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Abstract: The proliferation of shared electric scooters (E-scooters) has brought convenience to urban
transportation but has also introduced challenges such as disorderly parking and an imbalance
between supply and demand. Given the current inconsistent quantity and spatial distribution of
shared E-scooters, coupled with inadequate research on deployment stations selection, we propose
a novel maximal covering location problem (MCLP) based on distance tolerance. The model aims
to maximize the coverage of user demand while minimizing the sum of distances from users to
deployment stations. A deep reinforcement learning (DRL) was devised to address this optimization
model. An experiment was conducted focusing on areas with high concentrations of shared E-
scooter trips in Chicago. The solutions of location selection were obtained by DRL, the Gurobi
solver, and the genetic algorithm (GA). The experimental results demonstrated the effectiveness of
the proposed model in optimizing the layout of shared E-scooter deployment stations. This study
provides valuable insights into facility location selection for urban shared transportation tools, and
showcases the efficiency of DRL in addressing facility location problems (FLPs).

Keywords: shared electric scooters; multi-criteria decision making; maximal covering location
problem; distance tolerance; deep reinforcement learning

1. Introduction

In recent years, the flourishing micro-mobility market has provided a new solution
to urban transportation issues [1–5]. Shared E-scooters, as representative micro-mobility
vehicles, have been widely used in cities around the world for their compactness, mobil-
ity, easy maneuverability, and adaptability to urban environments [6], which can bring
convenience and efficiency to urban travel by saving travel time and reducing traffic con-
gestion [7–9]. This trend is expected to continue growing, driven by increasing demand in
urban areas [10,11].

However, the widespread adoption of shared E-scooters comes with a series of prob-
lems. The use of dockless operating systems for shared E-scooters services leads to irregular
parking, occupying urban space, hindering the normal use of public facilities [12], and
seriously affecting the safety and comfort of pedestrians [13]. This not only disrupts urban
order and negatively impacts traffic fluency but also increases the management difficulty
for shared E-scooter providers. In addition, in areas with high population density, higher
education levels [14], and diverse entertainment needs [15], a large number of shared
E-scooters have been deployed, with some vehicles having relatively low usage rates or
being idle on the streets. In contrast, in areas with lower socioeconomic levels but with
demand for shared E-scooters, there may be a lack of corresponding shared E-scooter
deployment stations [16]. The unreasonable quantity and spatial layout of shared E-scooter
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deployments make it challenging for users to access shared E-scooters, thus reducing the
quality of the travelling experience.

To better meet the travel demand of users in different regions, increase the utilization
rate of shared E-scooters, reduce improper parking behavior, and improve the travel
experience of urban residents, it is crucial to research the travel demand for shared E-
scooters and deployment stations selection. In previous studies, the analysis of potential
demand for shared E-scooters often considered the demand within a certain distance
range as the same, without considering the potential impact of distance on the intensity of
demand. Therefore, we propose a Distance Tolerance MCLP, which fully considers users’
acceptance of walking distance to shared E-scooter deployment stations. In our study,
Chicago serves as the study area. By analyzing shared E-scooter travel patterns, target
users, traffic conditions, and points of interest (POIs) within Chicago, we utilize DRL to
ascertain the optimal layout for deploying shared E-scooter stations in the study area, thus
validating the efficacy of our model. Our study provides decision support for optimizing
the urban micro-mobility layout for the Chicago city government and vehicle dispatching
for shared E-scooter providers. Additionally, it offers an efficient solution for FLPs.

The main contribution of our study is as follows:

• Introduces a novel MCLP based on distance tolerance for shared E-scooter deployment.
• Introduces a novel algorithm based on DRL to optimize location.
• Evaluates the effectiveness of the model and algorithm through experimentation.
• Provides decision support for optimizing urban micro-mobility layout and vehicle dis-

patching.

The subsequent sections of the paper unfold as follows. Section 2 scrutinizes rele-
vant studies, highlighting disparities with the current research. Section 3 introduces the
model, elucidating the Distance Tolerance MCLP and the DRL. In Section 4, an empirical
experiment is executed in Chicago. Section 5 discusses and interprets the results derived
from the experiment. Finally, Section 6 concludes the study, summarizing key insights and
suggesting future research directions.

2. Related Works
2.1. Factors Influencing E-Scooter Travel

Shared E-scooters and shared bicycles have garnered widespread attention, as em-
blematic of dockless shared micro-mobility. By reviewing the existing literature, we can
identify some factors influencing the use of shared E-scooters and bicycles, which provides
a direction for determining the indicator of our study.

Demographic factors play a crucial role in shaping the demand for shared E-scooters.
Research by Bai and Jiao [14,15] illustrated that areas characterized by higher population
density, a more educated populace, proximity to the city center, convenient transportation
options, and diverse land use exhibit increased shared E-scooter usage. Hosseinzadeh
et al. [17] found that land usage, age distribution, gender distribution, walking scores,
and park scores influence the travel density of shared E-scooters in Louisville, Kentucky.
Additionally, studies by Cao et al. [18] and Laa et al. [19] found that shared E-scooter users
are more likely to be young, male, with a higher income, and educated.

Furthermore, weather conditions significantly influence the use of shared E-scooters
and bicycles. Hosseinzadeh et al. [20] demonstrated the impact of factors like weather,
day of the week, holidays, and special events on travel frequency in Louisville, Kentucky.
Hamed et al. [21] identified the intensity and duration of rainfall as critical factors influenc-
ing the variation in demand for shared bicycles. Abouelela et al. [22] found that external
factors such as weather, day of the week, infrastructure, socio-demographic, land use, and
traffic accessibility all significantly influence shared E-scooter demand by comparative
analysis of shared E-scooter trip characteristics in five cities in North American. Moreover,
Kimpton et al. [23] revealed that shared E-scooter usage increases with warmer weather but
decreases with rainfall, and the distance travelled is shortened during periods of inclement
weather. In contrast, Noland’s studies indicated that shared E-scooters are less affected by
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rainy weather compared to other micro-mobility [24], that there was a significant correla-
tion between rain and snow and a reduction in travel frequency, while wind speed and
average temperature showed negligible impacts [25].

Several studies have explored the influence of the built environment on shared E-
scooters and bikes, encompassing land use characteristics such as transportation facilities,
road network, residential and population distributions, commercial, industrial, educational,
and cultural facilities [26–31]. Yu et al. [32] investigated the associations between shared
bicycle activities and four categories of urban facilities. Bieliński et al. [33] and McKenzie [34]
compared the use patterns of shared E-scooters and bicycles and found that shared E-scooters
are mainly used for leisure travel. Jin et al. [35] investigated the non-linear relationship
between the built environment and shared E-scooter link flows, highlighting variables like
distance to the city center, types of bike facilities, slope, speed limits, and street trees as
crucial determinants of shared E-scooter travel behavior. Additionally, Huo et al. [36] found
that shared E-scooter ridership decreases with distance to the city center.

Travel time also influences the use of shared micro-mobility. Guevara et al. [37]
delineated three components of travel time: waiting time, walking time, and trip time.
Shared micro-mobility is typically utilized to conveniently and quickly address the need
to travel short distances, so users may be less willing to walk longer distances to access
vehicles as they use themselves as a reference point [38,39]. In North America, a 5 min
walking distance to bus stations and shared bicycle stations is generally deemed acceptable,
equivalent to approximately 400 m [40,41]. For shared bicycles or electric bicycles, the
acceptable walking distance for users typically falls within the range of 200–500 m [42–44],
whereas for shared E-scooters, users’ tolerance for walking distances is even shorter, usually
not exceeding 300 m [44–49]. Additionally, as trip time increases, users prefer to use electric
bicycles [50–52].

In summary, a multitude of factors profoundly influence the usage dynamics of
shared E-scooters, encompassing demographic characteristics, weather conditions, the built
environment, and travel time. In light of data availability, we delineated 13 key influencing
factors from three perspectives: transportation accessibility, population density, and land
use, such as fundamental transport stations, sidewalks, population density, land use types
such as shopping malls, parks and attractions, hospitals, schools, etc.

2.2. Facility Location Problems

FLPs have garnered significant attention from researchers, encompassing various
variants such as the p-Median problem, which aims to minimize the weighted distance
between demand points and facilities [53]; the p-Center problem, which aims to minimize
the maximum distance from facilities to demand points [53]; the location set coverage prob-
lem, targeting the minimization of facility location costs while achieving specified coverage
levels [54]; and the maximal covering location problem (MCLP) aiming to maximize the
demand within the coverage radius for a fixed number of facilities [55]. Some of the com-
parative studies of the p-Median problem and the MCLP [56–58] showed that the p-Median
problem has advantages in spatial fairness, while the MCLP excels in efficiency [58]. When
the coverage threshold is low, the MCLP has advantages in maximizing demand, while for
larger coverage ranges, p-Median is the preferred choice [57].

The MCLP has demonstrated outstanding performance in coverage efficiency [31,56,59,60]
and has been widely applied in the location selection of shared economy facilities. Some studies
focused on accessibility factors to evaluate the accessibility of residential areas to shared bike
and public transportation networks. Ebrahimi et al. [61] employed the Maximize Coverage and
Minimize Facility method, optimizing the facility count while maximizing service coverage, to
identify shared bike potential docking stations. Additionally, based on building environments
and accessibility, optimal locations for stations in bike sharing systems were modeled [62]. The
determination of new bike station locations considers demand and spatial fairness [63], and the
potential spatial distribution of travel demand was taken into account to determine docking
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station locations for docked shared bikes [64]. Moreover, a study explored the optimal location
of shared bike stations considering budget constraints [59].

Improving the MCLP is also a research focus. To model certain dynamic features of the
problem, Gunawardane [65] proposed a dynamic variant or multi-period MCLP, aiming to
maximize coverage over all time periods. Yang et al. [66] established a spatial-temporal
coverage optimization model based on the space–time demand cube, finely characterizing
the spatiotemporal dynamics of user demands. Li et al. [60] introduced the Balanced MCLP,
considering the resultant quality lower bound and balanced service level, etc.

2.3. Location Selection Optimization Algorithms

FLP is an NP-Hard combinatorial optimization problem, and as the problem scale in-
creases, the solution time increases exponentially. Researchers have proposed approximate
solutions, exact solutions, and heuristic algorithms, such as GA, ant colony algorithms,
particle swarm algorithms, and greedy randomized adaptive search procedures. The
application of heuristic algorithms in FLPs has matured relatively.

With the rapid development of machine learning, innovations have emerged in FLPs.
Some researchers have applied machine learning and deep learning to predict demand and
solve FLPs. For instance, the suitability index for optimal astronomical observatory sites
was obtained through the integration of random forest and gradient tree boost [67], GIS and
support vector machines were used to predict potential locations of convenience stores [68],
the Markov chain was used to predict the demand for shared bicycle stations [69], deep
learning was used to predict the demand for shared E-scooters [70], neural networks were
used for business location selection [71,72], graph convolutional networks and greedy
algorithms were combined to solve the p-Center problem [73], and Gaussian processes and
machine learning were used to find electric vehicle charging stations [74].

Compared to traditional heuristic algorithms, machine learning optimizes decision
models for location selection and integrates multi-source geospatial big data, enabling
spatial analysis, prediction of urban spatial morphology, and real-time updates. And in
this field, DRL has demonstrated unique advantages.

DRL combines the technologies of deep learning and reinforcement learning, effec-
tively handling large-scale and high-dimensional geographic big data and extracting critical
features. Through the trial-and-error learning process of reinforcement learning, it can
seek optimal solutions in complex environments. Researchers have introduced DRL into
FLPs, such as Wang et al., who applied DRL to solve the p-Median problem [75], the MCLP
problem [76], and the location-routing problem [77], obtaining feasible solutions. Liang
et al. [78] designed a unified framework, SpoNet, combining the characteristics of location
problems with a deep learning to solve the p-Median problem, p-Center problem, and
MCLP. Zhong et al. [79] proposed a ReCovNet for reinforcement learning using covering
information to solve the maximal coverage billboards location problem.

Shared E-scooters, as an emerging mode of shared mobility, have had relatively lim-
ited research on location selection. Some studies use data-driven clustering algorithms to
identify high-demand parking locations for shared E-scooters in the case of user demand
only and both user demand and built environment factors [80]. And the rest mainly focus
on multi-criteria decision-making based on fuzzy logic for location selection [30,81,82], such
as the integrated Interval 2-Type Fuzzy BWM-MARCOS model [82] and the Pythagorean
fuzzy-SWARA and Pythagorean fuzzy-CODAS frameworks [83]. These models consider
multiple factors, including land use, traffic networks, POIs, and socioeconomic information to
determine the optimal locations for shared E-scooter deployment stations or charging stations.

Overall, significant progress has been made in the FLPs of shared transportation
facilities, but there is relatively less research on the location selection of shared E-scooters.
Most studies in this field employ evaluation methods for location selection, with fewer
studies applying optimization models, and the majority are simple extensions of basic
models, lacking innovative research on optimization models. Therefore, we propose to
establish a maximal coverage location problem model with the optimization objective of
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maximizing coverage of user demand and minimizing the sum of distances from users to
deployment stations, and use DRL to solve the model. An experiment is conducted in a
region of Chicago with high travel intensity of shared E-scooters to validate the effectiveness
of the model and algorithm.

3. Methodology
3.1. Formulation of the Problem

To address the current issue of mismatched distribution of deployment stations and
demand for shared E-scooters, it is necessary to establish a rational location selection model
to achieve the optimal allocation of shared E-scooters with the constraint of satisfying
user demand. For dockless shared mobility, the parking locations of shared E-scooters
exhibit high variability, dispersing and aggregating based on user usage in residential,
commercial, and business areas. Therefore, the distribution range of deployment stations
should be as extensive as possible, with a sufficient quantity to ensure the fulfillment of user
demands for pick-up and drop-off at various locations. Considering the cost of operation
and construction, as well as traffic circulation, the number of deployment stations should
not be excessive. We introduce MCLP [55], aiming to maximize user demand through a
certain number of deployment stations and enhance the utilization efficiency of the stations.

The MCLP makes a group of facilities maximize the coverage of the target area by
cleverly setting the number of facilities and coverage radius. However, nearly all MCLPs
assume a binary perspective regarding coverage, whereby if the distance between demand
points and service facilities is less than the coverage radius, it is considered completely
covered; otherwise, it is not covered [84]. This simplistic treatment of distance fails to
account for users’ tolerance thresholds regarding facility proximity, resulting in instances
where certain facilities, although capable of covering a substantial user base, exceed users’
travel tolerances, consequently leading to low actual utilization rates and suboptimal user
experiences. In contrast to public transportation, users are more sensitive to the distance of
dockless shared E-scooter deployment stations, with an accepted threshold typically not
exceeding 300 m. Thus, in the process of optimizing layout decisions, it is imperative to
ensure the distance acceptance of users for shared E-scooter deployment stations.

The traditional MCLP predominantly focuses on meeting the travel demand of shared
E-scooters quantitatively while disregarding users’ perceptions of the convenience of
deployment stations. Therefore, we propose a Distance Tolerance MCLP, which compre-
hensively considers users’ tolerance for deployment station distances, taking maximizing
coverage of user demand and minimizing the sum of distances between users and deploy-
ment stations as the optimization objectives, so that the accessibility and convenience of
users to shared E-scooter deployment stations are perceived as the best.

3.2. Distance Tolerance MCLP

To formulate shared E-scooter deployment stations covering location model, the
parameters and symbols involved in the model are defined as follows:

• Sets:

I: the set of demand points for shared E-scooters.
J: the set of candidate points for deploying shared E-scooters.
Ni: the set of candidate points covering demand point i.

• Parameters:

i: a demand point for shared E-scooters.
j: a candidate point for shared E-scooters.
dij: the walking distance from demand point i to candidate point j.
Dmax: the maximum covering distance from any demand point to a shared E-scooter

deployment station.
F
(
dij

)
: the distance tolerance function.

p: the number of candidate points to be established.
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S: the maximum covering distance for candidate point j.
wi: the demand intensity for demand point i.
Yij: the coverage status of whether demand point i is covered by candidate point j.
The distance tolerance function is defined as follows:
When the distance from the user to the deployment stations is within da meters, the

user’s acceptance of that deployment station is optimal. When the distance exceeds da
meters but is within db meters, the user acceptance decreases with increasing distance.
When the distance surpasses db meters, the user’s acceptance of that deployment station
is 0.

F
(
dij

)
=


1 dij ≤ da
1
2 + 1

2 cos
[

π
db−da

[
dij − db+da

2

]
+ π

2

]
da < dij ≤ db

0 dij > db

(1)

The following mathematical model is formulated:

Max ∑
i∈I

∑
j∈J

wiF
(
dij

)
Yij (2)

Min ∑
i∈I

∑
j∈J

dijYij (3)

Yij ≤ ∑
j∈Ni

Xj ∀i ∈ I (4)

∑
j∈J

Xj = p (5)

∑
j∈J

dijYij − Dmax ≤ 0, ∀i ∈ I (6)

∑
j∈J

Yij = 1 (7)

Xj, Yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (8)

Constraint (4) ensures that each demand point is covered by at least one candidate
point. Constraint (5) limits the number of deployment stations to p. Constraint (6) ensures
that the distance from any demand point to a candidate point is less than the maximum
covering distance. Constraint (7) specifies that each demand point must be covered by at
least one candidate point.

Xj =

{
1 i f a station is located at j
0 otherwise

(9)

Yij =

{
1 i f demand point i is covered by j
0 otherwise

(10)

Ni =
{

j ∈ J
∣∣ dij ≤ S

}
(11)

In this model, the first objective is to maximize the coverage of demand points by
maximizing the total weight of demand. The second objective is to minimize the distances
between users and deployment stations, including the pick-up and drop-off distances. To
unify these objectives, a linear weighted approach [85] is employed:

Max w1∑
i∈I

∑
j∈J

wiF
(
dij

)
Yij − w2∑

i∈I
∑
j∈J

dijYij (12)

where w1 and w2 are weight coefficients, and w1 + w2 = 1. The values of w1 and w2 are set
to 0.6 and 0.4.
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3.3. Deep Reinforcement Learning

In the realm of DRL, an intelligent agent engages with its environment, employing
a trial-and-error methodology to learn decision-making strategies aimed at maximizing
cumulative rewards. This iterative process involves five essential components: the Agent,
the Environment, the State, Action, and Reward. We adopted the Attention Model proposed
by Kool et al. [86] and employed the REINFORE algorithm with a greedy rollout baseline
for model training.

The algorithm’s design unfolds as follows:
Objective: Maximize the coverage of demand points while minimizing the distance

between users and shared E-scooter deployment stations.
States: Represent the environment’s state, including the locations of potential deploy-

ment stations, demand points, and their respective weights.
Actions: Define possible actions as the selection of locations to establish shared E-

scooter deployment stations.
Rewards: Design a reward function according to Formula (12) that integrates travel

demand and distance tolerance.
Model: Utilize the Attention Model to estimate the policy pθ(π|s), where θ represents

model parameters, π is the action sequence, and s is the current state. Incorporate problem-
specific features (e.g., locations, demand, distances) into the model’s encoder to generate
node embeddings. Sequentially select deployment station locations based on the decoder’s
output, ensuring that the action choices align with the problem’s constraints.

Baseline: Utilize the deterministic greedy rollout of the policy to estimate the baseline,
reducing the variance of the reward.

Reinforce: Compute the policy gradient using the difference between obtained reward
and baseline, adjusting the model parameters to maximize expected rewards. Use Adam
optimizer [87] to update the model parameters based on the computed gradients.

Training Loop: For each epoch, sample a set of instances, perform action selection,
calculate rewards, and update the model using the REINFORE algorithm. Stop training
when there is minimal change in the reward function value or when the maximum number
of epochs is reached.

Validation: Periodically validate the model against a separate set of instances to ensure
generalization and avoid overfitting.

4. Experiment
4.1. Study Area

Chicago is one of the largest cities in the state of Illinois, USA, with a large population,
a developed economy, and busy traffic. It serves as a pivotal hub for commerce and transit
in the northeastern USA. In 2019, Chicago launched a shared E-scooter pilot program [88].
We utilized the entire trip dataset provided by three operating companies, Lime, Bird, and
Spin, during the pilot program period from 12 August 2020 to 10 December 2020 [89]. This
dataset comprises a total of 630,816 trips. To ensure data reliability and accuracy, trips with
missing start or/and end location data, zero total mileage within two minutes, durations of
less than one minute, and those exceeding two hours were excluded [13,34,90]. The final
dataset retained 596,504 trips, accounting for 94.56% of the total trips.

To safeguard user privacy, the start and end locations of the trips were processed to
correspond to the centroid positions of census tracts [91]. Thus, we investigated the spatial
distribution and clustering patterns of shared E-scooters in Chicago by quantifying the
count of shared E-scooter trips within each census tract. The results indicated that shared
E-scooter trips were predominantly clustered in the northern and eastern parts of the city,
including areas such as West Town, Lincoln Park, Lake View, and surrounding census tracts
like Logan Square, West Town, and Near North Side. These areas are close to the Chicago
Loop, featuring large shopping centers, numerous headquarters of well-known companies,
high-quality schools, hubs of public transportation systems, and famous landmarks. The
diverse land use types and dense population movements in these areas contribute to a
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significant demand for shared E-scooters. Therefore, we selected the areas with clustered
shared E-scooter trips as the focus of the experiment, as shown in Figure 1.
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4.2. Extract Potential Demand Points
4.2.1. Divide Study Units

The road network is an essential component of urban transportation, influencing
urban spatial structure, functionality, and socio-demographic diversity [92,93]. In urban
planning and design, different road types typically serve distinct functional zones, so it is
reasonable and effective to consider parcels based on the distribution of the road network
as study units [94–97].

In our study, guided by the street division regulations of the Illinois Department of
Transportation (IDOT) [98] and the Chicago Metropolitan Agency for Planning (CMAP) [99],
and considering the actual situation of the study area, the road network was classified into
three levels, generating buffers with widths of 40 m, 20 m, and 10 m. The combination of
these three buffer zones forms a complete spatial road network. Through erasure, splitting
processes, and result cleaning, a total of 2370 study units were obtained.

4.2.2. Evaluate Study Unit Demand

To assess the intensity of users’ demand for travelling with shared E-scooters, it is
necessary to comprehensively consider the influence of the surrounding environment. We
took into account POIs, including public transportation, education and culture, business
and shopping, national landmarks, and healthcare. These data were provided by the
Chicago Data Portal [89]. In addition, population data were derived from the World Pop
website [100], providing population weighted-density grid data with a resolution of 100 m.

The Analytic Hierarchy Process (AHP) was employed to evaluate the demand, with
the optimal location selection as the goal level, factors such as transportation convenience,
population density, and land use as the criteria level, and 13 influencing factors (Table 1) as
the sub-criteria level. The relative importance of these factors was determined by expert
subjective judgments and quantitative comparisons, and the final evaluation results were
obtained through mathematical calculations.

Firstly, standardization was applied to public transportation stations, POIs, and differ-
ent land use data. According to the law that similar things are more relevant, linear fuzzy
membership functions for Euclidean distance grids were determined, with the minimum
and maximum parameters for each sub-criterion shown in Table 1. The minimum value of
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the distance parameter was defined as 1, and spatial membership gradually decreased with
increasing distance. For instance, the spatial membership of a train station is 1, gradually
decreasing as the distance from the train station increased, reaching 0 when the distance
exceeded 500 m. The maximum distance for sidewalks and bike lanes was limited to
100 m [101], and the distance between public transportation stations and POIs was re-
stricted to within 500 m [102]. Regarding population density data, the membership of the
maximum population density was defined as 1, and the minimum value was defined as 0,
as population scale correlates positively with travel demand.

Table 1. The influencing factors, minimum and maximum parameters of linear fuzzy membership
functions, and AHP weights.

Base Data Derived Criteria Min (m) Max (m) Weight

Railway stations Distance to railway stations 500 0 0.0675
Metro stations Distance to metro stations 500 0 0.1722

Bus stations Distance to bus stations 500 0 0.1722
Bicycle stations Distance to bicycle stations 100 0 0.0285

Sidewalks Distance to sidewalks 100 0 0.0317
Population Density population min max 0.0828

Shopping mall Distance to shopping mall 1000 0 0.1468
Pedestrian streets Distance to pedestrian streets 500 0 0.0372

Parks Distance to parks 1000 0 0.0575
National landmarks Distance to national landmarks 1000 0 0.0654

Hospitals Distance to hospitals 1000 0 0.0255
Schools Distance to schools 500 0 0.0917

Industries Distance to industries 500 0 0.0210

The AHP judgment matrix was presented to five experts for scoring. The average score
for each influencing factor was calculated and rounded to obtain the scoring matrix. Sub-
sequently, the AHP weights were calculated by the SPSS PRO, and the results underwent
consistency checks. Table 1 presents the influence weights of each factor. Employing a raster
calculator, the spatial membership grids of sub-criteria were overlaid with corresponding
AHP weights to generate a land suitability map (Figure 2). A suitability index of 1 indicates
an ideal location for shared E-scooter deployment, while a suitability index of 0 indicates
an unsuitable location. With the centroid of the study unit as the demand point, a total of
2370 demand points was identified, and their demand intensities were assigned based on
the suitability index values.
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4.3. Selecting Candidate Points

Due to the privacy measures applied to shared E-scooter trip data, we utilized shared
bicycle trip data, which exhibit similar travel patterns to shared E-scooters, to identify
candidate points. The shared bicycle trip data provided by the Divvy company includes
geographic coordinates of user origin and destination points. For the purpose of this study,
all shared bicycle trips from September 2020 were selected as the dataset. After cleaning
the data for anomalies, the trip frequency for each station was calculated. Stations with a
frequency exceeding 10 were selected as candidate points for shared E-scooters, resulting
in 313 candidate points (Figure 2). These candidate points were utilized in the subsequent
study to determine the optimal locations for deploying shared E-scooters.

4.4. Select Locations for E-Scooters Deployment
4.4.1. Set Parameter

We set the maximum walking distance for shared E-scooter users at 300 m based on
previous research, and the distribution of candidate points in the area and the coverage of
demand points within various radius buffer zones are outlined in Table 2. Therefore, the
distance tolerance function F

(
dij

)
was set with da = 50 m and db = 300 m. The maximum

service distance for facility points was set as Dmax = 300 m. The number of facility points
was set as p = 50.

Table 2. The coverage rates of demand points for different coverage radius.

Radius (m) 200 250 300

Coverage rate (%) 32.98 46.71 59.45

4.4.2. Train the Reinforce Algorithm

We imported the demand points and candidate points data, generating 12,800 training
samples and 2000 validation samples, set the epoch size to 12,800, configured 1000 training
epochs, and trained 50 steps in each epoch. The convergence results of the algorithm are
shown in Figure 3, illustrating the average reward–return curve across training epochs.
As the number of training epochs increases, experience accumulates gradually, and the
algorithm converges. By the 800th training epoch, the reward–return curve shows no
significant changes, indicating convergence of the algorithm.
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4.4.3. Results and Validation

The 992nd training epoch with the largest reward return value was selected for solving
the Distance Tolerance MCLP. The results of shared E-scooter deployment stations aligned
with the spatial characteristics of travel patterns, mainly distributed in the densely popu-
lated Loop and River North census tracts, exhibiting a uniform distribution pattern and



ISPRS Int. J. Geo-Inf. 2024, 13, 147 11 of 17

avoiding excessive clustering. These points adequately covered demand points, achieving
a coverage rate of 16.58%. The model’s objective function value stood at 73.06, meeting the
optimization requirements for deployment station selection.

To validate the effectiveness and feasibility of the DRL in FLPs, we compared and
analyzed the results obtained by the Gurobi solver and the GA under the same conditions
of scale and model parameters. The comparative analysis included the solving time,
objective function value, demand points coverage rate (Table 3), and spatial distribution
of deployment stations (Figure 4). The results of the Gurobi solver provided the best
performance in terms of both objective function value and demand points coverage. The
results of the DRL were slightly inferior to the Gurobi solver in terms of objective function
value and demand point coverage, but were superior to the GA. This suggests that the DRL
is able to provide a superior solution in FLPs.

Table 3. The comparative results of different solving methods.

Solving Method Solving Time (s) Objective Value Coverage Rate (%)

DRL 0.47 73.10 16.58
Gurobi 13.50 74.21 16.88

GA 2.83 71.12 16.50ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 12 of 18 
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5. Discussion

Shared E-scooters, as a mode of short-distance transportation, effectively bridge the
first and last miles of public transportation, enhancing urban accessibility. However,
for shared E-scooter users, accessibility refers to the convenience of obtaining shared E-
scooters within their daily travel range. The perceived accessibility directly impacts their
satisfaction and willingness to use shared E-scooters as a mode of transportation. Users
typically choose shared E-scooters to reduce travel time, and if the walking distance is too
long, it may decrease their satisfaction and even lead to abandonment. Therefore, based on
the traditional MCLP, we considered the distance from the user’s location to the shared
E-scooter deployment stations, arguing that different walking distances lead to differences
in user satisfaction, and employed the cosine function to quantify the complex non-linear
relationship between walking distance and user satisfaction.

We employed the AHP to evaluate the user demand in the study area and found that
users in the east and the south had a higher travelling demand (Figure 2), both of which are
suitable regions for the location of shared E-scooter deployment. However, comparing the
results of the three methods, we found that most deployment stations were concentrated in
the eastern region, with only a few in the southern region. Due to the sparse distribution
of shared E-scooter candidate points in the southern region, the accessibility of shared
E-scooters is lower, and users need to spend more time walking to the nearest shared
E-scooter deployment stations. Therefore, after considering the impact of walking distance,
the actual demand for users in the southern region decreased, making it unsuitable for
constructing a large number of deployment stations.

In FLPs, the selection of an appropriate coverage radius plays a crucial role in deter-
mining the quality of location results, especially when both demand points and facilities are
limited. Based on the investigation conducted by Reck et al. [44–49], we set the maximum
walking tolerance distance for users to shared E-scooters at 300 m. Although the results in
Table 3 indicate a coverage rate of demand points below 17%, they represent the optimum
solution for coverage found in this scenario. If the maximum walking distance is increased
or the number of facilities is increased, our study would achieve a more considerable
coverage rate.

Additionally, we introduced DRL into FLPs and compared the results of DRL, the
Gurobi solver and GA. The results showed that in terms of objective function value and
coverage, the gap between the results of DRL and Gurobi solver was smaller and they
outperformed the GA. In terms of solution time, DRL showed a clear advantage, being
more than 5 times faster than the GA and more than 20 times faster than the Gurobi solver,
demonstrating its ability to solve quickly. Comparing the spatial distribution of the stations
obtained by the three methods, we found that the overlap between the DRL results and
the Gurobi solver results was high, but DRL selected one or two stations in the Lake View
and Near West Side census tracts, which did not exist in the Gurobi solver results. Further
analysis revealed that the Lake View and Near West census tracts had a very large count of
trips, which indicates that the DRL results were more in line with the actual situation of
users using shared E-scooters. Although its results were not as good as those of the Gurobi
solver in terms of objective function value and coverage, it was better than the Gurobi
solver in terms of spatial distribution uniformity. Of course, it is important to note the
training time for deep learning. The rapid solution of DRL is based on long-term training.
The results of the training significantly influence the effectiveness of the final solution. To
promote the idea of DRL, further optimization of the algorithm, improvement of training
efficiency, and refinement of training actions and reward algorithms are needed to achieve
location results superior to other solving methods.

6. Conclusions

Aiming to improve the current distribution of shared E-scooter deployment stations
and demand in Chicago, we proposed a maximal covering location problem model based
on distance tolerance. This model considers the distance from the user’s location to the
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shared E-scooter deployment stations, introducing a distance tolerance function to enhance
the MCLP. By accurately reflecting the change of user demand with distance, it addresses a
limitation of traditional coverage models, which prioritize quantity while overlooking the
distance factor.

To validate the feasibility of the model, we designed a DRL based on the attention
mechanism for our experiment. Our study focused on a high-usage area of shared E-
scooters in Chicago. To accurately assess user demand, we comprehensively considered
13 key influencing factors, such as accessibility, population density, and land use, and
used the AHP to determine the relative importance of each factor, which in turn led to the
demand intensity of each demand point.

We chose Divvy shared bicycle stations as the candidate points for shared E-scooters,
and used DRL to obtain the results of the shared E-scooter deployment stations, which
coincided with the travelling spatial characteristics, and showed a uniform distribution
characteristic. By comparing and analyzing the results with those of the Gurobi solver and
the GA, we found that the results of DRL were better in terms of spatial distribution, which
verified the efficiency of DRL in the field of FLPs.

Based on the results of the experiment, we suggest that the Chicago city government
or shared E-scooter providers should consider user accessibility when designing shared
E-scooter deployment, especially in areas close to the city center, with a variety of land
use and high user demand, and design densely populated stations to reduce the user
walking time. For the outskirts of the city, the deployment should be evenly spread to
ensure equitable access to shared E-scooter services across Chicago’s diverse districts. This
strategy will enhance service coverage and cater to the varying needs of users throughout
the city. In addition, predictive analytics can be used to predict the demand for different
stations based on user travel patterns and demand to further optimize the deployment of
vehicle resources and improve the station service level.

In summary, our study provides a practical and feasible model for shared E-scooter
deployment stations selection and a solving method. It considered the impact of user
demand and walking distance tolerance, offering a reliable basis for actual location selection
decisions. However, there are some shortcomings in the study, such as the lack of actual
geographic coordinates in the shared E-scooter trip data used, preventing a comparative
analysis of the location optimization before and after deployment. The subjectivity inherent
in the AHP scoring model hindered genuine result evaluation. Future studies can focus on
collecting more detailed shared E-scooter trip data, utilizing objective evaluation models,
optimizing the DRL, and comparing various location models and methods to validate
the effectiveness of the Distance Tolerance MCLP and DRL, thus obtaining more efficient
location optimization solutions.
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