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Abstract: To investigate pedestrian route choice mechanisms from a perspective distinct from that
employed in discrete choice models (DCMs), this study utilizes machine learning models and employs
SHapley Additive exPlanations (SHAP) for model interpretation. The data used in this paper come
from several pedestrian flow experiments with two routes, which were recorded by UAV. Our
findings indicate that logistic regression (similar to a binary logit model) exhibits good computational
efficiency but falls short in predictive accuracy when compared to other machine learning models.
Among the 12 machine learning models assessed, by calculating the new indicator named OP, we
find that eXtreme Gradient Boosting (XGB) and Light Gradient Boosting (LGB) strike the best balance
between accuracy and computational efficiency. Regarding feature contribution, our analysis reveals
that bottlenecks exert the most significant influence on pedestrian route choice behavior, followed by
the time it takes pedestrians to return from the end of the route to the origin (reflecting pedestrian
characteristics and attitudes). While the pedestrian density of the shorter route contributes less
compared to bottlenecks and return time, it exhibits a threshold effect, meaning that once the density
of the shorter route surpasses a certain threshold, most pedestrians opt for the longer route.

Keywords: route choice; pedestrian; machine learning; SHapley Additive exPlanations

1. Introduction

Walking is not only a common human behavior, but also a travel mode. Complex
transportation network nowadays provides diverse routes for pedestrians to choose, and
they may opt for different routes based on their preferences and trip objectives. Exploring
pedestrian route choice behavior and revealing their tactics may help improve transporta-
tion planning, traffic control, and the construction of walking facilities. As a result, the
study of pedestrian route choice remains a significant research topic [1,2].

Many researchers have employed discrete choice models (DCMs) to analyze pedestri-
ans’ route choice behavior [3]. Despite the advantages of DCMs in analyzing factors driving
a certain decision process, their low behavior prediction accuracy remains an evident draw-
back. With the development of computer technologies, machine learning models are widely
used in various research fields because of their good prediction performance. In recent
years, some researchers introduced several explainable machine learning frameworks, such
as Local Interpretable Model-Agnostic Explanations (LIME) [4], Individual Conditional
Expectation (ICE) [5], and SHapley Additive exPlanations (SHAP) [6] to improve the in-
terpretability of machine learning models. Among them, SHAP is a game theory-based,
model-agnostic, unified approach that can measure feature importance, thus making it
widely used. Therefore, it is possible to explore the mechanisms of pedestrian route choice
and predict pedestrian choices by explainable machine learning models.
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To address the research gap, we conducted pedestrian route choice experiments to
collect pedestrians’ route choice behavior under different circumstances. We then employed
several machine learning models to explore the underlying mechanisms of pedestrian route
choice behaviors, and compare the predictive performance of the models. Finally, we
utilized SHAP to understand feature importance and the mechanism of each feature’s
influence on pedestrian route choice. The results presented in this paper can offer a new
approach for researchers and practitioners in analyzing the underlying mechanism of
pedestrian route choice decisions. Although only two routes are considered in this study,
such a scenario represents a fundamental condition for understanding the essence of
route choice behavior. Therefore, studying this scenario can serve as a starting point for
subsequent investigations.

The remainder of this article is structured as follows. Section 2 presents a review of the
studies about pedestrian route choice behavior studied by machine learning models. Some
related fields, including pedestrian behavior studied by DCMs and vehicle behavior studied
by machine learning models, are also discussed. Section 3 describes the pedestrian route
choice experiments and the data obtained from the experiments. Section 4 introduces the
machine learning models used, including the features and the hyper-parameters. Section 5
discusses the results of multiple machine learning models in various datasets, including the
prediction accuracies and speeds. Section 6 interprets the results of these machine learning
models by SHAP. Finally, the conclusions and future works are given in Section 7.

2. Literature Review
2.1. Discrete Choice Models in Pedestrian Route Choice Analysis

Pedestrian route choice behavior has traditionally been analyzed through discrete
choice models (DCMs), which typically assume that users are utility maximizers [7]. For
example, King and Bode [8] found that pedestrians avoid busier and farther destinations.
Haghani and Sarvi [9] focused on the structure of the multinomial logit (MNL) model, and
found that the effect of decision rule specification was not as important as hypothetical
bias. At the same time, other principles, such as random regret minimization, have also
been used by some researchers [10].

The basic assumption of the MNL model is the independence of irrelevant alternatives
(IIA) [11]. However, pedestrians do not always conform to this assumption. To address
this issue, other models with more complex structures, such as mixed logit models [12] and
latent class models [13], have been employed to account for the strong heterogeneity in
pedestrian route choice behavior. Haghani and Sarvi [14] studied the egress behavior of
pedestrians in crowded, complex, and confined spaces. They found that in nonemergency
situations, the proximity of the exit leading to the passenger’s destination emerged as the
dominant factor influencing route choice. However, during emergency scenarios, pedestri-
ans placed a much higher priority on avoiding crowded exits. Additionally, generalized
linear models (GLMs) have also found applications in this field. Tong and Bode [15–17]
utilized GLMs to analyze data collected from virtual reality-based pedestrian route choice
experiments. After tracking pedestrians’ continuous decision-making, they observed that
pedestrians tend to assign diminishing value to environmental information [15], but put
higher values on shorter distance, fewer turns, and fewer accumulated angle changes [16].
Additionally, they tend to become followers if other virtual pedestrians opt for a specific
exit [17].

Generally speaking, researchers have identified multiple factors affecting pedestrian
route choices, which can be categorized into route attributes, environment factors, and
socio-demographic factors [18]. In terms of route attributes, studies have found that within
limited spatiotemporal scales (such as inside a building or a metro station), pedestrians
tend to favor routes that are short, wide, with low pedestrian density, and higher walking
speeds [19–21].
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2.2. Machine Learning Models in Pedestrian Route Choice Analysis

In recent years, the widespread adoption of machine learning models for route choice
behavior analysis has gained traction due to their superior predictive capabilities. The
earliest application of machine learning models in route choice analysis dates back to 2002,
when Yamamoto et al. [22] studied the route choice behavior on Japanese highways using
a decision tree approach. Barua et al. [23] explored the viability of using Support Vector
Machine (SVM) and Neural Network (NN) for route choice modeling, with the findings
indicating that SVM achieved an accuracy rate of 70.86%, surpassing NN, which scored
68.34%. Many researchers have also compared machine learning models with DCMs in this
field, and consistently found that machine learning models outperform DCMs regarding
both accuracy and computing efficiency [24–26].

Nevertheless, in contrast to studies on vehicle route choice behavior, there are rel-
atively fewer investigations into pedestrian route choice behavior employing machine
learning models. Yuen et al. [27] demonstrated the feasibility of Multi-Layer Perception
(MLP) in replicating passenger choice behavior between two escalators. Wang et al. [28] con-
ducted a comparison of several machine learning models, with Artificial Neural Network
(ANN) emerging as the top performer in terms of predictive accuracy and stability. SVM
exhibited high accuracy but lacked training efficiency, while the predictive performance of
K-Nearest Neighbors (KNN) was directly associated with data complexity. Building on
these findings, Zhou et al. [29] employed machine learning models to simulate pedestrian
movement during evacuations, where Gradient-Boosted Decision Trees (GBDT) and SVM
demonstrated superior predictive performance among the available models [30].

While machine learning models excel in prediction, interpreting their results in a
manner akin to DCMs remains a challenge for many machine learning models (e.g., MLP).
To bridge this interpretability gap, the SHAP framework has gained prominence in recent
transportation research, encompassing areas such as electric vehicle charging choice behav-
ior [31], traffic safety analysis [32], vehicle route choice [33], etc. However, its application
in the analysis of pedestrian route choice behavior remains relatively limited.

3. Data

There are two types of studies that focused on pedestrian route choice behavior at
different spatiotemporal scales. Some focused on a large spatiotemporal scale, where
pedestrians move in urban road network and can travel as far as several kilometers. Others
center their attention on pedestrian movement within smaller spatiotemporal scales, such
as inside buildings or metro stations, with a particular emphasis on evacuations during
emergency situations [34,35]. Due to the difference in spatiotemporal scale, the data sources
used in these studies often differ, with the former type of studies typically making use of
GPS data [36–39] and the latter predominantly relying on video data. In this paper, we
focus on pedestrians moving within a small spatiotemporal scale during non-emergency
conditions, so video data is employed in this study.

To capture pedestrians’ route choice behavior, we conducted two pedestrian route
choice experiments in the Jiulonghu Campus of Southeast University in China in both
2020 and 2021. The participants in these experiments were exclusively university students,
aged between 18 and 25 (Due to the pandemic of COVID-19, the access to our university
campus was limited to only students and staff between 2020 and 2022. Therefore, it was
very difficult to recruit enough non-student pedestrians at the time of conducting these
experiments. In the future, we will try to conduct more experiments with elderly people.).
The experimental routes were delineated using plastic stools, as illustrated in Figure 1a. To
record the experiments comprehensively, we employed an unmanned aerial vehicle (UAV)
equipped with a camera. The captured video footage was recorded at a rate of 25 frames per
second, with a resolution of 2704 × 1520 pixels. Additionally, we positioned two stationary
cameras to monitor and track all participants, as shown in Figure 1b. Each participant was
identifiable through unique numbers displayed on their attire. They all wore distinctive
red caps to facilitate their identification in the experimental video recordings.
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Figure 1. The configuration of Run 11. (a) The top view from the UAV; (b) The view from one fixed
camera near the shorter route.

In each experiment session, participants were required to complete multiple runs.
During each run, pedestrians were instructed to walk at their normal speed for 5 to 6 laps.
Each pedestrian made a single route choice at the origin and was required to walk all the
way to the destination. Upon reaching the destination, they retraced their path to the origin
and commenced a new lap. The way from the origin to the destination was confined by the
arrangement of plastic stools. However, the return journey was unconstrained, allowing
participants to move freely when heading back from the destination.

In this research, we call the shorter route as Route 1 (indicated by the black arrow in
Figure 1a) and the longer one as Route 2 (indicated by the red arrow in Figure 1a). The
configurations for each run are outlined in Table 1. To set the experimental parameters, we
utilized a D-efficient design approach. Here, L1 and L2 represent the lengths of Route 1
and Route 2, respectively, while W1 and W2 denote their respective widths. The variable
DC stands for Distance Control: a value of 1 indicates that each pedestrian was required to
maintain a social distance of 1 m from other pedestrians during the experiment, whereas
a value of 0 signifies the absence of distance control. BT represents the average waiting
time at bottleneck 1, which signifies the presence of a flow-limited bottleneck on Route 1,
and each pedestrian needed to wait for a specific duration before passing the bottleneck.
In most bottleneck experiments, the waiting time at the bottleneck remained constant
(DBT = 0). However, in Run 17, the bottleneck waiting time was made a random variable
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with a 50% probability of either 2 s or 8 s of waiting time. Consequently, DBT was set at 3 s
for this particular run.

Table 1. Design variables of the pedestrian route choice experiments.

Run Year Lap DC BT
(s)

DBT
(s)

L1
(m)

L2
(m)

W1
(m)

W2
(m)

1 2020 6 0 0 0 12 24 0.5 0.5
2 2020 6 0 5 0 12 24 0.5 0.5
3 2020 6 0 10 0 12 24 0.5 0.5
4 2020 5 0 0 0 11 11 1.0 0.5
5 2020 6 0 0 0 8 14 1.0 1.0

6/7 2020 6 0 0 0 8 14 0.5 1.0
8 2020 20 0 0 0 8 14 0.5 1.0

11 2021 6 0 0 0 8 24 1.0 1.25
12 2021 6 0 5 0 8 24 1.0 1.25
13 2021 6 0 0 0 14 18 0.5 1.25
14 2021 6 0 0 0 14 18 0.75 1.25
15 2021 6 0 0 0 11 18 0.75 1.0
16 2021 6 0 0 0 11 21 0.5 0.75
17 2021 8 0 5 3 12 24 0.5 0.5

21 2020 6 1 0 0 12 24 0.5 0.5
22 2020 6 1 5 0 12 24 0.5 0.5
24 2020 5 1 0 0 11 11 1.0 0.5
25 2020 6 1 0 0 8 14 1.0 1.0
26 2020 6 1 0 0 8 14 0.5 1.0

31 2021 5 1 0 0 8 24 1.0 1.25
32 2021 5 1 5 0 8 24 1.0 1.25
33 2021 5 1 0 0 14 18 0.5 1.25
34 2021 5 1 0 0 14 18 0.75 1.25
35 2021 5 1 0 0 11 18 0.75 1.0
36 2021 5 1 0 0 11 21 0.5 0.75

We manually extracted several features from the video recordings, as detailed in
Table 2. The average pedestrian density was calculated as the number of pedestrians
on a route divided by the product of the route’s length and width. The travel time of a
pedestrian was determined by subtracting the time of entry into the origin from the time
of departure from the route. Similarly, the return time of a pedestrian was calculated by
subtracting the time of reaching the destination from the time of returning to the origin.
The dummy variable ‘Cro’ was derived from observations indicating whether the origin
was crowded, while the dummy variable ‘Pair’ was based on observations of whether the
pedestrian was accompanied by others.

Table 2. Features extracted from the video recordings.

Features Explanations

D1/D2 Average pedestrian density on Route 1/Route 2
T1/T2 Travel time from origin to destination on Route 1/Route 2

BN Number of pedestrians waiting at the bottleneck
RT Return Time from destination to origin
Cro Whether the origin is crowded (Yes:1, No:0)
Pair Whether the pedestrian is moving with others (Yes:1, No:0)

During the experiments, pedestrians were asked to choose the routes repeatedly.
However, the data of the first lap were excluded from the following study, due to the absence
of a stable state for pedestrian dynamics. We finally reached a sample size of 7697 runs,
with 3290 collected in 2020 and 4407 collected in 2021. In this paper, three different datasets
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are studied, including two datasets from different years and the combination of them, as
presented in Table 3. It reveals a noteworthy observation that the proportion of choosing
Route 1 in all the datasets are similar (<50%). The possible explanation is that when both
routes were congested during the experiments, the lengths and widths of routes became
not important for route choices.

Table 3. The basic information of three datasets.

Name of
Datasets Year Runs Involved Sample Size Proportion of

Choosing Route 1

21 2021 Run 11–17, Run 31–36 3290 43.1%
20 2020 Run 1–10, Run 21–26 4407 42.9%

ALL 2020, 2021 All runs 7697 43.0%

4. Model Parameters and Features
4.1. Models and Metrics

Firstly, we introduce the 12 machine learning models employed in this study to analyze
pedestrian route choice behavior, which are K-Nearest Neighbors (KNN), Logistics Regres-
sion (LR), Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT), Random
Forest (RF), Bagging, Gradient Boosting Decision Tree (GBDT), Adaboost (ADB), eXtreme
Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Multi-Layer Perception
(MLP). All of them are simple and easy to use for everyone.

Next, the performance metrics used to evaluate the performance of the models are:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1_score =
2 × Precision × Recall

Precision + Recall
(3)

where TP, FP, and FN refer to true positive, false positive, and false negative in the
classification, respectively.

Except for the three performance metrics introduced above, we also used receiver
operating characteristic (ROC) curve and area under curve (AUC) to evaluate the machine
learning models in Section 5. We performed a random split of the data into training and
testing sets at a ratio of 7:3. This process was repeated ten times to calculate the average
prediction metrics, mitigating the impact of sampling on the prediction results.

4.2. Feature Selection

The dataset utilized in this paper comprises 17 features, which are presented in
Tables 1 and 2 in Section 3. However, a challenge arises due to the nature of the data,
particularly in relation to the travel times of pedestrians on Route 2. During each lap of
the experiment, since pedestrians who opted for Route 1 did not traverse Route 2, it was
impossible to record their travel times on Route 2. To address this limitation, we opted
to replace the travel time on Route 2 with the average travel time of all pedestrians who
selected Route 2 in each run. Essentially, pedestrians who chose Route 1 in each run were
attributed the same value for T2.

Nevertheless, this approach can introduce complications, especially when applying
machine learning models, particularly those based on decision trees. For instance, when
both T1 and T2 are employed, the models can yield highly unrealistic predictions, achiev-
ing an accuracy level of about 100%, as T serves as a direct indicator of route choice
(pedestrians with the same T2 chose Route 1). To mitigate this issue, we excluded T from
subsequent analyses.
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In the following sections, we consider two scenarios for each dataset: (1) full scenario
and (2) lightweight scenario (we call it LW for short in the tables). For the former one, we
try to realize the best prediction performance by using many variables. For the latter one,
we try to get a lightweight solution with only two variables, while the results are decent.
The variables of the lightweight scenario consist of the first two variables with the largest
contributions in the full scenario, which will be further discussed in Section 5.

4.3. The Determination of Hyper-Parameters

Because of the different structures of models, the way of determining hyper-parameters
varies by models. Taking the lightweight scenario (Here, only two variables (RT and D1)
are used. More details of this scenario can be found in Section 5.1.) of Run 11 as an example,
the hyper-parameters of models are determined by:

(1) Models with only one hyper-parameter. RF, Bagging, GBDT, ADB, XGB, LGB, KNN,
and NB belong to this type. We present the relationship between the numbers of
estimators/ neighbors and the corresponding F1 scores in Figure 2. It can be seen that
for the five tree-based models (except XGB in Figure 2f) and KNN, when the number
of estimators/neighbors gradually increases and reaches the critical value (marked by
the dashed line), the result becomes stable. As a larger number of estimators makes
the time needed to measure the models longer (Figure 3), we chose the critical values
in Figure 2a–g as the optimal values for hyper-parameters of the values. For NB, as its
hyper-parameter is the prior distribution, we tested four typical distributions. The
results in Figure 2h demonstrate that Gaussian (normal distribution) is the optimal
choice for this dataset.
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(2) Models with two hyper-parameters. SVM and MLP models belong to this type.
We compared the results from different combinations of hyperparameters to find
the best combination. When we chose the kernel as “rbf”, the Gamma = 1 and C = 1
combination returns the best results (0.824) for the SVM model (see Table 4). The kernel
“linear” is not chosen, as its F1 scores are always equal to 0.80 (lower than 0.824).
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Table 4. The F1 scores of SVM in the lightweight scenario of Run 11.

Gamma/C 1 10 100 1000

1 0.824 0.816 0.822 0.812
0.1 0.817 0.822 0.823 0.823

0.01 0.799 0.815 0.816 0.813
0.001 0.432 0.801 0.802 0.816

For MLP, TensorFlow is used for network construction and Keras is used as the basic
framework. The ReLU function is used as the activation function to ensure the non-linear
fitting effect and fast convergence of the model. When two layers are considered, the effect
of numbers of neurons is presented in Figure 4. We name the two hyper-parameters n_Ly1
and n_Ly2, respectively. Clearly, when the two hyper-parameters reach a critical value (~6),
the prediction performance becomes relatively stable. Therefore, to balance the prediction
performance and computational speed, we choose n_Ly1 = 6 and n_Ly2 = 6 in this case.
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(3) Default values. For LR and DT, the impact of the hyper-parameters is not significant
in this study. Therefore, we opted for the default values.

In summary, all hyper-parameters used in this study are listed in Table 5, including
the results of three full scenarios. It is easy to understand that the full scenarios are usually
more complex than the corresponding lightweight scenarios. For example, for most tree-
based models, the numbers of estimators in the full scenarios are larger. So are the values
of n_Ly1 and n_Ly2 for MLP. On the contrary, for KNN, the numbers of neighbors in the
full scenarios are smaller.

Table 5. The hyper-parameters used in this paper.

Model Type Hyper-Parameters Run 11
(LW)

Run 11
(Full)

Dataset 21
(Full)

Dataset ALL
(Full)

RF 1 n_estimator 19 59 109 136
Bagging 1 n_estimator 16 63 136 175
GBDT 1 n_estimator 19 90 138 49
ADB 1 n_estimator 38 76 128 71
LGB 1 n_estimator 20 21 51 42
XGB 1 n_estimator 36 30 29 11
KNN 1 n_neighbor 11 7 12 24
NB 1 prior distribution Gaussian Gaussian Gaussian Gaussian

SVM 2 C, gamma 1, 1 1, 1 1, 1 10, 1
MLP 2 n_Ly1, n_Ly2 6, 6 10, 10 10, 10 20, 20
LR 3 Penalty L2 L2 L2 L2
DT 3 criterion, max depth gini, 4 gini, 4 gini, 4 gini, 4
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5. Results
5.1. Results of Individual Runs

Firstly, we analyzed a representative experiment (Run 11) where no additional reg-
ulations were implemented. In this dataset, Year, DC, BT, DBT, L1, L2, W1, W2, and BN
are fixed. Consequently, only six available variables—Lap, Pair, Cro, RT, D1, and D2—are
available.

Table 6 shows that all models achieved a prediction metric over 0.80, except NB.
Interestingly, the models of the lightweight scenario employing only RT and D1 perform
comparably to those of the full scenario. A possible explanation is that the models of full
scenario may be overfitted due to the limited data in Run 11. The performance of GBDT
and LGB rank top, but these two models have no significant advantage over others due to
their complex structures. Additionally, the ROC curves for all models (shown in Figure 5)
are similar, indicating that machine learning models have effectively utilized the features.
Further enhancements in prediction performance may be difficult.

Table 6. The prediction metrics for Run 11.

Model Precision
(LW)

Precision
(Full)

Recall
(LW)

Recall
(Full)

F1 Score
(LW)

F1 Score
(Full)

NB 0.82 0.79 0.82 0.76 0.82 0.75
LR 0.80 0.81 0.80 0.80 0.80 0.80

KNN 0.82 0.81 0.82 0.80 0.82 0.80
DT 0.81 0.81 0.81 0.81 0.80 0.81

Bagging 0.81 0.82 0.80 0.82 0.80 0.82
RF 0.81 0.82 0.81 0.82 0.81 0.82

ADB 0.81 0.82 0.81 0.82 0.81 0.82
XGB 0.83 0.83 0.83 0.83 0.83 0.82
MLP 0.80 0.83 0.80 0.83 0.80 0.83
SVM 0.83 0.83 0.82 0.83 0.82 0.83

GBDT 0.83 0.84 0.82 0.84 0.82 0.84
LGB 0.83 0.84 0.83 0.84 0.83 0.84
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Next, we focus on the bottleneck experiments. In both Run 12 and Run 32, pedestrians
were required to wait for 5 s at the bottleneck before proceeding. In Run 17, the waiting
time was randomized to be either 2 or 8 s. The modeling results of these three experiments,
as shown in Table 7, all demonstrate high accuracy. Nonetheless, the exceptional prediction
performance observed may be misleading. In Run 12 and 32 (except for RF and Bagging),



ISPRS Int. J. Geo-Inf. 2024, 13, 146 11 of 22

the recalls of Route 2 are nearly 1.0, while those of Route 1 are nearly 0. This implies
that these models predict that all the pedestrians would choose Route 2, which seems not
reasonable. Such an unexpected outcome can be attributed to two factors:

(1) The majority of pedestrians chose Route 2 in the three bottleneck experiments (84%,
77%, and 79% for Runs 12, 17, and 32, respectively). It is more difficult for the machine
learning models to deal with such imbalanced datasets.

(2) The feature dimension of the dataset used in this study is inadequate, with many
features that are not operational (for instance, the width and length of routes in
individual runs). This situation impedes the model’s ability to interpret the pedestrian
route choice principle in bottleneck experiments.

Table 7. The prediction metrics of bottleneck experiments in the lightweight scenarios.

Model

Run 12 Run 17 Run 32

Accuracy Recall
(Route 1)

Recall
(Route 2) Accuracy Recall

(Route 1)
Recall

(Route 2) Accuracy Recall
(Route 1)

Recall
(Route 2)

Bagging 0.79 0.09 0.91 0.74 0.27 0.88 0.70 0.04 0.91
RF 0.79 0.10 0.92 0.74 0.28 0.88 0.70 0.01 0.92
DT 0.85 0.00 1.00 0.80 0.10 0.99 0.74 0.03 0.95

KNN 0.85 0.00 1.00 0.80 0.25 0.95 0.76 0.07 0.96
LR 0.85 0.02 0.99 0.78 0.25 0.93 0.75 0.05 0.97

XGB 0.84 0.02 0.99 0.79 0.22 0.95 0.75 0.01 0.97
ADB 0.84 0.02 0.99 0.79 0.22 0.94 0.77 0.00 1.00
SVM 0.85 0.00 1.00 0.81 0.18 0.98 0.77 0.00 1.00
NB 0.85 0.00 1.00 0.82 0.30 0.96 0.77 0.00 1.00

GBDT 0.85 0.02 0.99 0.80 0.16 0.98 0.77 0.00 1.00
LGB 0.85 0.00 1.00 0.80 0.20 0.97 0.77 0.00 1.00
MLP 0.85 0.00 1.00 0.82 0.18 0.98 0.77 0.00 1.00

In addition, it is worth noting that in many models for Run 17, the recalls of Route 1 are
approximately 0.3, indicating that models accurately identify a few pedestrians choosing
Route 1. This noticeable improvement can be attributed to the randomized wait time imple-
mented at the bottleneck, which slightly impacts pedestrian behavior in the experiments,
and enables models to extract valuable information from the dataset.

5.2. Results of Multiple Runs

In this section, we discuss the two datasets with multiple runs, including Dataset 21
and Dataset ALL. For simplicity, we only discuss the results of full scenarios, since those of
lightweight scenarios are less predictive for larger datasets.

The relationship between the number of variables and the corresponding F1 scores
in different datasets is shown in Figure 6. For Run 11 in Figure 6a, the results of all the
typical models do not increase with the number of variables. On the contrary, except NB for
Dataset 21, the other models for Dataset 21 and Dataset ALL have a clear growing trend in
Figure 6b,c, which coincides with the empirical findings observed in the previous studies.

(1) Dataset 21

Table 8 and Figure 7 present the prediction metrics of the models. Here, the full
scenario includes RT, BT, D1, Cro, Pair, L1, L2, W1, and W2. In other words, the impacts of
Lap, DC, BN, DBT, and D2 are minor for this dataset. The possible explanations could be:
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BN indicates the queuing state on the shorter route. Its effect is similar to that of BT,
which could be also replaced by BT.
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mance. This is as expected, given that RF and Bagging models are good at extracting use-
ful information and ensuring model stability rather than making accurate predictions. 
Meanwhile, NB is the worst-performance model, with an F1 score of only 0.64. This is due 
to its assumption that the data should adhere to normal distribution, which is different 
from our data where the distribution of BT is discrete. 

Table 8. The prediction metrics of Dataset 21. 

Model Precision Recall F1 Score 
NB 0.66 0.64 0.64 
LR 0.72 0.72 0.72 

Bagging 0.73 0.73 0.73 
RF 0.73 0.73 0.73 
DT 0.73 0.73 0.73 

ADB 0.73 0.73 0.73 
KNN 0.76 0.76 0.76 
MLP 0.77 0.77 0.76 

GBDT 0.76 0.76 0.76 
XGB 0.77 0.77 0.77 
LGB 0.77 0.77 0.77 
SVM 0.77 0.77 0.77 

In most runs (except Run 17), there is always DBT = 0. In Run 17, the proportion of
those choosing Route 1 is close to some other runs with the same BT, e.g., Run 2. From
the statistical results, we can see that the influence of DBT is not significant.
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Table 8. The prediction metrics of Dataset 21. 

Model Precision Recall F1 Score 
NB 0.66 0.64 0.64 
LR 0.72 0.72 0.72 

Bagging 0.73 0.73 0.73 
RF 0.73 0.73 0.73 
DT 0.73 0.73 0.73 
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When making decisions, pedestrians usually focus on the situations of the shorter
route (Route 1), rather than that of the longer one (Route 2). Such a tendency makes
D2 not as important as D1.
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Table 8. The prediction metrics of Dataset 21.

Model Precision Recall F1 Score

NB 0.66 0.64 0.64
LR 0.72 0.72 0.72

Bagging 0.73 0.73 0.73
RF 0.73 0.73 0.73
DT 0.73 0.73 0.73

ADB 0.73 0.73 0.73
KNN 0.76 0.76 0.76
MLP 0.77 0.77 0.76

GBDT 0.76 0.76 0.76
XGB 0.77 0.77 0.77
LGB 0.77 0.77 0.77
SVM 0.77 0.77 0.77

In Table 8, the top-performing models for this dataset are XGB, LGB, and SVM, achiev-
ing F1 scores of 0.75. In contrast, RF and Bagging exhibit relatively weaker performance.
This is as expected, given that RF and Bagging models are good at extracting useful informa-
tion and ensuring model stability rather than making accurate predictions. Meanwhile, NB
is the worst-performance model, with an F1 score of only 0.64. This is due to its assumption
that the data should adhere to normal distribution, which is different from our data where
the distribution of BT is discrete.
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(2) Dataset ALL

To further explore the generalization performance of the models, we expanded the
data sample size by using Dataset ALL, which comprises experimental data from 2020 to
2021. The prediction metrics in Dataset ALL are shown in Table 9 and Figure 8. The results
agree with those of Dataset 21 (Table 8 and Figure 7), where NB, Bagging, RF, and LR have
lower metrics, while MLP, XGB, LGB, GBDT, and SVM perform better.

Table 9. The prediction metrics of Dataset ALL.

Model Precision Recall F1 Score

NB 0.69 0.64 0.63
LR 0.65 0.65 0.65
RF 0.67 0.67 0.67

Bagging 0.67 0.67 0.67
DT 0.69 0.68 0.68

ADB 0.69 0.69 0.69
MLP 0.69 0.69 0.69
KNN 0.70 0.69 0.70
SVM 0.70 0.70 0.70

GBDT 0.70 0.69 0.70
XGB 0.71 0.70 0.70
LGB 0.71 0.71 0.71

However, it is worth noting that the prediction performance of all machine learning
models has dropped compared to those in Dataset 21. For example, the top F1 score for
all models in the full scenarios is 0.77 on Dataset 21. But in Dataset ALL, it decreases to
0.71. As Dataset ALL is composed of data collected over two years with more pedestrians
involved, the increased heterogeneity of pedestrians may explain the drop in the prediction
performance. Further research on how to incorporate pedestrian heterogeneity is worth
investigating in future studies.
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5.3. Model Validation and Evaluation

In Section 5.2, the training and testing data are sourced from the same dataset. The per-
formance of these models on unknown datasets, however, is unclear. Therefore, Dataset 20
was utilized as a validation set in this section, and predictions are made using models
trained on Dataset 21.

The prediction metrics in Table 10 align with the results based on Dataset 21 (Table 8):
RF and Bagging exhibit lower metrics, and NB demonstrates the lowest performance. The
prediction metrics decrease around 0.1 compared to the results based on Dataset 21, which
may be also attributed to the absence of attributes reflecting an individual’s heterogeneity
in our models, as discussed in Section 5.2.

Table 10. The prediction metrics on validation dataset.

Model Precision Recall F1 Score

NB 0.66 0.60 0.59
RF 0.62 0.62 0.62

Bagging 0.62 0.62 0.62
LR 0.62 0.62 0.62
DT 0.66 0.64 0.64

KNN 0.66 0.65 0.65
ADB 0.65 0.65 0.65
LGB 0.66 0.65 0.65
MLP 0.66 0.65 0.65
XGB 0.67 0.66 0.66
SVM 0.66 0.66 0.66

GBDT 0.66 0.65 0.66

Next, the speeds of different models are compared in Table 11, and the unit used is the
second. We summed the training time and predicting time of the models. The observations are:

(1) For most models, the time required is typically determined by the hyper-parameters
used, such as the number of estimators for tree-based models.

(2) The differences between models are clear: NB, DT, XGB, and LGB are faster than the
other models, with NB being the fastest due to its simplicity.
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(3) RF and Bagging have longer computational times, while SVM and MLP require an
extremely long time. SVM has a time complexity of about O(N3), where N is the
size of the dataset [40]. For MLP, the time required is primarily determined by the
structure of the considered neural networks. Therefore, the latter two models are not
recommended for large datasets.

Table 11. The time used in different models and different scenarios.

Model Run 11
(LW)

Run 11
(Full)

Dataset
21 (LW)

Dataset
21 (Full)

Dataset
ALL (LW)

Dataset
ALL (Full)

NB 0.10 0.10 0.11 0.13 0.14 0.15
DT 0.09 0.10 0.13 0.13 0.16 0.25

LGB 0.22 0.27 0.45 0.74 0.65 0.83
XGB 0.45 0.42 0.36 1.06 0.41 0.67

LR 0.16 0.24 0.22 2.01 0.53 1.73
KNN 0.18 0.20 0.78 1.01 1.93 2.87
GBDT 0.31 0.57 1.64 4.73 2.24 3.38
ADB 1.09 2.39 3.19 6.35 4.18 5.03
RF 0.59 1.78 2.31 7.48 4.36 14.06

Bagging 0.58 3.79 5.03 5.41 9.06 27.66

SVM 0.16 0.19 7.67 13.17 40.25 49.36
MLP 44.96 55.62 117.77 129.36 170.25 242.07

We evaluated the models based on a combined consideration of accuracy and efficiency.
Initially, the time taken by each model was standardized to an efficiency value ranging from
0 to 1, with a higher value indicating greater efficiency. Subsequently, both the F1 score and
the efficiency value were assigned equal weight, resulting in a new indicator named OP
(Overall Performance). Table 12 reveals that XGB and LGB emerged as the top-performing
models, effectively balancing accuracy and efficiency. In contrast, the performance of MLP
and SVM was suboptimal, primarily attributed to their slower processing speeds.

Table 12. The OP results when considering both accuracy and efficiency.

Model Run 11 (Full) Dataset 21 (Full) Dataset ALL (Full)

MLP 0.42 0.38 0.35
SVM 0.91 0.83 0.75

Bagging 0.88 0.84 0.78
RF 0.89 0.84 0.81
NB 0.87 0.82 0.81
LR 0.90 0.85 0.82

ADB 0.89 0.84 0.83
DT 0.90 0.86 0.84

GBDT 0.91 0.86 0.84
KNN 0.90 0.88 0.84
XGB 0.91 0.88 0.85
LGB 0.92 0.88 0.85

6. SHAP Explanations

To interpret the models introduced in Section 5, we employed the SHAP (Shapley
Additive exPlanations) framework in this section. SHAP has three key properties: local
accuracy, missingness, and consistency. The SHAP model is defined as follows:

f (x) = g
(
z′
)
= φ0 + ∑M

i=1 φiz′i (4)

where g(z′) denotes the SHAP explanation model, ϕi represents the SHAP value, and
ziϵ{0, 1} is a binary variable. Two methods are commonly used to calculate SHAP values,
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namely Kernel SHAP and Tree SHAP. Tree SHAP is specifically designed for tree-based
models [41]. Therefore, in this paper, Tree SHAP was used for the calculation of GBDT,
XGB, LGB, RF, Bagging, and DT, while the results of other models were estimated by
Kernel SHAP.

6.1. The Global Importance of Features

In the SHAP framework, the contribution of each feature to the model is represented by
the magnitude of the average absolute SHAP value. Typically, this information is visualized
using bar charts to facilitate a comparison of the global importance of individual features.

Figure 9 shows the global importance of each feature for four representative models
from Dataset ALL, including two models with good overall performance from Section 5
(XGB and LGB) and two others with lower prediction accuracy (The results of some other
typical models (e.g., SVM, KNN, or MLP) are not presented in this section, since the speed
of Kernel SHAP is extremely slow, needing several days to get the final results.). Across
all models, BT emerges as the variable with the highest contribution, suggesting that the
presence of a bottleneck on a route exerts the most significant impact on pedestrian route
choices. The contribution of D1 ranks second, following by RT (except in the results of
LR). Although the global importance of route attributes (L1, L2, W1 and W2) varies among
different models, they generally contribute the least to the model. This again validates that
the route attributes in our experiments do not align with the actual attractiveness of routes,
as we mentioned in Section 3.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 18 of 24 
 

 

6. SHAP Explanations 
To interpret the models introduced in Section 5, we employed the SHAP (Shapley 

Additive exPlanations) framework in this section. SHAP has three key properties: local 
accuracy, missingness, and consistency. The SHAP model is defined as follows: 𝑓 𝑥 = 𝑔 𝑧′ = 𝜑 + ∑ 𝜑 𝑧   (4)

where 𝑔 𝒛′  denotes the SHAP explanation model, 𝜙  represents the SHAP value, and 𝑧 𝜖 0,1  is a binary variable. Two methods are commonly used to calculate SHAP values, 
namely Kernel SHAP and Tree SHAP. Tree SHAP is specifically designed for tree-based 
models [41]. Therefore, in this paper, Tree SHAP was used for the calculation of GBDT, 
XGB, LGB, RF, Bagging, and DT, while the results of other models were estimated by Ker-
nel SHAP. 

6.1. The Global Importance of Features 
In the SHAP framework, the contribution of each feature to the model is represented 

by the magnitude of the average absolute SHAP value. Typically, this information is vis-
ualized using bar charts to facilitate a comparison of the global importance of individual 
features. 

Figure 9 shows the global importance of each feature for four representative models 
from Dataset ALL, including two models with good overall performance from Section 5 
(XGB and LGB) and two others with lower prediction accuracy (The results of some other 
typical models (e.g., SVM, KNN, or MLP) are not presented in this section, since the speed 
of Kernel SHAP is extremely slow, needing several days to get the final results.). Across 
all models, BT emerges as the variable with the highest contribution, suggesting that the 
presence of a bottleneck on a route exerts the most significant impact on pedestrian route 
choices. The contribution of D1 ranks second, following by RT (except in the results of LR). 
Although the global importance of route attributes (L1, L2, W1 and W2) varies among dif-
ferent models, they generally contribute the least to the model. This again validates that 
the route attributes in our experiments do not align with the actual attractiveness of routes, 
as we mentioned in Section 3. 

It is interesting to note how different models deal with these variables. XGB and LGB, 
which have comparable structures, assign similar contributions to most variables. For RF, 
the differences between the contributions of various variables are not large. However, LR 
places particularly high importance on BT compared to the other models, which could 
lead to relatively poor performance. 

  
(a) XGB  (b) LGB 

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 19 of 24 
 

 

  
(c) RF  (d) LR 

Figure 9. The global importance of each feature of Dataset ALL. 

6.2. The Influence of Features 
In Section 6.1, we discussed the magnitude of each feature’s contribution to the mod-

els. However, feature importance alone does not reveal the specific influence of each fea-
ture on model predictions. In this section, we employ summary plots and dependence 
plots in SHAP to gain a deeper understanding of the mechanism underlying each feature’s 
influence. 

Figure 10 illustrates the impacts of key features on individual predictions. Each point 
on the summary plot represents an observation in the dataset, with the X-value indicating 
the SHAP value of a feature. The color of each point corresponds to the feature value of 
the observation. A higher, positive SHAP value indicates a greater likelihood of a pedes-
trian choosing Route 2, while a smaller, negative SHAP value indicates a higher possibility 
of choosing Route 1. The transition from blue to red signifies an increase in feature value. 
We can find that: 
(1) Higher BT leads to more pedestrians choosing Route 2, as it is directly related to the 

increased congestion on Route 1. 
(2) Increasing D1 prompts pedestrians to choose Route 2, indicating rising congestion on 

Route 1. 
(3) RT has a positive impact on the choice of Route 1, as a shorter RT suggests pedestri-

ans wanting to finish the experiment quickly, and Route 1 is shorter. 
(4) Pedestrians walking with others (with Pair = 1) and facing congestion at the starting 

point (with Cro = 1) prefer to choose Route 2, since Route 2 is usually wider in many 
runs and they can choose to avoid the congestion. 
In addition, the results of LR in Figure 10d differ from those of tree-based models. 

Although many variables do not have obvious influences on the route choices, the contri-
butions of D1 and RT are similar to those of tree-based models. 

  
(a) XGB  (b) LGB 

Figure 9. The global importance of each feature of Dataset ALL.

It is interesting to note how different models deal with these variables. XGB and LGB,
which have comparable structures, assign similar contributions to most variables. For RF,
the differences between the contributions of various variables are not large. However, LR
places particularly high importance on BT compared to the other models, which could lead
to relatively poor performance.
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6.2. The Influence of Features

In Section 6.1, we discussed the magnitude of each feature’s contribution to the models.
However, feature importance alone does not reveal the specific influence of each feature on
model predictions. In this section, we employ summary plots and dependence plots in SHAP
to gain a deeper understanding of the mechanism underlying each feature’s influence.

Figure 10 illustrates the impacts of key features on individual predictions. Each point
on the summary plot represents an observation in the dataset, with the X-value indicating
the SHAP value of a feature. The color of each point corresponds to the feature value of the
observation. A higher, positive SHAP value indicates a greater likelihood of a pedestrian
choosing Route 2, while a smaller, negative SHAP value indicates a higher possibility of
choosing Route 1. The transition from blue to red signifies an increase in feature value. We
can find that:

(1) Higher BT leads to more pedestrians choosing Route 2, as it is directly related to the
increased congestion on Route 1.

(2) Increasing D1 prompts pedestrians to choose Route 2, indicating rising congestion on
Route 1.

(3) RT has a positive impact on the choice of Route 1, as a shorter RT suggests pedestrians
wanting to finish the experiment quickly, and Route 1 is shorter.

(4) Pedestrians walking with others (with Pair = 1) and facing congestion at the starting
point (with Cro = 1) prefer to choose Route 2, since Route 2 is usually wider in many
runs and they can choose to avoid the congestion.
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In addition, the results of LR in Figure 10d differ from those of tree-based models.
Although many variables do not have obvious influences on the route choices, the contri-
butions of D1 and RT are similar to those of tree-based models.
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Next, in the dependence plots (Figure 11), we examine the intricate relationship
between feature values and SHAP values. Our discussion focuses on the three most
influential variables in Dataset ALL, namely RT, D1, and BT. Each point in the graph
represents an observation, with the x-axis representing the feature value and the y-axis
representing the SHAP value. Similar to Figure 10, the plots of LR (Figure 11j–l) clearly
differ from the other models (The possible reason may be that in the results of LR, the
SHAP values are approximately represented by the coefficients of the generalized linear
models.), so our attention is directed towards the results of the remaining three models.
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Given that BT has only three discrete values (0, 5, and 10) in our experiments, the
dependence plots for BT appear straightforward, reinforcing the conclusions drawn from
the summary plots. Regarding the results for RT in Figure 11a,d,g, it is evident that as RT
increases from 0 to 20, the SHAP value consistently increases. However, beyond an RT
value of 20, the SHAP value fluctuates around 0, indicating that larger RT values have little
impact on the pedestrians’ route choices. The possible explanation is that larger RT mainly
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results from objective factors rather than subjective ones: it may be due to the congestion
around the origin in some runs, which could not be changed by the attitude of a pedestrian.

For D1, the results presented in Figure 11b,e,h indicate an inverse relationship: higher
D1 values are associated with a reduced likelihood of pedestrians choosing Route 1. The
threshold of D1 = 1.8 emerges as crucial, with all SHAP values turning positive when D1
surpasses 1.8. This suggests that pedestrians tolerate a maximum density of 1.8 ped/m on
Route 1. This critical value aligns with our previous findings from single-file pedestrian
flow experiments [42,43]. If D1 exceeds this threshold, pedestrians are more inclined to
select Route 2 to avoid congestion. Therefore, our machine learning models establish a con-
nection between the results of pedestrian experiments at two different levels (operational
and tactical).

Lastly, as previously discussed, the predictive performance of DT is slightly inferior
to that of XGB and LGB. We speculate that the more scattered distribution in Figure 11g,h
might contribute to this, making the relationship between variables and pedestrian route
choices less clear.

7. Discussion and Conclusions
7.1. Discussion

Based on the quantitative analysis of the experimental results, we would like to briefly
discuss two important topics:

(1) Comparisons between machine learning models and DCMs

While the primary focus of this paper revolves around machine learning models, it is
worth briefly mentioning the results obtained from DCMs. Theoretically, the estimation
results of coefficients and the prediction outcomes of LR are akin to those of the Binomial
Logit Model. As previously discussed, LR models require short training and predicting
times, but their predicting accuracy ranks among the lowest. This finding is consistent with
previous studies [27–30].

(2) Further investigation on the SHAP values

In DCMs, the coefficients of each variable are meaningful and can be transformed into
other important statistics, such as odds ratios and willingness to pay, etc. However, the
potential for further discussion on SHAP values remains unclear. While the coefficient of a
variable (e.g., RT) in the Binomial Logit Model may differ from its SHAP value of some
machine learning model (e.g., XGB or LGB), comparing these results can be challenging.
Future research should aim to explore the relationship between these two different theories
more comprehensively.

7.2. Conclusions

To explore pedestrians’ route choice behavior from a perspective distinct from discrete
choice models, we applied machine learning models to analyze pedestrian route choice
behaviors. The dataset is extracted from videos of route choice experiments conducted in
2020 and 2021. In these experiments, participants were required to choose between two
routes—one shorter but subject to distance control or bottleneck effects, and the other free
from such constraints but longer. A total of 12 machine learning models were tested. Based
on their prediction accuracy and computational efficiency, we calculated a new indicator
named OP. We found that XGB and LGB emerged as the two models that strike a balance
between computational speed and accuracy across all tested datasets, which also shows
the advantages of ensemble learning algorithms in this field. On the other hand, NB, LR,
and DT exhibited speed but lacked predictive accuracy. SVM and MLP demonstrated quite
good accuracy, but their computational time was notably slower, particularly when dealing
with large datasets.

Next, we employed the SHAP framework to interpret the model results. In terms of
feature contribution, the most influential factor in pedestrian route choice was BT (average
waiting time at the bottleneck), followed by RT (return time from destination) and D1



ISPRS Int. J. Geo-Inf. 2024, 13, 146 20 of 22

(restrain density on Route 1). The width and length of the routes, however, made little
contribution to pedestrian choice behavior when both routes were congested. The critical
values found in the SHAP plots are close to what we observed in the previous single-file
pedestrian experiments, which also implies that we build a bridge between different levels
of pedestrian movement.

Several aspects could be enhanced in future research. Firstly, individual features,
particularly those representing pedestrian heterogeneity, are currently absent from the
datasets and the corresponding analysis. To advance the quality of research in this area, it
is imperative to gather additional experimental data that can encompass a broader range
of relevant features. Secondly, this study focused on a simple scenario with two possible
route choices. In future investigations, to enhance the practicality and applicability of the
results, the experimental study of pedestrians’ choices among multiple routes is necessary.
The structure of the road network should also be considered in future studies where the
number of routes increases. Finally, the results of this work are based on experimental data.
Future studies should compare real pedestrian choice data and evaluate whether some
differences exist between the experimental data and real-world data.
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