. Several studies
have shown that MyD88-mediated signal transduction plays a key role in promoting tumor
development and progression [11,12]. Based on the specificity and importance of MyD88 in
regulating immunity and cancer progression, related inhibitors may provide new insights
into cancer treatments. To date, there are a few narrative reviews on MyD88 that touch
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on aspects of inflammation and immunity interplay. However, there is no comprehensive
scoping review about MyD88 on the interplay between tumor microenvironment as well
as immune escape. The specific behaviors of MyD88 in regulating immune response and
tumorigenesis remain unclear. Therefore, a comprehensive and unbiased overview of the
current literature has the potential to identify novel themes and gaps in the knowledge
base that may guide subsequent research.

This article reviews the biological function of MyD88, the key drivers affecting tumors,
and the progress of research on its inhibitors. In addition, our study discusses the poten-
tial advantages and prospects of MyD88-targeted drugs in cancer therapy and proposes
potential strategies for drug development and disease treatment.

2. Biological Structure and Function of MyD88

MyD88 is a modular protein; in the absence of a signal, inactivated MyD88 is re-
tained in the cytoplasm. Its structure includes the C-terminal toll IL-1R (TIR) domain,
N-terminal death domain (DD), and intermediate domain (INT) connecting the TIR do-
main and DD [13]. Previous studies have reported that N-terminal DDs can form more
stable homologous and heterogeneous oligomers and spirals in solution than the weakly
interacting C-terminal TIR domain [14,15]. Thus, most MyD88-dependent signaling is
mediated by DD-dependent IRAK recruitment. Once MyD88 is overexpressed or binds
to the downstream receptor, the DD terminus activates signal transduction and recruits
the kinase IRAK [16]. Notably, overexpression of the DD terminus leads to spontaneous
NF-κB and c-Jun intercellular kinase activation, even in the absence of MyD88 TIR [17].
This suggests that intracellular auto aggregation is possible even if the MyD88 TIR domain
is not involved in protein interactions and is located in the DD region of MyD88. However,
the N-terminus is not completely useless as it mediates interferon regulatory factor 7 (IRF-7)
and promotes the production of type I interferons (IFNs) independent of DD folding [4,18].
Although this intermediate domain does not appear to be directly involved in protein
interactions, it is required for activation of IRAK4 [4].

3. MyD88 Is Associated with Immune Inflammatory Response

TLR/IL-1R is a major family of innate pattern recognition receptors that activate
wound healing and exert tissue repair mechanisms [7,19]. In TLR-mediated diseases,
MyD88 is a key promoter of the signaling of almost all TLRs (except TLR3 [16]). Upon
stimulation, TLR/IL-1R dimerizes and recruits MyD88, causing MyD88 to form small,
unstable oligomers directly or indirectly through the Mal dimer. As the receptor continues
to be activated, these oligomers continue to grow. After reaching a certain threshold, the
MyD88 oligomer forms a stable interaction with IRAK4 and recruits IRAK1. Subsequently,
IRAK1 phosphorylation is activated, initiating the immune signaling cascade [16].

Once the MyD88 signal is activated, this leads to a series of inflammatory response
syndromes [17], which are mainly manifested by organ immune damage [20], atheroscle-
rosis [21,22], and other immune diseases [23,24]. In addition, MyD88 can induce the
expression of various chemokines and cytokines, such as tumor necrosis factor α (TNF-α),
interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), type
III IFNs (λ-1, -2), and interleukin-10 (IL-10) [25,26]. With further research, an increasing
number of researchers have found that inflammation is an active factor in cancer and is con-
ducive to tumor proliferation and immunosuppression [17]. Multiple studies have shown
that MyD88 has tumor-promoting effects in colorectal cancer [27], primary and metastatic
breast cancer [28], Waldenstrom macroglobulinemia (WM) [29], gastric cancer [25], ep-
ithelial ovarian cancer [30], mutated diffuse large B-cell lymphoma (DLBCL) [31], breast
cancer [7,32], liver cancer [33], lung cancer [34], skin cancer [7], pancreatic cancer [7], and
other cancers.
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4. MyD88 Is Associated with Tumor Progression

In human cancer, the MyD88 protein serves as a link between immune signal transduc-
tion from TLR/IL-1R and the Ras carcinogenic signaling pathway [9]. The significance of
this bridging protein in tumor and immune regulation underscores its substantial potential
in influencing cancer formation, proliferation, metastasis, recurrence, and prognostic regulation.

4.1. Abnormal MyD88 Signaling Is a Carcinogen

The most typical type of cancer induced by MyD88 is DLBCL, particularly WM.
The MyD88 L265P mutation is a key driver of DLBCL development. Compared with
MyD88 wild-type (WT), the TIR domain, where the MyD88 L265P mutation is located, is
highly activated, resulting in enhanced downstream signaling and Myddosome complex
formation. Although the MyD88 L265P mutation occurs in more than 90% of WM cases,
this mutation is not WM-specific and is also observed in other DLBCLs, lymphoplasmacytic
lymphomas, and a few marginal area lymphomas [35]. These results suggest that MyD88
mutation is associated with the occurrence of multiple tumors.

4.2. MyD88 Is Associated with Tumor Cell Proliferation and Metastasis

Vinnakota et al. found that the key regulation of TLR/MyD88 on membrane type
1 matrix metalloproteinases (MT1-MMP) was the main determinant of microglia trans-
forming into gliomas [36]. Additionally, activation of the TLR2/MyD88 signaling pathway
could activate NF-κB and Wnt signaling, participate in the pathogenesis of intracranial
aneurysms [37], and induce the proliferation of colorectal cancer or breast cancer cells [9].
In breast cancer, MyD88 knockdown reduces the proliferation and migration of MCF-7 cells
and increases the sensitivity of MCF-7 cells to paclitaxel [38]. This further demonstrates
the importance of TLR/MyD88 in regulating cancer cell proliferation and tumorigenesis.
Several recent studies have demonstrated the key role of MyD88 signaling in promoting
tumor metastasis and invasion. Youn et al. [39] showed that pancreatic adenocarcinoma up-
regulated factor (PAUF), a tumor-promoting protein secreted by cancer cells that acts on the
TLR4 receptor on the surface of immune cells, induces human pancreatic cancer cell migra-
tion via the TLR4/MyD88/NF-κB signaling pathway rather than the TLR4/interleukin-1
receptor domain-containing adapter protein signaling pathway. Additionally, several
studies have shown that MyD88 is associated with clinicopathological features, such as
histological subtypes of ovarian cancer [30,40], cell metastasis of breast cancer [41], and
lymphatic metastasis [42]. These findings highlight the role of MyD88 in cancer cell prolif-
eration and metastasis.

4.3. MyD88 Is Associated with Tumor Prognosis

Wang et al. conducted a correlation analysis of clinicopathological variables on MyD88
expression in colorectal cancer and found that high expression of MyD88 was significantly
correlated with disease-free survival and overall survival (HR: 2.33; 95% CI: 1.31–4.13;
p = 0.0038, HR: 3.03; 95% CI: 1.67–5.48; p = 0.0002). They believed that MyD88 is an inde-
pendent predictor of poor prognosis in colon cancer [9,43]. In ovarian cancer, TLR4-MyD88
signaling appears to be more active in high-grade cancer and is associated with reduced
survival, increased recurrence, malignant transformation, and metastatic potential [44].
In high-grade serous ovarian cancer (HGSOC), high expression of MyD88 is associated
with advanced stage (p < 0.001) cancer and moderately associated with shorter overall
survival (HR: 1.13; 95% CI: 1.01–1.26; p = 0.04). However, in low-grade serous ovarian
cancer (LGSOC), high expression of MyD88 is associated with better survival (HR: 0.49; 95%
CI: 0.29–0.84; p = 0.009) [30]. Therefore, these results indicate that the expression level of
MyD88 has different significance in different cancers; however, it could be used as evidence
for predicting cancer prognosis.
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4.4. MyD88 Could Be Considered as a Novel Tumor Marker

Previous studies have reported that the MyD88 signaling pathway is associated with
carcinogenic events in various tissues and with patient survival [44]. Therefore, detection
of MyD88 expression may be useful for predicting the prognosis of patients with various
cancers, such as lymphoma [45], ovarian cancer [30], liver cancer [46], and colorectal
cancer [9]. In an analysis of risk prognostic factors for patients with breast cancer [38],
researchers found that the expression level of MyD88 in tumor tissues correlated with
the stage of cancer differentiation (p = 0.019), and the survival rate of patients with high
expression of MyD88 was lower than that of patients with low expression (p = 0.018).
Additionally, Xiang et al. [7] found that MyD88 expression was significantly increased in
highly aggressive breast cancer cells, MDA-MB-231, compared with that in normal cells
and less aggressive breast cancer cells. These results indicate that MyD88 expression is
associated with the proliferation and invasion of breast cancer cells and could be used as a
potential target molecule in the diagnosis and treatment of breast cancer. Meanwhile, in a
preclinical study of colorectal cancer, researchers found that silencing MyD88 in SW480
(human colon adenocarcinoma cells) and HCT116 (human colon cancer cells) interferes
with the MyD88/NF-κB/AP-1 signaling pathway and significantly inhibits cancer cell
growth and invasion. These results suggest that MyD88 activation plays an important role
in inducing the development of colorectal cancer and could be used as a potential novel
biomarker for colorectal cancer [27,47].

Simultaneously, Guo et al. identified the core genes involved in the regulation of
the glioma immune microenvironment with the help of bioinformatics technology and
found that MyD88 could cause disorders in tumor-infiltrating immune cells, especially
promoting the transformation of macrophages into the M2 type [48], thereby providing
good prognostic value for patients with glioma.

Additionally, calcycin-binding protein and Siah-1 interaction protein (CacyBP/SIP) is a
polyligand protein that is overexpressed in cancers and associated with poor prognosis [49].
Recent studies have reported that MyD88 is a novel downstream substrate of CacyBP in hep-
atocellular carcinoma. Inhibition of the binding of CacyBP-MyD88 could reduce fractalkine
(CX3CL1) secretion and thus weaken the recruitment of tumor-associated macrophages
(TAMs) to the immune microenvironment, making hepatocellular carcinoma mice sensitive
to programmed death 1 (PD-1) treatment [50]. MyD88 also serves as a target of miR-155-3p.
According to a recent report, MiR-155-3p is associated with clinicopathological markers,
tumor subtypes, and low survival rates in various tumor tissues [7]. Therefore, MyD88 may
play a critical role in cancer progression by acting as a novel tumor marker and altering the
tumor immune microenvironment, signaling, and binding of substrate proteins.

5. MyD88-Mediated Tumorigenic Pathway

Studies have reported that 20% of cancer cases worldwide are caused by chronic
inflammation. The longer the duration of inflammation, the higher the risk of cancer [51].
MyD88 is widely involved in tumor formation and is a key promoter of inflammatory devel-
opment. It activates the B-cell signaling pathway of the hematopoietic chamber and tumor
cells, inducing an inflammatory environment conducive to carcinogenesis [7]. In contrast,
it mediates the optimal activation of the rat sarcoma virus/extracellular signal-regulated
kinase (Ras/ERK) pathway, binds to ERK, and protects it from dephosphorylation [7].
Optimal activation of the Ras/ERK pathway is crucial for the expression of DNA repair
enzymes such as ERCC1, which can help cancer cells to repair damaged DNA. Therefore,
inhibition of MyD88 promotes the accumulation of DNA damage, which leads to cell
death via the tumor suppressor protein p53 [52]. In addition, the TLR2/MyD88 signaling
pathway can activate the NF-κB and Wnt signaling pathways, ultimately inducing the
proliferation of colorectal and breast cancer cells [9]. Therefore, reducing the expression
or activity of TLR2 and MyD88 in the intestinal epithelium may significantly reduce the
tumorigenicity of ulcerative colitis and epithelial cells.
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6. MyD88 Is Involved in Tumor Immune Escape

Inflammation creates conditions for tumor progression and metastasis and provides
a favorable environment for tumor immune escape [7]. Increasing evidence supports the
idea that immunosuppressive cells in the tumor immune microenvironment are important
factors in tumor proliferation and invasion. These cells include macrophages, myeloid
suppressor cells (MDSCs), dendritic cells (DCs), natural killer cells, eosinophils, and regula-
tory T cells [53]. Therefore, our understanding of MyD88-related tumor immune escape,
promotion of M2 macrophage expression, and tumor cell DNA damage repair is slowly
increasing (Figure 1).

Figure 1. MyD88 is associated with immune escape. (A) Concise structural diagram of MyD88.
(B) MyD88 is associated with immune escape. MyD88, myeloid differentiation factor 88; Erk, extracel-
lular signal-regulated kinase; MEK, mitogen-activated extracellular signal-regulated kinase; RAS, rat
sarcoma virus; IRAK4, interleukin-1 receptor-associated kinase 4; NF-κB, nuclear factor-κB; TNF-α,
tumor necrosis factor α; IL-1β, interleukin-1β; IL-23, interleukin-23; IL-17, interleukin-17; PD-L1,
programmed death ligand 1; CXCL12, chemokine (C-X-C motif) ligand 12; CXCL13, chemokine
(C-X-C motif) ligand 13; and CD4+, cluster of differentiation 4+.

As one of the most abundant immune cells in the TME, the transformation of M1 to
M2 polarization of macrophages could affect tumor proliferation and immune escape and
accelerate tumor progression, which is commonly observed in glioma [48] and pancreatic
cancer [54]. Studies have also found that MyD88 is a pivotal gene in the TME and that



Biomolecules 2024, 14, 562 6 of 22

its expression is positively correlated with M2 macrophages and negatively correlated
with monocytes. Yuan et al. [55] analyzed the number of CD206+ (an M2 marker) and
CD86+ (an M1 marker) macrophages in colon tissue and found that Fib-MyD88-KO mice
showed an increase in the M1 phenotype and a decrease in the M2 phenotype. Meanwhile,
inhibition of MyD88 can effectively slow the progression of colitis to colon cancer [55].
Additionally, studies have confirmed that MyD88 regulates M1- and M2-related genes,
vascular endothelial growth factor expression, and macrophage M2 polarization through
the MyD88-JAK2/TYK2-STAT3 pathway [56]. These results further demonstrate the sig-
nificant role of MyD88 in promoting the M1/M2 state transformation of tumor-associated
macrophages. Currently, the depletion of M2-like cells and an increase in the M1/M2
ratio are favorable strategies for anti-cancer therapy. Given the positive correlation be-
tween MyD88 and M2-macrophages, inhibition of MyD88 may be a promising anti-cancer
therapeutic strategy [57].

MDSCs are precursors of DCs, macrophages, and granulocytes and are one of the
most abundant immune cells in the tumor microenvironment (TME) [53]. In the MDSC-
mediated tumor immune microenvironment, inhibition of MyD88 not only directly inhibits
the differentiation of MDSCs but also indirectly inhibits MDSC expansion by reducing
the secretion of cytokines. Additionally, a recent study found that TJM-2010-2, a novel
MyD88 inhibitor, reduced the expression of iNOS, Arg-1, and the immunosuppressive
molecule Indoleamine-2,3-Dioxygenase (IDO) by inhibiting MyD88, thus weakening tumor
immune escape [32]. This study demonstrated that the MDSC-mediated immune escape
mechanism depends on the activation of MyD88 signaling. Transgenic technology based
on blocking MyD88 signaling to inhibit MDSC has successfully restricted the growth of
lung and ovarian tumors in mice [53].

Additionally, programmed death ligand 1 (PD-L1) has been recognized to be deeply
involved in immune escape. Studying PD-L1 helps to identify the mechanism of immuno-
suppression in tumor cells or antigen-presenting cells. As a critical junction molecule,
MyD88 is closely associated with PD-L1 expression. It has been found that the MyD88-
dependent pathway activates NF-κB conduction and induces PD-L1 transcription, assisting
tumor cells to participate in immune escape. High mobility group box-1 protein (HMGB1)
is a non-histone chromosomal protein involved in the regulation of tumor autophagy and
apoptosis [58]. When HMGB1 is released from dying cells, the activated TLR4/MyD88
pathway enhances INF-β signal transduction [59], stimulates immune activity [60], and
up-regulates the expression of PD-L1 in neighboring surviving tumor cells. In addition,
the upregulation of PD-L1 expression in dendritic cells, fibroblasts, and plasma cells is
mediated by TLR(1,2,4,5)/MyD88 [61], which ultimately induces lymphatic infiltration [62].
Tumor cell-released autophagosome is a type of LC3-II double-membrane extracellular
vehicle (EV) that can transform macrophages into M2 macrophages. Recent studies have
shown that macrophages M2 polarization relies on TLR4-MyD88-p38-STAT3 signal trans-
duction, which effectively inhibits the proliferation of cluster of differentiation CD4+ and
CD8+ T cells in vitro and promotes tumor growth in vivo, mainly through PD-L1 [63].

Additionally, the expression of PD-L1 is also regulated by related stimulators [64],
such as chemokine (C-X-C motif) ligand 12, CX3CL1, interferon-gamma (IFN-γ), TNF-
α, interleukin-1β, and IL-6. Notably, sustained expression of MyD88 inhibits CX3CL1
promoter histone deacetylation, thereby promoting CX3CL1 transcriptional activation and
secretion, which further increases the recruitment of TAMs to the TME, inducing immune
escape and anti-PD-1 tolerance. Additionally, IFN-γ [65] is a key driver of PD-L1 expression
in host tumors. Some researchers have found that the activated MyD88/TRAF6/NF-κB
signaling pathway not only causes upregulation of IFN-γ receptor expression, but also
indirectly enhances IFN-γ-induced PD-L1 expression [66]. These studies indicate that
MyD88 is critical in regulating T cell activation, macrophage polarization, and PD-L1
expression in tumor immunosuppression.
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7. Drug Therapy Targeting MyD88

Numerous natural and synthetic products have demonstrated anti-inflammatory and
anti-cancer activities that target MyD88. Based on their function, they can be divided into
two modes affecting the upstream and downstream signaling of MyD88 (Table 1) and
targeting MyD88 autopolymers or heteropolymers with other proteins (Table 2).

For example, Salvia miltiorrhiza mitigates cardiac dysfunction and inflammation in
rats with heart failure by inhibiting the formation of the MD2/TLR4-MyD88 complex [67].
Additionally, Astragaloside IV, Xiang Lin pills, berberine, and fluoxetine can inhibit the
TLR4/MyD88/NF-κB signals, thereby exerting the effects of acute myocardial infarction,
colitis, and ischemia-reperfusion injury, and relieve postoperative cognitive dysfunction
and neuroinflammation in elderly mice [67–80]. Polyene phosphatidylcholine, a well-
known hepatoprotective drug, has also recently been found to act on the TLR2/MyD88
signaling pathway, inhibiting the binding of MyD88 and TLR, and activating the IκB kinase
(IKK) complex to alleviate synovial inflammation [81]. In addition, studies have reported
that pioglitazone can reduce oxidative stress through the TLR4/MyD88/NF-κB signaling
pathway, thereby ameliorating the testicular toxic side effects of cisplatin treatment [75]. In
addition to being anti-inflammatory, other MyD88 inhibitors have shown unexpected anti-
cancer effects. For example, icariin can delay cervical cancer progression by inhibiting the
TLR4/MyD88/NF-κB and Wnt/β-catenin pathways [82]. Curcumin inhibits the expression
of TLR4/MyD88 and EGFR in a dose- and time-dependent manner, thereby inhibiting
the invasion and migration of non-small cell lung cancer [83]. Tomisetron, a receptor
antagonist primarily used for anti-emesis, has also been shown to inhibit the development
of colorectal cancer by inhibiting inflammation in colitis and TLR4/MyD88 signaling [84].
A recent study reported that the combination of zoledronic acid and thymosin α1 [85]
successfully treated non-immunoreactive patients with advanced or metastatic prostate
cancer (PCa) by blocking MyD88/NF-κB signaling in PCa cells. This treatment activates
the MyD88 signaling axis in macrophages and T cells, leading to increased infiltration
of cytotoxic T cells and increased tumor inflammation. Sijunzi decoction has also been
found to regulate the TLR4/MyD88/NF-κB signaling pathway and reduce the expression
of PD-L1 to inhibit the growth of lung cancer [86]. MGN1703 [87] is a clinical trial drug that
acts on the TLR9/MyD88 signaling axis for the treatment of metastatic colorectal cancer [88].
Good phase I/II data have been obtained for MGN1703 as a first-line maintenance drug for
the treatment of HIV-1 infection after chemotherapy [89]. Additionally, researchers have
found that a novel extracellular vesicle-like ginseng derived nanoparticle could induce
the polarization of M1-like macrophages in mice with B16F10 melanoma through the
TLR4/MyD88 signaling pathway and enhance the production of total reactive oxygen
species to induce melanoma cell apoptosis [57].
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Table 1. Inhibitors affecting MyD88 signaling (ranked according to the year the inhibitor was first reported).

Inhibitor Structure Machine Effect Year of
Publication

MGN1703 Acts on TLR9/MyD88 signaling pathway
Benefits the treatment of metastatic colorectal

cancer [88], enhancing anti-viral immune
response to chronic HIV-1 infection [89]

2015

Tomisetron Inhibits TLR4/MyD88 signaling Inhibits the development of colorectal
cancer [84] 2016

Curcumin Inhibits the expression of TLR4/MyD88 and
EGFR in a dose- and time-dependent manner

Inhibits the proliferation and migration of
NSCLC [83] 2019

Mesalazine Inhibits the TLR4/MyD88-dependent pathway Resists ulcerative colitis in mice model [76] 2019

Salvia miltiorrhiza Compound of traditional Chinese
Medicine

Inhibits MD2/TLR4-MyD88 complex
formation and signaling

Reduces cardiac dysfunction and inflammatory
response in heart failure rats [67] 2020

Radix gentianae Compound of traditional Chinese
Medicine

Inhibits the galectin-3/TLR4/MyD88/NF-κB
inflammatory signaling pathway

Prevents acute myocardial infarction induced
by isoproterenol in rats [68] 2020

Oxyberberine Compound of traditional Chinese
Medicine

Inhibits the TLR4-MyD88-NF-κB signaling
pathway and the translocation of NF-κB p65

from cytoplasm to nucleus
Anti-colitis effect [90] 2020

Dexmedetomidine Inhibits the TLR4/MyD88/NF-κB signaling
pathway

Resists Intestinal Ischemia-Reperfusion
Injury [73] 2021

Rifampicin Inhibits the TLR4/MyD88/NF-κB signaling
pathway

Ameliorates lipopolysaccharide-induced
cognitive and motor impairments in mice [77] 2021
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Table 1. Cont.

Inhibitor Structure Machine Effect Year of
Publication

Astragaloside IV Inhibits the TLR4/MyD88/NF-κB signaling
pathway Prevents acute myocardial infarction [70] 2021

Icariin Inhibits the TLR4/MyD88/NF-κB and
Wnt/β-catenin signaling pathway Inhibits the progression of cervical cancer [82] 2021

Sevoflurane Inhibits the TLR4/MyD88/TRAF6 signaling
pathway

Sevoflurane postconditioning ameliorates
cerebral ischemia-reperfusion injury in rats [78] 2022

Polyene
Phosphatidylcholine — Acts on TLR2, reduction of the activation of

MyD88 IKKs complex
Inhibits the synovial inflammation induced by

LPS [81] 2022

Emodin Inhibits the MyD88/PI3K/Akt/NF-κB
signaling pathway

Inhibits the activation of microglia and
inflammatory response [79] 2022

Biogenic AgNPs — Targets the TLR4/MyD88 and Nrf2/HO-1
signaling pathways Inhibits LPS-induced neuroinflammation [71] 2023
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Table 1. Cont.

Inhibitor Structure Machine Effect Year of
Publication

Fluoxetine Attenuates the TLR4/MyD88/NF-κB signaling
pathway activation

Alleviates postoperative cognitive dysfunction
in aged mice [72] 2023

Salvianolic acid A
Inhibits TLR2/TLR4-mediated MyD88

activation and its downstream molecules
TRAF6 and IRAK4

Attenuates cardiac inflammation and cardiac
disfunction in heart failure mice [80] 2023

Atorvastatin Inhibits the TLR4/MyD88/NF-κB signaling
pathway

Reduces contrast media-induced proptosis of
renal tubular epithelial cells [74] 2023

Pioglitazone
Attenuates oxidative stress and inflammation

via the TLR4/MyD88/NF-κB signaling
pathway

Ameliorates cisplatin-induced testicular
toxicity [75] 2023

Xianglian Pill Compound of traditional Chinese
Medicine

Inhibits the TLR4/MyD88/NF-κB signaling
pathway Attenuates ulcerative colitis [69] 2023

Combined treatment
with ZA and Tα1

Structure of ZA

Blocks MyD88/NF-κB signaling in PCa cells
and activates the MyD88/NF-κB signaling in
macrophages and T cells, leading to increased
cytotoxic T cell infiltration and enhanced tumor

inflammation

Alleviates the non-immunoreactive patients
with advanced or metastatic prostate

cancer [85]
2023

Si jun zi tang Compound of traditional Chinese
Medicine

Regulates the TLR4/MyD88/NF-κB signaling
pathway and reduces PD-L1 expression

Inhibits the proliferation and migration of lung
cancer cells and reduces the expression of

PD-L1 protein in A549 cells [86]
2024
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Currently, numerous inhibitors target the signaling pathways of MyD88. How-
ever, polymerizing inhibitors that directly target MyD88 may have more precise anti-
inflammatory and anti-cancer effects. Since then, a series of MyD88 targeted inhibitors have
been discovered and further explored (Table 2). Currently, most reported inhibitors are
small-molecule compounds that block MyD88 homopolymers or heteropolymers. Given
the crucial role of the MyD88 BB loop in protein–protein interactions, the earliest developed
MyD88 inhibitor was a short peptide directly derived from the BB loop (Ac-RDVLPGT-
NH2) [91]. However, due to the inability of peptides to be orally administered in mammals
and their low bioavailability, researchers developed a mimetic peptide compound AS-1,
which was found to inhibit the interaction between IL-1R and MyD88 and weaken the bind-
ing activity of NF-κB [92]. Later, based on Ac-RDVLPGT-NH2, Dishon, S. et al. developed a
novel targeted inhibitor MyD4-4 to improve experimental autoimmune encephalomyelitis
in mice [93]. With the continuous development of targeted inhibitors, ST2825 has been
found to be an effective inhibitor that prevents MyD88 dimerization and inhibits NFκB
activation. Current research on ST2825 is not limited to the treatment of diseases related to
immune inflammation (such as neuroprotection, synovitis, and arthritis in mice with trau-
matic brain injury), and attempts have been made to use it in the field of anti-tumor therapy,
such as inhibiting the proliferation of hepatocellular carcinoma cells [94] and anti-pancreatic
ductal adenocarcinoma [95]. More importantly, it can also inhibit the growth of lymphoma
and leukemia cells [96], overcoming the limitations of the BTK inhibitor, ibrutinib, in the
treatment of non-mutant MyD88 lymphoma and providing new treatment ideas for WT
MyD88 lymphoma. Another series of small-molecule MyD88 inhibitors, TJ-M2010-X (X = 5,
2, 6), has also been reported to interfere with the homologous dimerization of MyD88.
TJ-M2010-5 binds to the MyD88 TIR domain, blocks TLR/MyD88 signaling, and plays a
significant role in reducing inflammatory effects and liver fibrosis [97], alleviating organ
ischemia/reperfusion injury [98], preventing colitis-associated colorectal cancer [99], com-
bating hepatocellular carcinoma [100], reducing allogeneic rejection [101], and enhancing
allogeneic transplantation tolerance [102]. It can also block the TLR7/MyD88/NF-κB and
TLR7/MyD88/MAPK signaling pathways and correct R848-induced lupus-like immune
disease in B cells [103]. TJ-M2010-6 has been reported to prevent and treat type 1 diabetes
in non-obese diabetic mice [104]. TJ-M2010-2 affects the MyD88/GSK-3β and MyD88/NF-
κB signaling pathways and inhibits the proliferation, migration, and invasion of breast
cancer cells [32]. Other research has led to the discovery that T6167923 [105], LM9 [106],
4210 [107], LM8 [108], M20 [109], and C17 [110] exert anti-inflammatory, anti-cancer, and
anti-viral effects by inhibiting the formation of MyD88 oligomers and reducing the produc-
tion of inflammatory and fibrotic factors. However, current research on MyD88-targeted
inhibitors is still in the preclinical stage, and many inhibitors are used as adjunctive therapy
for diseases; therefore, we need to further evaluate the challenges of these inhibitors in
disease treatment.
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Table 2. Inhibitors targeting MyD88 polymorphism (ranked according to the year the inhibitor was first reported).

Inhibitor Structure Machine Effect Year of Publication

linear RDVLPGT — Inhibits MyD88 dimerization Inhibits the NF-κB signal pathway [91] 2008

AS-1
Inhibited the interaction between IL-1R and

MyD88 and weakened the binding activity of
NF-κB

Protects the myocardium from ischaemia/reperfusion
injury [92] 2009

4210

Inhibits MyD88 dimerization Inhibits the pro-inflammatory immune signaling
induced by bacterial toxins [107] 2015

Inhibits the interaction between MyD88 and
IRF3/IRF7 and upregulated IFN-α Anti-viral effect [111] 2020

T6167923
Disrupts the formation of MyD88 homodimer Protects mice from toxic shock induced by SEB [105] 2015

Inhibits MyD88 expression Down-regulates the expression of Col I, Col III, and
α-SMA [112] 2023

TJ-M2010-5

Inhibits MyD88 homologous dimerization

Prevents colorectal cancer related to colitis [99],
increases the tolerance of allogeneic transplantation in
mice [102], prevents DSS-induced acute liver injury in

mice [113] and reduces transplant rejection in
mice [101]

2015–2019

Inhibits the MyD88 signaling pathway Anti-hepatocellular carcinoma [100] 2019
Inhibits the TLR7/MyD88/NF-κB and

TLR7/MyD88/MAPK signaling pathways Relieves B cell lupus-like immune disease [103] 2020

Inhibits MyD88 homologous dimerization Reverses myocardial ischemia and reperfusion
injury [114] 2020

Inhibits the MyD88/NF-κB and Erk pathways
Inhibits myeloid cell infiltration and microglia

activation

Relieves acute cerebral ischemia-reperfusion
injury [115] 2022

Inhibits MyD88 homologous dimerization Alleviates myocardial ischemia/reperfusion injury
during heart transplantation [98] 2022

Blocks the activation of MyD88/NF-κB Alleviates liver fibrosis [97] 2022
Overcomes the inhibitory function of myeloid

suppressor cells
Prevents colorectal cancer development associated

with colitis [53] 2022

Inhibits cell proptosis Prevents liver ischemia-reperfusion injury [116] 2023

Blocks MyD88 signal transduction Prevents the development of CAC as well as
downregulating GPNMB mRNA [117] 2023
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Table 2. Cont.

Inhibitor Structure Machine Effect Year of Publication

ST2825

Prevents MyD88 from dimerizing

Provides neuroprotection after experimental traumatic
brain injury in mice [118], inhibits HCC cell

proliferation [94] and relieves lymphoma and
leukemia [96]

2016, 2017

Inhibits the NF-κB signaling pathway
Inhibits the production of IL-10 and IFN-β

Relieves B-cell neoplasms driven by activated MyD88
signaling [119] 2019

Prevents MyD88 from dimerizing Prevents synovitis and joint degeneration [120] 2021
Inhibits NF-κB activation and the ROS/NLRP3

signaling pathway Attenuates LPS-stimulated neuroinflammation [121] 2022

Prevents MyD88 from dimerizing Inhibits pancreatic ductal adenocarcinoma [95] and
alleviates synovial lesions [122] 2023

TJ-M2010-6 Inhibits MyD88 homologous dimerization Prevents and cures type 1 diabetes in NOD mice [104] 2016

TJ-M2010-2
Inhibits MyD88 homologous dimerization

Offsetting renal ischemia-reperfusion-induced renal
injury [123] and alleviates renal interstitial

fibrosis [124]
2016, 2018

Regulates the MyD88/GSK-3β and
MyD88/NF-κB signaling pathways

Inhibits the proliferation, migration, and invasion in
breast cancer cells [32] 2020

Cyclic c (MyD 4-4) — Prevents MyD88 from dimerizing Alleviates immune encephalomyelitis in mice [93] 2018

LM9

Inhibits the MyD88 and inflammatory
pathways in macrophages Prevents atherosclerosis [125] 2019

Inhibits the formation of TLR4/MyD88
complexes

Reduces inflammatory response and cardiac
fibrosis [106] 2020

LM8

Inhibits the MyD88 Erk/NF-κB-dependent
inflammatory pathway Relieves heart damage [108] 2020

Inhibits TLR4-MyD88 interaction and NF-κB
activation

Protects the kidney from inflammatory damage of
diabetes [126], relieves heart inflammation in diabetes

mice [127] and relieves hypertensive
nephropathy-induced by angiotensin II [128]

2021, 2022
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Table 2. Cont.

Inhibitor Structure Machine Effect Year of Publication

M20 Prevents MyD88 from dimerizing Reduces sepsis-mediated acute lung injury [109] 2021

Low temperature
oxygenation perfusion

combined with
TJ-M2010-5

Inhibits the TLR/MyD88 signaling pathway Relieves liver ischemia-reperfusion injury [129] 2022

C17 Inhibits the interaction between TLR4-MyD88
and NF-κB signaling pathway Alleviates acute lung injury [110] 2023
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Currently, the co-crystallization structure of MyD88 and its inhibitors have not been
reported; therefore, it remains a mystery as to which binding site of this protein the
inhibitor interacts with. Moreover, the allosteric process of Myddosome complex during
signal transmission has not been detailed. We used artificial intelligence-based docking for
docking analysis [130] of MyD88 with three widely reported inhibitors and found that the
binding site was consistent with that reported by Clabbers et al. [131]. Residue ARG288
formed a hydrogen bond with the inhibitor, revealing a possible binding site between
the protein and the inhibitor to a certain extent (Figure 2). Hence, future research could
explore additional binding modes based on this site and develop more potent anti-tumor
targeted inhibitors.

Figure 2. The binding site of MyD88 with inhibitors. (A) Binding mode of inhibitors with MyD88 TIR
domain (PDB:7L6W). (B) Typical inhibitors of MyD88 TIR domain. MyD88, myeloid differentiation
factor 88; TIR, toll interleukin-1 receptor.

8. Discussion

As a critical cytoplasmic signaling protein, MyD88 is involved in mediating innate
immunity and regulating the TME. Activated TLR/MyD88 signals can induce the secretion
of immune factors and enhance the antigen-presenting ability of DCs, thereby promoting
the transformation of inflammatory cancers. Through the TLRs/MyD88 signaling pathway,
MyD88 directly or indirectly affects the secretion of a variety of downstream immune
factors [25,26]. This induces changes in the type, quantity, and function of local immune
cells in tumor tissues, leading to the deterioration of the inflammatory microenvironment
and remodeling of the TME, ultimately causing tumor immune tolerance and immune
escape. Additionally, based on optimal activation of Ras/ERK, MyD88 promotes DNA
damage repair and self-protection in cancer cells. Considering the critical driving force
of MyD88 in cancer, targeting MyD88 may be a powerful strategy in the field of anti-
tumor therapy.

In this review, we gathered critical evidence of MyD88 in regulating tumors and
immune microenvironment, summarize recent research progress on MyD88 inhibitors,
and reveal that residue ARG288 is highly likely to be an anti-tumor binding site between
Myd88 protein and inhibitors. This provides a clear and feasible approach for targeted
treatment of tumors with MyD88 in the future. Meanwhile, the critical evidence concerning
the regulation of MyD88 in the tumor immune microenvironment has revealed that MyD88
not only regulates inflammatory signaling pathways, but also facilitates tumor immune
evasion, macrophage polarization, and stimulates tumor cell proliferation and metastasis.

Recently, with the development of structural biology and biochemical research, tar-
geting MyD88 has become a viable therapeutic option. The reported inhibitors are mainly
based on the inhibition of MyD88 homologous oligomers or heteropolymers with other pro-
teins. In addition, some inhibitors reduce MyD88 levels by silencing genes, thus blocking
MyD88 signaling. Currently, inhibitors that affect MyD88 signaling and disrupt Myddo-
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some assembly are effective and feasible in different disease models. However, there are
also some urgent issues that need to be explored, such as the small binding effect of existing
inhibitors on target proteins, mainly due to the relatively flat surface of the MyD88 protein
and shallow inhibitor binding pockets. In theory, the application of inhibitors with smaller
chemical structures may be able to prolong the relative action time and enhance the effect
of action.

In this review, there are still some limitations in the research. We summarized the
progress of targeted multimerized-inhibitors in recent years, but due to the bias of literature
retrieval, we did not exhaustively list all the progress on inhibitors of the MyD88 signaling
pathway. At the same time, more in-depth discussions on high-expression cancer have
not yet been conducted, such as ovarian cancer, which will be further explored in in
subsequent studies.

In conclusion, the development of more effective inhibitors is worth considering.
Although the regulation of MyD88 contributes to controlling the development of related
diseases, very few inhibitors have been successfully implemented in the clinical setting.
Some inhibitors have low bioavailability, short half-lives, and poor pharmacokinetic per-
formance, which has led to many MyD88 inhibitor studies remaining in the preclinical
stage. Once these problems are resolved, research in the field of MyD88 will advance
rapidly. Future research should focus more attention on the cocrystallization of protein and
inhibitors as well as the binding sites, so as to develop more effective targeted inhibitors.
Meanwhile, the combination of MyD88-targeted therapies and immunotherapy may bring
more hope for cancer cure in the near future.
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CacyBP/SIP calcycin-binding protein and Siah-1 interaction protein
CI confidence interval
COX-2 cyclooxygenase 2
CX3CL1 C-X3-C motif chemokine ligand 1
DCs dendritic cells
DD death domain
DLBCL diffuse large B-cell lymphoma
EVs extracellular vehicles
HGSOC high-grade serous ovarian cancer
HMGB1 High mobility group box-1 protein
HR Hazard Ratio
IDO Indoleamine-2,3-Dioxygenase
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IFNs type I interferons
IFN-γ interferon-gamma
IKK IκB kinase
IL-10 interleukin-10
IL-18R interleukin-18 receptor
IL-1R interleukin-1 receptor
IL-6 interleukin-6
iNOS nitric oxide synthase
INT intermediate domain
IRAK IL-1R-associated kinase
IRF-7 interferon regulatory factor 7
LGSOC low-grade serous ovarian cancer
MAPK mitogen-activated protein kinase
MDSCs myeloid suppressor cells
MT1-MMP membrane type 1 matrix metalloproteinases
MyD88 Myeloid differentiation factor 88
NF-κB nuclear factor-κB
PAUF pancreatic adenocarcinoma up-regulated factor
PCa prostate cancer
PD-1 programmed death 1
PD-L1 programmed death ligand 1
Ras/ERK rat sarcoma virus/extracellular signal-regulated kinase
TAMs tumor-associated macrophages
TIR toll interleukin-1 receptor
TLRs toll-like receptors
TME tumor microenvironment
TNF-α tumor necrosis factor α
WM Waldenstrom macroglobulinemia
WT wild-type
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