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Effects of Cannabidiol (CBD) against

Qxidative Stress, but Not

Excitotoxic-Related Neuronal Cell

Damage—An In Vitro Study.

Biomolecules 2024, 14, 564. https://

doi.org/10.3390/biom14050564

Academic Editor: Giuseppe Pignataro

Received: 2 March 2024

Revised: 30 April 2024

Accepted: 7 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Protective Effects of Cannabidiol (CBD) against Qxidative Stress,
but Not Excitotoxic-Related Neuronal Cell
Damage—An In Vitro Study
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Abstract: Cannabidiol (CBD) appears to possess some neuroprotective properties, but experimental
data are still inconsistent. Therefore, this in vitro study aimed to compare the effects of CBD in a wide
range of concentrations on oxidative stress and excitotoxic-related cell damage. Results showed that
low concentrations of CBD ameliorated the H2O2-evoked cell damage of primary cortical neuronal
cell culture. However, higher concentrations of CBD alone (5–25 µM) decreased the viability of
cortical neurons in a concentration-dependent manner and aggravated the toxic effects of hydrogen
peroxide (H2O2). Neuroprotection mediated by CBD in primary neurons against H2O2 was not
associated with a direct influence on ROS production nor inhibition of caspase-3, but we found
protective effects of CBD at the level of mitochondrial membrane potential and DNA fragmentation.
However, CBD had no protective effect on the glutamate-induced cell damage of cortical neurons,
and in higher concentrations, it enhanced the toxic effects of this cell-damaging factor. Likewise,
CBD, depending on its concentration, at least did not affect or even enhance cortical cellular damage
exposed to oxygen–glucose deprivation (OGD). Finally, we showed that CBD in submicromolar or
low micromolar concentrations significantly protected human neuronal-like SH-SY5Y cells against
H2O2- and 6-hydroxydopamine (6-OHDA)-induced cell damage. Our data indicate that CBD has a
dual effect on oxidative stress-induced neuronal death-in low concentrations, it is neuroprotective,
but in higher ones, it may display neurotoxic activity. On the other hand, in excitotoxic-related models,
CBD was ineffective or enhanced cell damage. Our data support the notion that the neuroprotective
effects of CBD strongly depend on its concentration and experimental model of neuronal death.

Keywords: cannabidiol; neuroprotection; neurotoxicity; SH-SY5Y cells; primary cortical neurons;
hydrogen peroxide; glutamate; 6-hydroxydopamine

1. Introduction

Cannabidiol (CBD) is a psychoactive phytocannabinoid devoid of addictive potency,
with potential beneficial effects in the treatment of neurological and neuropsychiatric dis-
orders [1–5]. CBD is a multitargeted drug with neuroprotective and anti-inflammatory
properties, which shows affinity to various molecular targets, comprising peroxisome
proliferator-activated receptor gamma (PPARγ), transient receptor potential vanilloid
receptors (TRPV), G protein-coupled receptor 55 (GPR55), 5-HT1A serotonin receptors,
enzymes, transporters and ion channels, and negligible affinity to cannabinoid CB1 and
CB2 receptors [6–10]. Furthermore, CBD was reported to interfere with pivotal mech-
anisms of neuronal death in neurodegenerative disorders such as oxidative stress and
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excitotoxicity [11–13]. Moreover, CBD is used for the treatment of drug-resistant epilep-
sies [10]. Oxidative stress results from an imbalance between the overproduction of reactive
oxygen/nitrogen species (ROS/RNS) and a deficit in endogenous antioxidative systems.
Excessive production of ROS/RNS evokes peroxidation of the polyunsaturated fatty acids,
nitration and carbonylation of proteins, and oxidation of DNA, leading to cellular dam-
age [14]. Excitotoxicity is characterized by excessive glutamate release and overstimulation
of ionotropic glutamate receptors like NMDA (N-methyl-D-aspartate), AMPA (α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid), and KA (kainic acid) receptors, resulting
in a profound increase in intracellular calcium ion levels, which ultimately leads to cell
death [15].

Regarding CBD interference with oxidative stress, it was shown that this compound
protected rat cortical neuronal cell culture against tertbutyl hydroperoxide toxicity in a
concentration-dependent way with similar efficiency as an antioxidant butylated hydroxy-
toluene (BHT, 2,6-bis(1,1-dimethyl ethyl)-4-methylphenol) [11]. Moreover, in the model of
glutamate-induced toxicity, it was more protective than other strong antioxidants such as
ascorbate or β-tocopherol [11]. Recently, it was reported that CBD ameliorated oxidative
stress-related damage induced using hydrogen peroxide (H2O2) and mitochondrial toxin-
rotenon in primary cerebellar granule neurons [16]. Of note, these investigators found
that higher concentrations of CBD and some other cannabinoids decreased the viability
of neural cells [16]. These findings suggest that attenuation or aggravation of oxidative
stress-related cell damage by CBD is strongly concentration-dependent.

Regarding excitotoxicity, it was observed that CBD in concentrations up to 10 µM pro-
tected cortical neurons in vitro against glutamate toxicity regardless of whether the insult
was mediated by NMDA, AMPA, or kainate receptors [11]. Other authors reported that
CBD prevented NMDA-induced retinal neurotoxicity and that the mechanism of this action
involved peroxynitrite [17]. CBD also reduced ROS accumulation and lipid peroxidation
in the diabetic retinopathy model [18] and in the in vitro model of Alzheimer’s disease-
PC12 cells exposed to β-amyloid [19]. However, data on the effects of CBD on oxidative
stress and excitotoxic processes are often inconsistent. Moreover, CBD was reported to
exert neuroprotective or neurotoxic effects depending on experimental settings and the
neuronal model [13]. Therefore, in our study, we compared the neuroprotective efficacy of
CBD in a wide range of concentrations for in vitro models of neural cell damage induced
using prooxidative (hydrogen peroxide—H2O2, 6-hydroxydopamine—6-OHDA) and exci-
totoxic (glutamate—Glu, oxygen-glucose deprivation—OGD) insults. For this purpose, we
employed mouse primary neuronal cell cultures and a human neuronal-like model, neu-
roblastoma SH-SY5Y cells. Primary neuronal cell cultures obtained from rodent brains are
widely used as a screening platform for neurotoxicity and neuroprotection [20]. There are
several in vitro reports showing its utility for testing the neuroprotective potency of CBD
against various cell-damaging factors, including prooxidative or excitotoxic insults [13].
SH-SY5Y cells are frequently used in human cellular models to study mechanisms and
therapeutic strategies for neurodegenerative diseases, especially Parkinson’s disease [21].
Due to their dopaminergic phenotype, they are susceptible to dopaminergic neurotoxins
(e.g., 6-OHDA). They were reported to express an endocannabinoid system [22] and have
been used as a model for testing the neuroprotective potency of CBD [23,24].

2. Materials and Methods
2.1. Chemicals

Neurobasal A (w/o phenol red), supplement B27 (w/o antioxidants), high glucose
DMEM (Dulbecco’s Modified Eagle’s Medium), FluoroBrite™ DMEM, heat-inactivated
FBS (fetal bovine serum), 0.25% trypsin/EDTA and penicillin/streptomycin solution were
obtained from Gibco (Life Technologies Ltd., Paisley, UK). The Cytotoxicity Detection Kit
and Cell Proliferation Reagent WST-1 were purchased from Roche Diagnostics GmbH
(Mannheim, Germany). Caspase-3 (Ac-DEVD-AMC) fluorogenic substrate was from Enzo
Life Sciences (New York, NY, USA). CM-H2DCFDA, fluorescently labeled secondary an-
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tibodies (goat anti-mouse IgG (H+L) AlexaFluor® 488 and donkey anti-rabbit IgG (H+L)
AlexaFluor® 568)) and ProLong®Gold antifade reagent were from Molecular Probes (Life
Technologies Corporation, Eugene, OR, USA). Cannabidiol (CBD, 2-[1R-3-methyl-6R-(1-
methylethenyl)-2-cyclohexen-1-yl]-5-pentyl-1,3-benzenediol) was purchased from Cayman
Chemical (Ann Arbor, Michigan, USA). All other reagents were from Sigma (Sigma-Aldrich
Chemie GmbH, Taufkirchen, Germany).

2.2. Primary Neuronal Cell Cultures

Pregnant CD1 mice were obtained from Charles River Laboratories (Sulzfeld, Ger-
many). Primary neuronal cell cultures were prepared from 15/16 days embryos using the
previously described method [25]. The protocol for generating the primary neuronal cell
cultures is in line with the European Union (Directive 2010/63/EU, amended by Regulation
(EU) 2019.1010) guidelines on the ethical use of animals. All experiments were conducted
according to the principles of the Three Rs, and all efforts were made to minimize the
number of animals used and their suffering. The cortical tissue was trypsinized (0.1%
trypsin in PBS w/o Ca2+/Mg2+) at room temperature for 20 min, and cells were counted
in the Bürker chamber. Next, they were seeded at densities 6 × 104 and 3 × 105 cells per
well in poly-L-ornithine (0.05 mg/mL)-covered 96- and 24-well plates, respectively. For the
first two days, the cell culture medium (Neurobasal A medium, 2 mM L-glutamine, 0.4%
B27, 0.06 µg/mL penicillin, and 0.1 µg/mL streptomycin) was supplemented with 5% FBS.
The cells were cultured at 37 ◦C in a humidified atmosphere containing 5% CO2 for eight
days prior to experimentation with medium exchange every two days. This procedure
typically yields cultures that contain about 80% of neurons and about 20% of astrocytes, as
was measured using MAP-2 and GFAP immunofluorescence.

2.3. SH-SY5Y Cell Culture

Human neuroblastoma cell line SH-SY5Y (ATCC, CRL-2266, Manassas, VA, USA) was
cultured in DMEM containing 10% of heat–inactivated FBS and 1% of 100 U/mL penicillin,
and 0.1 mg/mL streptomycin in 75-cm2 culture flasks and were grown in a humidified
chamber with 5% CO2 at 37 ◦C. When the cells reached about 80% confluency, they were
seeded into 96-well plates at a density of 4 × 104 cells per well. Twenty-four hours before
cell treatment, the culture medium was changed to a serum-free medium containing a 1%
N2 supplement. For experiments, cells between passage numbers 3–20 were used.

2.4. Cell Treatment

The primary neuronal cell cultures growing on 96-well plates were first treated with
CBD alone at concentrations 1–25 µM to assess the biosafety of the tested compounds. Next,
all these cells were pretreated with CBD (0.01–25 µM) for 30 min, followed by H2O2 (0.2 mM)
or glutamate (Glu, 1 mM) exposure for the next 24 h. We chose optimal concentrations
of particular cell-damaging agents (H2O2 and Glu) and time of exposure (24 h) based
on our previous study [25]. Moreover, we examined the effect of CBD (0.01–0.5 µM) in
primary neurons against cell damage evoked by oxygen-glucose deprivation (OGD) as was
optimized and described in our previous study [26]. CBD was given under three schedules-
before OGD, before and after OGD, and after OGD. Briefly, the cells were washed twice
and placed in glucose-free Earle’s balanced salt solution (EBBS, pH 7.4, purged with a 95%
N2 and 5% CO2 gas mixture for 5 min), treated with CBD (for experimental groups: before
OGD; before and after OGD) and placed in an airtight chamber (Billups-Rothenberg Inc.,
San Diego, CA, USA) equipped with inlet and outlet valves, and flushed by 95% N2 and
5% CO2 gas mixture for 5 min. The chamber was sealed and placed into a humidified
incubator at 37 ◦C for 180 min with additional chamber flushing with 95% N2 and 5%
CO2 gas mixture after 90 min. During such a procedure, the oxygen concentration in the
chamber is maintained at 0.1%. Control cells were incubated in EBBS containing 5 mM
glucose in a normoxic incubator for the same time and with a similar treatment with CBD.
OGD was terminated by removing the cultures from the airtight chamber, exchanging
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EBBS from OGD-exposed and normoxia cells with the pre-warmed Neurobasal culture
medium, treatment of cells with CBD (experimental groups: before and after OGD; after
OGD) and cultured for next 24 h under the normoxic conditions (reoxygenation period).
We employed the NMDA receptor antagonist, MK-801 (1 µM), as a positive control for Glu
and OGD models. In the OGD model, MK-801 was given two times, before and after OGD.

The SH-SY5Y cells were treated with CBD alone (0.01–5 µM) for 24 h or pretreated for
30 min with CBD (0.01–5 µM) followed by 24 h exposure to H2O2 (0.3 mM) or 6-OHDA
(0.1 mM). The optimal concentrations of cell-damaging factors and time of treatment were
chosen on the basis of our previous work [25].

Stock solution of CBD (10 mM) was prepared in 100% ethanol and kept at −80 ◦C.
The final solutions of this compound were prepared in 70% ethanol and kept at −20 ◦C.
Ac-DEVD-CHO (20 mM) stock solution was prepared in DMSO, and its final solution
was prepared in distilled water. The H2O2 (100 mM) stock solution was prepared freshly
from stabilized 30% hydrogen peroxide diluted to the final concentration in distilled water.
The 6-OHDA (10 mM) stock solution was prepared in distilled water on the day of cell
treatment. The Glu (100 mM) stock solution was prepared in 100 mM NaOH immediately
before use. The buffers for the OGD model were prepared according to the procedure
described in our previous study [26]. Each experimental set of the control cultures was
supplemented with the appropriate vehicle (70% ethanol), and the solvent was present
in cultures at a final concentration of 0.1%. All agents were added to the culture medium
under light-limited conditions to avoid potential light-induced cytotoxicity.

2.5. MTT Reduction Cell Viability Assay

The assessment of cell viability of primary neuronal cell cultures growing in 96-well for-
mat was performed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)
assay according to the procedure described previously [25]. The data were normalized to
vehicle-treated cells (100%) and are presented as a mean ± SEM from 3–8 independent
experiments with 3–5 replicates each.

2.6. WST-1 Cell Viability Assay

Cell viability in SH-SY5Y cells viability was estimated using Water-Soluble Tetra-
zolium 1 (WST-1) cell proliferation reagent. The stable tetrazolium salt WST-1 was cleaved
into formazan dye according to mitochondrial dehydrogenase activity. The amount of
formazan dye formed directly correlates to the number of metabolically active cells. Twenty-
four hours after cell treatment, 5 µL of WST-1 solution was added to the cell culture for
30–60 min. Finally, absorbance was read at 450 nm with a reference wavelength level
of 650 nm using an Infinite M200PRO microplate reader (Tecan Austria GmbH, Grodig,
Austria). The intensity of the red color formed in the assay is proportional to the number of
viable cells. The data were normalized to vehicle-treated cells (100%) and are expressed as
the mean ± SEM from 2–3 independent experiments with 3–5 replicates.

2.7. LDH Release Assay

The lactate dehydrogenase (LDH) released into culture media was used to assess the
cytotoxic potential of the tested compounds with the Cytotoxicity detection kit (Roche) as
described previously [25]. The medium was collected from the plates used for cell viability
assessment. The data were normalized to vehicle-treated cells (100%) and are presented as
a mean ± SEM from 2–8 independent experiments with 3–5 replicates each.

2.8. Measurement of Intracellular Reactive Oxygen Species (ROS)

The intracellular ROS level was measured with 5-(and 6-)-chloromethyl-2′,7′-dichl
orodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) as described previously [27].
The cells were washed with pre-warmed FluoroBrite™ DMEM and loaded with 5 µM
CM-H2DCFDA dissolved in FluoroBrite™ DMEM and located for 10 min in an incubator.
Next, the cells were treated with CBD (0.5–5 µM), NAC (1 mM), and H2O2 (1 mM) for
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50 min. Afterward, the cells were washed twice with pre-warmed FluoroBrite™ DMEM,
and the fluorescence was measured in a microplate multi-well reader (Infinite® M200 PRO,
Tecan Austria GmbH, Grodig, Austria) with excitation and emission wavelengths of 485 nm
and 535 nm, respectively. The data were normalized to the vehicle-treated cells (100%) and
are presented as the mean ± SEM from 2 independent experiments, two plates in each
experiment with 3–5 replicates.

2.9. Measurement of Mitochondrial Membrane Potential (MMP)

The tetramethylrhodamine ethyl ester (TMRE) was used for MMP measurement, as
described previously [27]. The cells were pretreated for 30 min with CBD (0.01–5 µM)
followed by 6 h exposure to H2O2 (0.2 mM). Next, the cells were washed with pre-warmed
FluoroBrite™ DMEM loaded with 200 nM TMRE dissolved in FluoroBrite™ DMEM and
located in an incubator for 20 min. After two washings with pre-warmed FluoroBrite™
DMEM, the fluorescence was measured in a multi-well microplate reader (Infinite® M200
PRO, Tecan Austria GmbH, Grodig, Austria) with excitation and emission wavelengths
of 540 nm and 595 nm, respectively. Data were normalized to vehicle-treated cells (100%)
and are presented as the mean ± SEM from 2 independent experiments, two plates in each
experiment with 3–5 replicates.

2.10. Caspase-3 Activity Assay

Primary neuronal cell cultures growing in 96-well format were treated with CBD
(0.01–5 µM) and H2O2 (0.2 mM) for 9 h. Caspase-3 inhibitor, Ac-DEVD-CHO (20 µM), was
used as a positive control for the measurement. Caspase-3 activity was measured in cell
lysates using the fluorogenic substrate Ac-DEVD-AMC (50 µM) as described previously [27].
The data were normalized to vehicle-treated cells (100%) and presented as the mean ± SEM
from 4 independent experiments with 3–5 replicates each.

2.11. Immunofluorescence and Hoechst 33342 Staining

Primary neuronal cell cultures growing on poly-L-ornithine (0.05 mg/mL)-covered
round cover glasses (diameter 11 mm) in 24-well plate format after 30 min pretreatment
with CBD (0.1–1 µM) followed by 24 h exposure to H2O2 (0.2 mM) were fixed with 4%
paraformaldehyde and immunostained with neuronal (mouse anti-MAP-2 antibody) and
astrocyte (rabbit anti-GFAP antibody) markers as described previously [27]. After staining
with fluorescently labeled secondary antibodies (goat anti-mouse IgG (H+L) AlexaFluor®

488 and donkey anti-rabbit IgG (H+L) AlexaFluor®568), the cells were counterstained
with nuclear dye Hoechst 33342 and mounted in ProLong®Gold antifade reagent). The
samples were imaged with the inverted fluorescence microscope (AxioObserver, Carl Zeiss,
Jena, Germany) equipped with a black-white camera (Axio-CamMRm, Carl Zeiss, Jena,
Germany) with the excitation wavelengths 470 nm, 555 nm, and 365 nm for AlexaFluor®488,
AlexaFluor®568 and Hoechst 33342, respectively. Five microphotographs were taken for
all experimental groups under each fluorescence panel, and images were collected from
4 independent experiments. The number of pyknotic nuclei (fragmented or/and condensed)
and healthy (uniformly stained) nuclei were counted semi-automatically from Hoechst
33342 images using AxioVision Rel. 4.8.2 SP2 (06-2012) Software (Carl Zeiss, Jena, Germany).
Data were calculated as a percentage of cells with pyknotic nuclei relative to the whole cell
number and presented as the mean ± SEM. A similar method was used to estimate the
percentage of MAP-2 and GFAP-positive cells in all experimental groups. Representative
images of cells stained with neuronal and glial markers and counterstained with Hoechst
33342 dye were acquired using a Leica TCS SP8 confocal microscope (Leica Microsystems
GmbH, Wetzlar, Germany) equipped with a white light laser (WLL), using LAS X software
(version 3.5.7.23225). Neuronal and glial fluorescence images were recorded using spectral
detectors (HyD), and cell nuclei were recorded using a photomultiplier tube (PMT). Images
were captured using an HC PL APO CS2 20x/0.75 DRY lens at zoom 2. Digital image
dimensions: 2048 × 2048 pixels, pixel size 142 nm. A bidirectional scan was performed
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with triple line averaging for better quality. Each channel was scanned separately using
the sequential mode: Hoechst 33342 dye excitation using 405 nm laser, emission recorded
at range 410 nm–504 nm; AlexaFluor®488 dye excitation using 499 nm laser, emission
recorded at range 504 nm–548 nm; AlexaFluor®568 dye excitation using 553 nm laser,
emission recorded at range 558 nm–725 nm.

2.12. Statistical Analysis

Data were analyzed using the one-way analysis of variance (one-way ANOVA) and
post hoc Duncan test for multiple comparisons using the Statistica 13 software (StatSoft
Inc., Tulsa, OK, USA). The statistical significance was assumed with p < 0.05.

3. Results
3.1. The Neuroprotective Effects of CBD in Primary Neuronal Cell Cultures

In primary neuronal cell cultures, CBD at concentrations 5, 10, and 25 µM evoked a sig-
nificant and concentration-dependent decrease in cell viability (from 20–95%)
(Figure 1A), and at the concentration of 25 µM increased by about 2.5-fold LDH release
when compared to vehicle-treated cells (Figure 1B).
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Figure 1. Biosafety assessment of cannabidiol CBD) in primary neurons. The cells were treated for
24 h with CBD (1–25 µM). Cell viability (A) and cytotoxicity (B) were estimated by MTT reduction
and LDH release assays, respectively. The data were normalized to vehicle-treated cells and are
presented as the mean ± SEM from 3–8 independent experiments with 3–5 replicates. *** p < 0.001 vs.
vehicle-treated cells.

In the cell damage model induced using H2O2 in primary neurons, we observed over
60% decrease in cell viability, which was reduced by half by CBD at concentrations 0.5 and
1 µM (Figure 2A). We also observed the neuroprotective effect of CBD at the level of the
cytotoxic marker, where CBD at concentrations 0.5–5 µM partially (by about 10–18% of
H2O2-induced changes) decreased the H2O2-induced LDH release (Figure 2B). We detected
an enhanced cell-damaging effect of H2O2 by CBD at a concentration of 25 µM, confirmed
using MTT reduction and LDH release assays (Figure 2).

In the cell damage model induced using Glu in primary neurons, we observed about
a 50% decrease in cell viability and around a 1.8-fold increase in released LDH level
when compared to vehicle-treated cells, which was significantly attenuated by NMDA
receptor antagonists, MK-801 (1 µM) (Figure 3A,B). None of the tested CBD concentrations
(0.01–25 µM) were protective against Glu-evoked cell damage (Figure 3A,B). However, this
compound in concentrations over 5 µM significantly increased the Glu-induced decrease
in cell viability (Figure 3A), and for concentrations above 10 µM, it also enhanced the
Glu-stimulated LDH release (Figure 3B).
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Figure 3. The effects of cannabidiol (CBD) on the glutamate (Glu, (A,B))- or oxygen-glucose depri-
vation (OGD, (C,D))-induced cell damage in primary neurons. (A,B) The cells were treated with
CBD (0.01–25 µM) in combination with Glu (1 mM) for 24 h. (C,D) The cells were treated with CBD
(0.01–0.5 µM) under three schedules (before OGD, before + after OGD, after OGD) combined with a
3 h OGD procedure and 24 h of reoxygenation period. NMDA receptor antagonist MK-801 (1 µM)
was used as a positive control for both cell damage models. Cell viability (A,C) and cytotoxicity (B,D)
were measured by MTT reduction and LDH release assays, respectively. The data were normalized
to vehicle-treated cells and presented as the mean ± SEM from 3–7 independent experiments with
3–5 replicates. *** p < 0.001 vs. vehicle-treated cells; # p< 0.05, ## p < 0.01 and ### p < 0.001 vs.
Glu/OGD-treated cells.
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The OGD model is commonly used for in vitro experimental modeling of stroke where
excitotoxic processes are predominant [25–27]. In such a model in primary neuronal cell
culture, we observed neuroprotective effects of NMDA receptor antagonist MK-801 (1 µM,
given before + after OGD) at the level of cell viability (Figure 3C) as well as the LDH release
(Figure 3D). We did not find any protection mediated by CBD at all tested concentrations
(0.01–0.5 µM) under any of the tested administration schedules (before OGD, before + after
OGD, after OGD), as was confirmed in both biochemical assays (Figure 3C,D). In the LDH
release assay, we observed a slight (by about 15% of OGD-induced changes) increase in the
cytotoxic effect of OGD by CBD at a concentration of 0.05 µM when it was given before
OGD and before + after OGD (Figure 3D).

3.2. Verification of Potential Mechanisms Involved in the CBD-Mediated Neuroprotection

Since previous data indicated the direct antioxidant potency of CBD [11], first, we
verified if CBD has any direct effect on ROS production evoked by H2O2 in primary
neuronal cell cultures, which was assessed by CM-DCF fluorescence. We found that H2O2
(1 mM) increased about 4-fold the CM-DCF fluorescence when compared to vehicle-treated
cells, which was significantly reduced by antioxidant NAC (1 mM) but not by any of the
tested concentrations of CBD (0.5–5 µM) (Figure 4A). CBD alone (5 µM) did not influence
the basal intracellular ROS level compared to vehicle-treated cells (Figure 4A).
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Figure 4. The effects of cannabidiol (CBD) on the H2O2-evoked changes in reactive oxygen species
level (ROS, (A)), mitochondrial membrane potential (MMP, (B)), caspase-3 activity (C), and cytotoxic-
ity (D) in primary neuronal cell cultures. (A) ROS production was assayed with a CM-H2DFFDA
probe, as described in details found in the Material and Methods section. (B) MMP measurement was
performed after 6 h of treatment of cells with CBD (0.01–5 µM), NAC (1 mM), and H2O2 (0.2 mM)
employing a TMRE fluorescence probe. (C,D) Caspase-3 activity and cytotoxicity measurements were
performed in cells treated for 9 h with CBD (0.01–5 µM) and H2O2 (0.2 mM). A caspase-3 inhibitor, Ac-
DEVD-CHO (Ac, 20 µM), was used as a positive control to the assay. After treatment, in cell lysates,
caspase-3 activity (C) was measured using the fluorogenic substrate Ac-DEVD-AMC, and cytotoxicity
was assessed in the cell culture medium (LDH test, (D)). Data after normalization to vehicle-treated
cells (100%) are presented as a mean ± SEM. * p < 0.05 and *** p < 0.001 vs. vehicle-treated cells;
# p < 0.05, ## p < 0.01 and ### p < 0.001 vs. H2O2-treated cells.
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The H2O2-evoked cell damage in primary neuronal cell cultures is associated with
MMP decrease, as evidenced in our previous studies [25,27]. We found that CBD alone
at concentration 5 µM significantly increased TMRE fluorescence (by about 11%) when
compared to vehicle-treated cells and at concentrations 0.1–5 µM slightly (about 20–37% of
H2O2 effects) attenuated the H2O2-evoked decline in MMP (Figure 4B).

Mitochondrial collapse induced by H2O2 could activate apoptotic processes in neu-
ronal cells [25,27,28]. Thus, in the next step, we tested the possible effects of CBD on
the apoptotic marker caspase-3. We found about 1.5-fold increase in caspase-3 activity
after 9 h of treatment with H2O2 (0.2 mM), which was completely inhibited by caspase-3
inhibitor, Ac-DEVD-CHO (20 µM) but not attenuated by any tested concentrations of CBD
(0.01–5 µM) (Figure 4C). Moreover, we observed that CBD alone at concentrations 1 and
5 µM significantly increased basal caspase-3 activity (by about 20 and 40%, respectively),
and 1 µM CBD exaggerated the H2O2-induced enzyme activity (Figure 4C). However, these
changes were not reflected in the cytotoxicity level since in LDH release assay after 9 h of
treatment, we did not observe any detrimental effects of CBD alone at concentrations 1 and
5 µM, and CBD at concentrations 0.1–1 µM significantly attenuated the H2O2-evoked LDH
release (Figure 4D).

We also verified the neuroprotective effects of CBD at the level of DNA fragmentation
measured by Hoechst 33342 staining. We demonstrated a huge increase in the number of
pyknotic (apoptotic and necrotic) nuclei after 24 h treatment with H2O2 (0.2 mM), which
was significantly attenuated by CBD at concentrations 0.1–1 µM (Figure 5).

Biomolecules 2024, 14, x FOR PEER REVIEW 10 of 19 
 

 
Figure 5. The effect of cannabidiol (CBD) on DNA fragmentation was measured by Hoechst 33342 
staining. (A) Representative fluorescence images of primary neurons treated with cannabidiol (CBD, 
0.1–1 µM) and H2O2 (0.2 mM) for 24 h and stained with Hoechst 33342 dye. Images were taken with 
an inverted microscopy AxioObserver. (B) Quantitative analysis of DNA fragmentation by counting 
the cells with pyknotic (fragmented and/or condensed) nuclei. The data are presented as a percent-
age of pyknotic nuclei ± SEM. ** p < 0.01 and *** p < 0.001 vs. vehicle-treated cells; ## p < 0.01 and ### 
p < 0.001 vs. H2O2-treated cells. 

Finally, we evidenced neuroprotection by CBD at a morphological level using the 
MAP-2/GFAP immunofluorescence method. Quantitative analysis of MAP-2- and GFAP-
positive cells was performed on fluorescence images taken with an inverted microscopy 
AxioObserver. The data showed that 24 h of treatment with H2O2 (0.2 mM) evoked almost 
complete cell damage of neurons, which was in a concentration-dependent manner atten-
uated by CBD (0.1–1 µM) (Figure 6A). However, we did not observe any protection by 
CBD at the level of GFAP-positive cells, which were significantly destroyed by H2O2 and 
not protected by CBD (0.1–1 µM) (Figure 6B). Moreover, CBD (1 µM) given alone for 24 h 
significantly increased the number of MAP-2 and GFAP-positive cells (Figures 6A,B). Rep-
resentative confocal images are shown in Figure 6C. 

Figure 5. The effect of cannabidiol (CBD) on DNA fragmentation was measured by Hoechst 33342
staining. (A) Representative fluorescence images of primary neurons treated with cannabidiol (CBD,
0.1–1 µM) and H2O2 (0.2 mM) for 24 h and stained with Hoechst 33342 dye. Images were taken
with an inverted microscopy AxioObserver. (B) Quantitative analysis of DNA fragmentation by
counting the cells with pyknotic (fragmented and/or condensed) nuclei. The data are presented as a
percentage of pyknotic nuclei ± SEM. ** p < 0.01 and *** p < 0.001 vs. vehicle-treated cells; ## p < 0.01
and ### p < 0.001 vs. H2O2-treated cells.
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Finally, we evidenced neuroprotection by CBD at a morphological level using the
MAP-2/GFAP immunofluorescence method. Quantitative analysis of MAP-2- and GFAP-
positive cells was performed on fluorescence images taken with an inverted microscopy
AxioObserver. The data showed that 24 h of treatment with H2O2 (0.2 mM) evoked
almost complete cell damage of neurons, which was in a concentration-dependent manner
attenuated by CBD (0.1–1 µM) (Figure 6A). However, we did not observe any protection
by CBD at the level of GFAP-positive cells, which were significantly destroyed by H2O2
and not protected by CBD (0.1–1 µM) (Figure 6B). Moreover, CBD (1 µM) given alone for
24 h significantly increased the number of MAP-2 and GFAP-positive cells (Figure 6A,B).
Representative confocal images are shown in Figure 6C.

Biomolecules 2024, 14, x FOR PEER REVIEW 11 of 19 
 

 
Figure 6. The effect of cannabidiol (CBD) on neuronal (A) and glial (B) cells. Primary neurons were 
treated with cannabidiol (CBD, 0.1–1 µM) and H2O2 (0.2 mM) for 24 h and immunostained with 
neuronal (MAP-2) and astrocyte (GFAP) marker. Quantitative analysis of MAP-2 and GFAP-posi-
tive cells was performed on fluorescence images taken with an inverted microscopy AxioObserver. 
The data are presented as a number of MAP-2 (A) and GFAP (B) positive cells per image ± SEM. * p 
< 0.05, ** p < 0.01 and *** p < 0.001 vs. vehicle-treated cells; ## p < 0.01 and ### p < 0.001 vs. H2O2-treated 
cells. (C) Representative confocal images of primary neurons treated with cannabidiol (CBD, 0.1–1 
µM) and H2O2 (0.2 mM) for 24 h. The cells were immunostained with a neuronal marker (MAP-2, 
green), astrocyte marker (GFAP, red), and nuclear dye Hoechst 33342 (blue) and imaged with a Leica 
TCS SP8 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany) equipped with a 
white light laser (WLL), using LAS X software (version 3.5.7.23225). 

3.3. The Neuroprotective Effects of CBD in SH-SY5Y Cells 
CBD in the concentration range of 0.01 to 2 µM did not change the level of lactate 

dehydrogenase in SH-SY5Y cells and did not affect cell viability, while at the higher con-
centration (5 µM), it significantly increased the release of the enzyme and reduced cell 
viability (Figure 7A,B). Two toxic agents, H2O2 and 6-OHDA, were used to assess the neu-
roprotective effect of CBD. Twenty-four hour incubation of SH-SY5Y cells with H2O2 and 
6-OHDA significantly increased LDH levels (177% and 183% of control, respectively) (Fig-
ures 7C and 8A) and reduced cell viability (47% and 48% of control, respectively) (Figure 
7D and 8B), as compared to vehicle-treated cells. The neuroprotective effect of CBD on 
SH-SY5Y cell damage induced by both H2O2 and 6-OHDA was observed. At the lowest 
concentrations used (0.01 and 0.05 µM), CBD effectively inhibited the H2O2-induced cell 
damage (Figure 7C,D). A stronger inhibitory effect of CBD on the 6-OHDA-stimulated 
LDH release was observed over a broader range of CBD concentrations (0.01–2 µM) (Fig-
ure 8A), while at concentrations 0.05–2 µM, CBD significantly counteracted the effect of 6-
OHDA on cell viability (Figure 8B). 

Figure 6. The effect of cannabidiol (CBD) on neuronal (A) and glial (B) cells. Primary neurons
were treated with cannabidiol (CBD, 0.1–1 µM) and H2O2 (0.2 mM) for 24 h and immunostained
with neuronal (MAP-2) and astrocyte (GFAP) marker. Quantitative analysis of MAP-2 and GFAP-
positive cells was performed on fluorescence images taken with an inverted microscopy AxioObserver.
The data are presented as a number of MAP-2 (A) and GFAP (B) positive cells per image ± SEM.
* p < 0.05, ** p < 0.01 and *** p < 0.001 vs. vehicle-treated cells; ## p < 0.01 and ### p < 0.001 vs.
H2O2-treated cells. (C) Representative confocal images of primary neurons treated with cannabidiol
(CBD, 0.1–1 µM) and H2O2 (0.2 mM) for 24 h. The cells were immunostained with a neuronal marker
(MAP-2, green), astrocyte marker (GFAP, red), and nuclear dye Hoechst 33342 (blue) and imaged
with a Leica TCS SP8 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany) equipped
with a white light laser (WLL), using LAS X software (version 3.5.7.23225).

3.3. The Neuroprotective Effects of CBD in SH-SY5Y Cells

CBD in the concentration range of 0.01 to 2 µM did not change the level of lactate
dehydrogenase in SH-SY5Y cells and did not affect cell viability, while at the higher
concentration (5 µM), it significantly increased the release of the enzyme and reduced
cell viability (Figure 7A,B). Two toxic agents, H2O2 and 6-OHDA, were used to assess the
neuroprotective effect of CBD. Twenty-four hour incubation of SH-SY5Y cells with H2O2
and 6-OHDA significantly increased LDH levels (177% and 183% of control, respectively)
(Figures 7C and 8A) and reduced cell viability (47% and 48% of control, respectively)
(Figures 7D and 8B), as compared to vehicle-treated cells. The neuroprotective effect of CBD
on SH-SY5Y cell damage induced by both H2O2 and 6-OHDA was observed. At the lowest
concentrations used (0.01 and 0.05 µM), CBD effectively inhibited the H2O2-induced cell
damage (Figure 7C,D). A stronger inhibitory effect of CBD on the 6-OHDA-stimulated LDH
release was observed over a broader range of CBD concentrations (0.01–2 µM) (Figure 8A),
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while at concentrations 0.05–2 µM, CBD significantly counteracted the effect of 6-OHDA
on cell viability (Figure 8B).
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Figure 8. Effect of cannabidiol (CBD) on the 6-OHDA-induced cell damage in SH-SY5Y cells. The
cells were pretreated for 30 min with CBD (0.01–5 µM) followed by 24 h exposure to 6-OHDA
(0.1 mM). The cytotoxicity was estimated by LDH release assay (A) and cell viability by WST-1 assay
(B). Data after normalization to vehicle-treated cells (100%) are presented as the mean ± SEM from
2–3 independent experiments with 3–5 replicates. *** p < 0.001 vs. vehicle-treated cells; # p < 0.05,
## p < 0.01 and ### p < 0.001 vs. 6-OHDA-treated cells.
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4. Discussion

Despite the beneficial influence of CBD on some neurological disorders, such as
epilepsy and chronic pain, some clinical data suggest that adverse effects of this compound
include neurotoxicity [29]. Our study showed that CBD in nanomolar or low micromolar
concentrations attenuated neuronal cell damage related to oxidative stress but not excito-
toxicity. CBD in higher concentrations (>5 µM), when given alone, significantly decreased
the viability of both types of neuronal cells (primary neurons and SH-SY5Y cells), and
in primary neurons, also amplified cell damage evoked by prooxidative or excitotoxic
insults. Additionally, some clinical data suggest that adverse effects of this compound
may include neurotoxicity [29]. Previous studies demonstrated the cell-damaging effects of
CBD at concentrations above 5 µM as evidenced in primary rat hippocampal neurons [30],
rat cerebral granule cells [16], rat neural progenitor cells [31], or in undifferentiated and
neuronally differentiated (with retinoic acid) human SH-SY5Y cells [24,32]. In our study,
we demonstrated that in undifferentiated SH-SY5Y cells, CBD at concentration 5 µM is
cytotoxic. However, this is in contrast to the findings of some research groups [23,24,32],
who showed that up to 10 µM CBD is safe for undifferentiated SH-SY5Y cells. These
discrepancies could be explained by the composition of the cell culture medium. In the
former studies [23,24,32], a culture medium with 10% FBS content was used, which prob-
ably made cells more resistant to the cell-damaging effect of CBD in comparison to the
medium containing 1% N2 supplement in our study. In some cases, the cytotoxic effect
of CBD is associated with the induction of oxidative stress. It could be responsible for
the anti-inflammatory action of CBD (>10 µM) in the experimental model of refractory
epilepsy, as was evidenced by polymorphonuclear neutrophils (PMNs), which enter the
brain parenchyma in the first wave of extravasation after epileptic seizures [33].

Of note, we confirmed the results of a previous study performed by Kim et al. [30] on
1 DIV primary hippocampal neurons that lower concentrations of CBD significantly pro-
tected the neurons from the H2O2-induced death, while higher micromolar concentrations
of CBD alone (>5 µM) significantly and in a concentration-dependent manner decreased
viability of neuronal cells. As mentioned by Kim et al. [30], the mechanisms of cell death
evoked by CBD or H2O2 are different, and CBD only partly rescued the H2O2-induced
neurite degeneration. In our study, the protective effects of CBD in low concentrations
on the H2O2-induced primary cortical neuron cell damage revealed by biochemical (LDH
and MTT assays) and morphological observations (MAP-2 immunostaining) were sup-
ported by an increase in MMP. However, we did not observe the protective effects of CBD
(0.1–1 µM) on glial cells damaged by H2O2, as evidenced by the number of GFAP-positive
cells. Interestingly, we showed that CBD alone (1 µM) increased the number of MAP-2- and
GFAP-positive cells, suggesting the protective effects of this compound under basal condi-
tions in neuronal and glial cells. A decrease in MMP is associated with cytochrome c release
during apoptosis and might be an indirect marker for cytochrome c release in cells [34].
Although we did not perform a specific mechanistic study in this respect, the counteracting
effect of CBD on the H2O2-induced loss of MMP suggests an anti-apoptotic effect of CBD in
this experimental setting. The mitochondrial collapse and cytochrome c release initiates a
cascade of events leading to the activation of caspase-9 and later caspase-3 [35]. In our study,
we did not find any attenuation of the H2O2-induced caspase-3 activity; however, we no-
ticed a significant inhibitory effect of CBD on DNA fragmentation, as estimated by Hoechst
33342 staining. That suggests an involvement of caspase-3-independent mechanisms in
neuroprotection mediated by CBD. Future studies should verify the engagement of AIF
(apoptosis-inducing factor) in CBD-mediated neuroprotection since, after its translocation
from mitochondria to the cytoplasm, it could evoke large-scale DNA fragmentation, leading
to cell demise [36]. To this end, our previous data showed AIF translocation in the model
of neuronal cell damage induced by H2O2 in SH-SY5Y cells [28], and similar findings were
reported by Seong-Woon et al. [37] for primary cortical neurons. So far, no data has shown
an association of CBD neuroprotection with the inhibition of AIF translocation. Since CBD
acts on many targets, among which not only cannabinoid receptors could be included, but
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there are also other possible targets that could be involved in its neuroprotective effects
(e.g., adenosine receptor subtype 2A, 5-HT1A, TVRP, PPARγ) [8]. Thus, it is not excluded
that some of them could be responsible for the CBD-mediated neuroprotection observed
against H2O2 neurotoxicity. However, this assumption needs to be verified in further
experimental studies.

The ability of CBD in low micromolar concentrations to protect cells against oxidative
stress-related damage was also confirmed in the SH-SY5Y cell model. Indeed, in our study,
CBD in low concentration protected SH-SY5Y cells against H2O2 and 6-OHDA-evoked cell
death. Protective effects of CBD against H2O2-evoked cell damage in SH-SY5Y cells were
also observed by Yordanov et al. [24] but at higher concentrations (0.39 and 0.78 µM) than
in our study (0.01 and 0.05 µM). It is not excluded that the medium composition during
experiments could be responsible for these discrepancies in effective protective concentra-
tions. However, in neuronally differentiated SH-SY5Y cells, no protective effects of CBD at a
concentration of 2.5 µM against cell damage induced by H2O2, 6-OHDA, glycolaldehyde, or
methylglyoxal were observed [32]. Thus, it may be hypothesized that neuroprotective mech-
anisms of CBD could engage the same prosurvival pathways as those induced by retinoic
acid, e.g., PI3-K/Akt or ERK1/2 [38]. It should be noted that during the differentiation of
SH-SY5Y cells, CBD (2.5 µM) sensitized the cells to detrimental effects of all redox-active
drugs (H2O2, 6-OHDA, glycolaldehyde or methylglyoxal) [32]. Our data obtained in SH-
SY5Y cells support reports showing the neuroprotective effects of CBD in other in vitro
models of Parkinson’s disease. Thus, CBD protected the neural cells from apoptosis in vitro
menstrual stromal cell-derived dopamine-like neurons (DALNs) exposed to paraquat, and
this effect was accompanied by inhibition of caspase-3 activity [39]. CBD also reduces
cell damage of undifferentiated and retinoic acid differentiated SH-SY5Y cells exposed to
1-methyl-4-phenylpyridinium (MPP+)—A neurotoxin which inhibits mitochondrial com-
plex I, decreases ATP level and enhances ROS production [23,40]. In undifferentiated cells,
protection was demonstrated for CBD at concentrations 25 and 50 µM and was associated
with induction of autophagy and alleviation of mitochondrial dysfunction by upregulation
of SIRT1 and inhibition of NF-κB and NOTCH pathways [23]. Whereas in differentiated
cells, CBD was protective against MPP+-evoked cell damage at concentration 10 µM CBD
via activation of ERK and AKT/mTOR pathways, reduction in Bax and the nuclear levels
of PARP-1, inhibition of caspase-3 and inhibition of autophagy [40]. Moreover, the effects
of CBD on ERK and autophagic pathways were attenuated by CB2 and TRPV1 but not by
CB1 antagonists [40]. The above opposite effects of CBD in undifferentiated and retinoic
acid-differentiated cells could raise a question of whether the differentiation process could
affect cannabinoid pathways/receptors in SH-SY5Y cells. Up to now, it has been demon-
strated that undifferentiated SH-SY5Y express the mRNA of enzymatic components of the
endogenous cannabinoid system including diacylglycerol lipases (DAGLα and DAGLβ),
monoacylglycerol lipase (MAGL), α/β-hydrolase domain containing 6 (ABHD6), ABHD12,
N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), and fatty acid
amide hydrolase (FAAH), but the CB1 and CB2 mRNA were expressed in relatively very
low level [22]. Thus, cell lines expressing exogenous CB1 or CB2 were created, and they
did not differ from parental cells with respect to proliferation, viability, or apoptosis, but
they had an impact on neurite length [41]. Moreover, it has been shown that during the
differentiation of SH-SY5Y cells, there is a decrease in the mRNA level of the endocannabi-
noid hydrolyzing enzyme MAGL [41]. Since we did not perform a mechanistic study, it
is difficult to speculate if, and to what extent, CBD exerted its neuroprotective effects in
SH-SY5Y cells via an endogenous cannabinoid system. This compound interacts with
a high number of molecular targets, including G protein-coupled receptors (adenosine
receptor subtype 2A, 5-HT1A, and GPR55), ligand-gated ion channels (TRPV), or PPARγ [8].
Thus, further mechanistic studies are needed to clarify the neuroprotective mechanisms of
CBD observed in SH-SY5Y cells.

Our findings did not provide evidence for the direct effect of CBD on H2O2-induced
increase in intracellular ROS level. However, some reports support the notion that the
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neuroprotective effects of CBD could result from its direct antioxidative properties [11].
Indeed, CBD was shown to be a potent antioxidant in the brain lipid oxidation assay [42].
These investigators also reported that antioxidant phenolic cannabinoids in concentrations
1 and 10 µM were also protective against oxidative stress in rat primary cerebellar granule
cells and the HT22 and PC12 neuronal cell lines [42]. Furthermore, in our experimental
settings, the concentration-dependent neurotoxic or neuroprotective CBD effects were
clearly displayed. Surprisingly, in contrast to other reports, CBD in our study had no effect
or only increased cortical neuron damage resulting from excitotoxic insults such as Glu
and OGD. In fact, Glu neurotoxicity is accompanied by an increase in ROS production
and could be ameliorated by antioxidants [43]. Therefore, it might be expected that the
potent antioxidant–CBD should be protective, at least partly, in such models. The lack of
protective effects of CBD in our in vitro model of ischemia (OGD) is in contrast to results
obtained by Landucci et al. [44] and Lana et al. [45], who showed that CBD studied in
single concentration 10 µM was neuroprotective in rat organotypic hippocampal slices
exposed to OGD, acting, at least in part, via TRPV2 channels. This difference may be due
to the fact that in our study, we used an isolated neuronal model containing only a small
fraction of astrocytes (about 20%) and devoid of microglia cells, while Lana et al. [45] or
Landucci et al. [44] used a model containing all cell phenotypes (neurons, astrocytes, and
microglia). Indeed, CBD may affect neuronal survival indirectly through the modulation
of astrocytes and microglia activity and morphology [9,46]. In this regard, it was found
that CBD (10 µM) inhibited microglia activation and mitigated neuronal damage induced
using KA in rat organotypic hippocampal slices [44]. CBD in high concentration (100 µM)
showed neuroprotective effects also in microglia containing forebrain slices from newborn
mice which underwent OGD-reducing glutamate and IL-6 (interleukin 6) concentration,
and TNFalpha, COX-2 (cyclooxygenase 2), and iNOS (inducible nitric oxide synthase)
expression, and these effects were mediated by CB2 and adenosine A2A receptors [47].

On the other hand, in a mouse hippocampal HT22 cell line, CBD prevented the
OGD/reoxygenation-induced cell death, ameliorated intracellular ROS production and lipid
peroxidation by enhancing mitochondrial bioenergetics and modulating glucose metabolism
via pentose-phosphate pathway [48]. In human brain vascular pericytes exposed to OGD,
both natural and synthetic CBD (100 nM) attenuated cellular damage to a similar extent
as measured using lactate dehydrogenase at 24 h [49]. This study confirms the notion that
submicromolar concentration of CBD is sufficient to exert neuroprotective effects. Another
study showed that CBD-enriched non-psychotropic Cannabis sativa L. extract markedly
protected SH-SY5Y cells from Glu-induced decrease cell viability and, via ERK modulation,
counteracted the alterations in brain-derived neurotrophic factor levels [50]. However, the
contribution of CBD to the protective effects of the whole cannabis phytocomplex was not
established. The concentration-dependent opposite effects of CBD on neuronal survival
suggest that its blood and brain concentration needs to be controlled. In connection with
this, the CBD-loaded nanocarriers are currently being designed to overcome its poor oral
bioavailability and improve the therapeutic efficacy of this compound [24,51,52]. Although
clinical trials showed that CBD has an excellent safety profile and could be beneficial in
the treatment of various neurological and neuropsychiatric conditions such as epilepsy,
chronic pain, inflammation, anxiety, and neurodegenerative diseases, some undesired effects
of this drug on hepatic drug metabolism and transport, fertility and in vitro cell viability
were reported [53–55]. Our study provided evidence that CBD in submicromolar or low
micromolar concentration is safe and neuroprotective, but in higher concentrations, it has
detrimental effects on cell viability and may enhance the potency of some cell-damaging
factors. We are fully aware that a translational value of the in vitro data obtained at a specific
experimental setting may be questioned. Nevertheless, the data support the notion that
further studies on possible side effects of CBD and monitoring CBD blood concentrations are
justified, especially when taking into account the extremely complex neurochemical mecha-
nism of CBD action, which involves at least 56 molecular targets, including metabotropic
and ionotropic receptors, nuclear receptors, and enzymes [8,56].



Biomolecules 2024, 14, 564 15 of 17

5. Conclusions

Results of this study indicate that CBD has dual effects on oxidative stress-induced
neuronal death-in low concentrations, it is neuroprotective, but in higher concentrations,
it displays neurotoxic activity. On the other hand, in excitotoxic-related models, CBD
was ineffective or enhanced cell damage. Our data support the notion that the neuropro-
tective effects of CBD strongly depend on its concentration and experimental model of
neuronal damage.
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