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Abstract: In this paper, we examine a buffer with active management that rejects packets basing
on the buffer occupancy. Specifically, we derive several metrics characterizing how effectively the
algorithm can prevent the queue of packets from becoming too long and how well it assists in flushing
the buffer quickly when necessary. First, we compute the probability that the size of the queue is
kept below a predefined level L. Second, we calculate the distribution of the amount of time needed
to cross level L, the buffer overflow probability, and the average time to buffer overflow. Third, we
derive the distribution of the amount of time required to flush the buffer and its average value. A
general modeling framework is used in derivations, with a general service time distribution, general
rejection function, and a powerful model of the arrival process. The obtained formulas enable, among
other things, the solving of many design problems, e.g., those connected with the design of wireless
sensor nodes using the N-policy. Several numerical results are provided, including examples of
design problems and other calculations.

Keywords: actively managed buffer; level-crossing probability; overflow probability; time to overflow;
buffer flush time

1. Introduction

Active queue management (AQM) in a packet buffer is a policy which assumes that an
arriving packet may be deleted upon arrival instead of being deposited in the buffer, even
if there is an unoccupied space in the buffer. There are several good reasons why AQM may
be recommended in packet networking. Its main purpose, however, is always to reduce
queue sizes in buffers and thus reduce the latencies induced by buffering mechanisms.

Obviously, the packet delivery time is of importance in all sorts of networks. Therefore,
AQM is recommended by researchers and engineers for wired networks [1,2], wireless
sensor networks [3–5], LTE and 5G networks [6,7], mobile ad hoc networks [8,9], satellite
networks [10,11], and others.

The primary purpose of this paper is to examine the effectiveness of the AQM mecha-
nism in maintaining a short queue.

In this paper, we adopt a popular type of AQM in which packets are deleted randomly
based on the buffer occupancy.

This type of AQM is depicted in Figure 1. In detail, upon the arrival of a packet at
the buffer, a random decision is made (using an RNG) as to whether this packet should be
deposited in the buffer or deleted. Specifically, with probability d(i), the packet is deleted,
where i denotes the current queue size (see Figure 1).

In the literature, many types of function d(i) are used in AQM, e.g., linear [12],
quadratic [13], sinusoidal [14], cubic [15,16], exponential [17], beta [18], and Gaussian func-
tions [9]. Additionally, some researchers propose d(i) in a combined form, consisting of two
linear functions [19], linear and quadratic functions [20], linear and cubic functions [21],
linear and exponential functions [22], or quadratic and exponential functions [23]. Herein,
we adopt function d(i) in a general form. Therefore, all of the results will be applicable to
all particular forms of d(i) listed in the previous paragraph, and any others.
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Figure 1. Buffer with AQM based on the queue size.

It should be mentioned that AQM, based solely on the function d(i), is not the only
possible approach. For instance, in [24], the packet sojourn time through the buffer is
used for calculating the rejection probability. In [25], a compensated proportional–integral–
derivative (PID) controller, based on queuing latency, is exploited, while [25] uses different
update times than the d(i)-based method. Specifically, the rejection probability is updated
at regular time intervals, rather than upon the arrival of packets, as is the case in the d(i)
method. In the algorithm from [26], a virtual queue is maintained with a capacity smaller
than the capacity of the actual link. The actual and virtual queues are both updated upon
the arrival of a packet, but the packet is rejected when the virtual, rather than actual, buffer
overflows. In [27], a proportional–derivative (PD) controller, accompanied by a Smith
predictor and disturbance observer mechanism, is used. Finally, in [28,29], neural networks
and fuzzy logic are exploited in the design of the AQM algorithm, respectively.

The popularity of the d(i)-based method in AQM studies is connected with the fact
that it provides a good trade-off between the performance of the algorithm and the difficulty
of implementation in a real networking device. Specifically, the d(i)-based method usually
offers a substantial improvement when compared with no AQM at all while remaining
relatively easy to implement. This was confirmed by the experimental study in [30], where
such an algorithm was implemented in a real device and tested in a real network.

In this paper, we will check how well an AQM algorithm based on the d(i) function
can maintain a short queue of packets.

To achieve this, we will first derive the probability that the size of the queue is kept
below some level L (see Figure 2), using a queuing model of the buffer with AQM. Natu-
rally, the longer we wait, the higher the probability of hitting L. Therefore, we derive the
probability of not hitting L within a concrete time interval (0, t), as illustrated in Figure 2.

Then, we will derive several other characteristics connected with level crossing. These
include the distribution of the duration of time before which the size of the queue reaches
level L (i.e., the time to the red event in Figure 2) and its average value. Naturally, the
longer the average amount of time needed to hit L, the better AQM is performing in terms
of keeping the queue short.

In the characteristics mentioned so far, L is not specified, i.e., an arbitrary L can be
used depending on particular needs. Therefore, we can also use L = B, where B is the size
of the buffer. For such L, we will obtain buffer overflow characteristics, i.e., the probability
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of no buffer overflows in a given interval, the distribution of the time to overflow, and the
average time to buffer overflow.

Figure 2. Queue size evolution and the event of hitting level L.

Obviously, all of the level-crossing characteristics depend on three components of the
queuing model: the statistical properties of traffic arriving at the buffer, the capacity of the
output link, and the type and parameterization of AQM. All three of these components are
highly general in the model studied here, which translates into broad applicability of the
results to many different scenarios.

First, a powerful model of the arrival process is adopted, one which can mimic an
arbitrary distribution of time between consecutive packets and features an autocorrelated
structure of traffic, batch arrivals of packets, and several other statistical features. Second, a
general type of distribution of the transmission time is used. It may model various packet
transmission times (attributed to various packets), a dynamically changing link capacity
(e.g., due to the wireless environment), or both.

In addition to the characteristics described above reflecting the tendency of the queue
size to grow, we will derive characteristics reflecting the tendency of the queue size to
decrease when the transmission rate is high. Namely, we will find formulas for the distribu-
tion of the amount of time required to flush the buffer and the average amount of required
time to flush the buffer, as illustrated in Figure 3.

Figure 3. Time to flush the buffer.

1.1. Application Scenarios

The aforementioned level-crossing characteristics have many potential applications.
For instance, several application scenarios are associated with the design of wireless

sensor networks (WSNs) incorporating an energy-saving mechanism based on the N-policy.
This policy has been recommended for WSNs, for example, in [31–36].

Specifically, a wireless sensor node that utilizes the N-policy has its radio output
interface switched off part of the time to conserve energy in the battery. This interface is
activated only when the number of packets in the buffer reaches a critical level. The node
then transmits packets until the buffer becomes empty, after which the output interface is
deactivated again, and the process repeats. In Figure 4, the model of a sensor node using
the N-policy, as considered here, is depicted. It differs from the original proposition of the
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N-policy (see Figure 1 in [31]) due to the inclusion of the AQM mechanism, which is an
additional component here.

Figure 4. Model of a sensor node incorporating the N-policy and AQM.

When designing a sensor node with the N-policy, we may encounter several problems.
For instance, we may need to calculate how much energy is consumed by the output radio
in one buffer flush cycle, as depicted in Figure 3. This energy is obviously proportional to
the buffer flush time, which is one of the characteristics derived here.

Next, we may need to calculate the average energy consumption of the output radio
over an extended period, considering alternating active and idle periods along with their
respective proportions. The active period corresponds to the buffer flush time discussed
above. The idle period represents the time during which the queue size increases from 0 to
the critical level L, as depicted in Figure 2. This is another level-crossing characteristic
derived here.

Finally, instead of computing the buffer flush time for given system parameters, we
may search for system parameters (e.g., AQM parameters, transmission rate) that yield an
assumed a priori flush time.

Examples of solutions for such problems are presented in Section 4.1.

1.2. Contribution

In summary, the contribution of the paper consists of several new formulas,
specifically formulas for

• the probability that the size of the queue is below L in (0, t), Formula (26);
• the distribution and average of the amount of time taken to hit level L, Formulas (35)–(37);
• the probability that the buffer is not overflowed during (0, t), Formula (38);
• the distribution and average of the amount of time needed to address buffer overflow,

Formulas (39)–(41);
• the distribution of the amount of time needed to flush the buffer, Formula (52);
• the average amount of time needed to flush the buffer, Formula (57);

These formulas were obtained for a model of the AQM buffer with high generality, a
powerful traffic model, general duration of the transmission time, and an AQM mechanism
with the d(i) function in the general form.

Furthermore, several numerical examples are provided, illustrating all of the aforemen-
tioned level-crossing characteristics and their dependence on system parameters, as well as
examples of solutions to design problems. A few such solutions are shown in Section 4.

As far as the author knows, the results of this paper are new.
Active queue management, which rejects packets basing on the buffer occupancy, was

recommended in [9,12–23]. However, all of these studies are based on simulations rather
than on queuing theory. They focus mostly on the influence of the particular form of the
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rejection function (linear, cubic, exponential, etc.) on the buffering mechanism. Typically,
the queue size and packet loss were studied, while the level-crossing characteristics were
not determined. Herein, we study the level-crossing characteristics using a queuing model
which encompasses all of the mentioned particular rejection functions.

On the other hand, the level-crossing characteristics were investigated in several
other papers using methods of queuing theory, [37–43]. Unfortunately, all of the models
from [37–43] lack the active management component, which is central here. The AQM
component is also absent in all the studies conducted so far on models of a sensor node
with the N-policy, [31–36].

Next, there are many published papers in which a model incorporating active man-
agement is studied mathematically, e.g., [44–50]. However, in none of these papers are the
level-crossing characteristics analyzed.

Some level-crossing characteristics in a model of an actively managed buffer were
studied in [51]. Unfortunately, the analysis in [51] was based on a very simple model
of the arrival process, i.e., without autocorrelation, batch arrivals, and other advanced
features. The model considered herein incorporates autocorrelation and group (batch)
arrivals. As shown in the numerical results, autocorrelation exerts a tremendous effect on
the level-crossing characteristics. Furthermore, it is known that networking traffic is very
often autocorrelated, [52], so this feature of the model is of great practical importance. It
also complicates the analysis.

Finally, in [24–29], we can find examples of AQM algorithms which are based on
factors other than buffer occupancy.

The rest of the paper is organized as follows. In Section 2, the queuing model is defined,
including the input traffic model and AQM mechanism. Moreover, the notation of model
parameters is introduced. In Section 3, the level-crossing characteristics are derived. This
section is divided into Subsections 3.1–3.4, in which the probability that the size of the queue
is below L, distribution of the duration of time to hit level L, buffer overflow characteristics,
and buffer flush characteristics are obtained, respectively. Numerical results are shown in
Section 4. They are based on two traffic parameterizations, several target levels L, variable
service rates, and variable AQM parameters. Closing remarks are gathered in Section 5.

2. Modeling Framework

We deal with the model of a FIFO buffer equipped with active queue management
basing on the d(i) function, as shown in Figure 1.

Specifically, packets arrive at the buffer according to a complex arrival process, which
will be described below. They line up in the buffer in the same order they arrived. The
capacity of this buffer is B packets, which includes the head position for the packet currently
being transmitted.

If the buffer is saturated, every new packet is deleted upon arrival. Moreover, every
other packet may be deleted upon arrival, even if there is still some space in the buffer.
Such deletion is performed by the active management mechanism randomly, based on
an RNG. Specifically, each arriving packet is deleted with probability d(i) or put into the
buffer with probability 1 − d(i), where i is the buffer occupancy upon its arrival.

Simultaneously, the queue of packets is drained from the buffer by the output trans-
mission link. The transmission of a packet takes a random amount time, which has the
distribution function F(t). In such a model, the changeability of the transmission time can
be attributed to the changeability of the packet size or the changeability of the physical link
capacity, or both.

Functions d(i) and F(t) are not specified and may have any form provided they fulfill
the obvious assumptions, i.e., 0 ≤ d(i) ≤ 1 for every i and F(t) = 0 for t ≤ 0.

The average service time will be denoted by F.
The packet arrival process is modeled by the batch Markovian arrival process, [53].

This process has a very rich statistical structure and possesses powerful modeling possibili-
ties. In particular, it was shown that it can simultaneously model an arbitrary interarrival
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period and arbitrary autocorrelation structure, [54]. It enables modeling of the batch struc-
ture of traffic, which is induced by some networking protocols, as discussed in [55]. It is
also able to model many other subtle properties of packet traffic.

The most popular parameterization of the batch Markovian process has the form of
the sequence D0, D1, D2, . . . , where each Dn is an m × m matrix. This sequence can be
infinite if the length of an arriving batch can be arbitrarily large. In practice, very often
this sequence is finite, i.e., has the form D0, D1, . . . , DN , where N is the maximum possible
batch size in the process of interest. Herein, we assume the most general case, with an
unlimited batch size.

Sequence Di must fulfill the following requirements:

• Dn is non-negative for n = 1, 2 . . ., D0 is non-negative except for the diagonal;
• D = ∑∞

n=0 Dn must have all rows summing to zero;
• D ̸= D0.

In this notation, D is the rate matrix of the modulating Markov chain, with state space
1, . . . , m. The evolution of this modulating chain (of continuous type) controls arrivals of
packets, perhaps in batches. In particular, if the modulating chain assumes state i at some
moment in time, then for an exponentially distributed epoch with rate µi, nothing happens.
After that time, either the modulating state changes, a batch arrives, or both. The rate µi is
equal to the modulus of the i-th diagonal entry of matrix D0.

The total rate of such arrival process, λ, is equal to

λ = π
∞

∑
n=1

nDn e, (1)

where
e = [1, . . . , 1]T , (2)

and π denotes the stationary distribution of the Markov chain, which can be calculated by
solving the system {

πD = [0, . . . , 0],
π e = 1.

(3)

The rate of arrivals of groups (batches) is then

λb = −πD0 e. (4)

From (1) and (4), we can compute the average batch size, b:

b =
λ

λb
. (5)

The variance of interarrival times equals

V = −2λ−1
b πD−1

0 e − λ−2
b , (6)

while the k-lag autocovariance of interarrival times, C, is

Ck = ξD−1
0 E(Ek−1 − 1 ξ)D−1

0 E e, (7)

where
E = D−1

0 (D0 − D), (8)

and distribution ξ can be obtained from the linear system{
ξ(E − I) = [0, . . . , 0],
ξ e = 1.

(9)
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Now, having (6) and (7), we can calculate the k-lag autocorrelation of interarrival times,
Rk, which equals

Rk =
Ck
V

. (10)

Rk has a tremendous effect of various buffering characteristics. Herein, in Section 4,
we will see its profound impact on the level-crossing characteristics. Importantly, in the
batch Markovian arrival process, Rk can be modeled arbitrarily (see, e.g., [54]).

Other important properties and characteristics of the batch Markovian arrival process
may be found by the reader in [56].

Basic characteristics of queues with the batch Markovian arrival process (but no AQM)
can be found in [56,57].

In the analysis, we will need two special characteristics of the model, Hi,j(k, v, t)
and qk(u, v).

In particular, Hi,j(k, v, t) denotes the probability that v packets are deposited in the
buffer before time t and that the modulating state at t is j; assuming that no packet
transmission is finished by t, the initial buffer occupancy (i.e., at t = 0) was k, whereas
the initial modulating state was i. Hence, this characteristic describes the raw effect of
the AQM mechanism on the arrival process in interval (0, t), excluding the impact of the
service process.

The second characteristic, qk(u, v), denotes the probability that if u packets arrive
as a batch, v of them are deposited in the buffer, whereas the rest are deleted, assuming
the buffer occupancy was k upon this arrival. Therefore, this characteristic describes the
instant impact of the AQM mechanism on the batch of arriving packets, if the packets arrive
in a batch.

It will be revealed in the next section how Hi,j(k, v, t) and qk(u, v) can be computed.

3. Level-Crossing Characteristics
3.1. Probability That the Queue Is Below L

Let Pk,i(L, t) denote the probability that in interval (0, t) the size of the queue is under L,
given that initially the queue was of size k and that the initial modulating state was i, where
0 < L ≤ B and k < L.

If 0 < k < L, then the following equation holds:

Pk,i(L, t) =
L−k−1

∑
v=0

m

∑
j=1

∫ t

0
Pk+v−1,j(L, t − y)Hi,j(k, v, y)dF(y)

+
(
1 − F(t)

) L−k−1

∑
v=0

m

∑
j=1

Hi,j(k, v, t), 1 ≤ i ≤ m. (11)

Equation (11) is acquired by conditioning upon the first transmission completion time,
y, which is distributed according to F.

The first segment of (11) is devoted to the event y ≤ t. In this event, v new packets are
deposited in the buffer by the time y and the new modulating state at time y is j. To assure
that level L is not hit, it must hold v ≤ L − k − 1. Taking into account the transmission
completed at y, the new buffer occupancy at y is k + v − 1. Thus at y, the conditional
probability of no hitting L by t is Pk+v−1,j(L, t − y).

The second segment of (11) is devoted to the event y > t. In this event, which comes
about with probability 1 − F(t), the queue cannot decrease by t. Therefore, it suffices to
assure that no more than L − k − 1 new packets are deposited in the buffer by t, which has
the probability ∑ Hi,j(k, v, t).

Denoting

pk,i(L, s) =
∫ ∞

0
e−syPk,i(L, y)dy, (12)
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and applying the convolution theorem (see [58] p. 92), we obtain from (11):

pk,i(L, s) =
L−k−1

∑
v=0

m

∑
j=1

ui,j(k, v, s)pk+v−1,j(L, s)

+
L−k−1

∑
v=0

m

∑
j=1

zi,j(k, v, s), 0 < k < L, 1 ≤ i ≤ m, (13)

where
ui,j(k, v, s) =

∫ ∞

0
e−syHi,j(k, v, y)dF(y), (14)

zi,j(k, v, s) =
∫ ∞

0
e−sy(1 − F(y)

)
Hi,j(k, v, y)dy. (15)

Introducing square matrices:

U(k, v, s) =
[
ui,j(k, v, s)

]
i=1,...,m;j=1,...,m, (16)

Z(k, v, s) =
[
zi,j(k, v, s)

]
i=1,...,m;j=1,...,m, (17)

and vector:
pk(L, s) = [pk,1(L, s), . . . , pk,m(L, s)]T , (18)

we get from (13):

pk(L, s) =
L−k−1

∑
v=0

pk+v−1(L, s)U(k, v, s) +
L−k−1

∑
v=0

Z(k, v, s) e, 0 < k < L. (19)

For P0,i(L, t), we have to build an equation different from (11) because there is no
transmission when the buffer is empty. Specifically, we have:

P0,i(L, t) =
L−1

∑
u=0

L−1

∑
v=0

m

∑
j=1

q0(u, v)πi,j(u)
∫ t

0
Pv,j(L, t − y)µie−µiydy + e−µit, 1 ≤ i ≤ m, (20)

where πi,j(u) is the probability that an arrival of a batch of u packets is accompanied by the
transition of the modulating state from i to j. It is known that πi,j(u) = [Du]i,j/µi for u ̸= 0,
πi,j(0) = [D0]i,j/µi for i ̸= j, and πi,i(0) = 0 (see [53]).

Equation (20) is derived by conditioning upon the first event in the arrival process,
which comes about at y and is exponentially distributed with rate µi, defined in the
previous section.

The first segment of (20) is devoted to the event y ≤ t. In this event, the batch of
packets arriving at y must have the size u, where u ≤ L − 1. Out of these u packets, v are
deposited in the buffer with probability q0(u, v) after the execution of the AQM mechanism.
Thus, at y, the conditional probability of not hitting L by t is Pv,j(L, t − y).

The second segment of (20) is devoted to the event y > t. This event comes about with
probability e−µit. In this event, it is certain that the level L will not be hit by t. In fact, in
this event, nothing at all happens by t, so the buffer is empty at t.

Applying the convolution theorem to (20) we obtain:

p0,i(L, s) =
1

µi + s

(
L−1

∑
u=0

L−1

∑
v=0

m

∑
j=1

µiq0(u, v)πi,j(u)pv,j(L, s) + 1

)
, 1 ≤ i ≤ m. (21)

Introducing square matrices:

R(u) =
[
πi,j(u)µi

]
i=1,...,m;j=1,...,m, (22)
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B(s) = diag
[

1
µ1 + s

, . . . ,
1

µm + s

]
, (23)

where diag[x] is the operator creating a diagonal matrix from vector x, we get from (21):

p0(L, s) = B(s)
L−1

∑
u=0

L−1

∑
v=0

q0(u, v)R(u) pv(L, s) + B(s) e. (24)

Now, note that (19) and (21) establish a system of Lm linear equations with Lm
unknowns: p0,1(L, s), . . . , pL−1,m(L, s). Therefore, introducing the subsequent vector of
size Lm:

p(L, s) = [p0,1(L, s), . . . , p0,m(L, s), . . . , pL−1,1(L, s), . . . , pL−1,m(L, s)]T , (25)

we can obtain the standard algebraic solution of system (19) and (21). This solution is
presented in the following theorem.

Theorem 1. The transform of the probability that the length of the queue is under L in (0, t) is:

p(L, s) = (G(L, s)− I)−1w(L, s), (26)

where
G(L, s) = [gi,j(L, s)]i=0,...,L−1;j=0,...,L−1., (27)

gi,j(L, s) =


B(s)∑L−1

u=0 q0(u, j)R(u), if i = 0,

U(i, j − i + 1, s), if 0 < i, i−2 < j < L−1,

0, otherwise,

(28)

w(L, s) = −
[
B(s) e, y(L, 1, s)T , . . . , y(L, L − 1, s)T

]T
, (29)

y(L, k, s) =
L−k−1

∑
v=0

Z(k, v, s) e, (30)

and 0 is the square zero matrix.

3.2. Distribution of the Hit Time

Let αk,i(L) denote the first time the queue size hits level L, given that initially the
queue was of size k and that the initial modulating state was i. It is straightforward to
acquire the distribution and average value of αk,i(L) based on previous results.

Let Ak,i(L, t), ak,i(L, t), and Bk,i(L) denote the distribution function, the probability
density function, and the average value of the hit time, respectively. Furthermore, let
Ak,i(L, s) and ak,i(L, s) be transforms of the first two, i.e.,

Ak,i(L, s) =
∫ ∞

0
e−sy Ak,i(L, y)dy, (31)

ak,i(L, s) =
∫ ∞

0
e−syak,i(L, y)dy. (32)

From the definition of Pk,i(L, t), it follows immediately that

Ak,i(L, t) = P{αk,i(L) < t} = 1 − Pk,i(L, t). (33)
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which yields:

Bk,i(L) =
∫ ∞

0

(
1 − Ak,i(L, t)

)
dt =

∫ ∞

0
Pk,i(L, t)dt. (34)

Now, from (33) and (34) and the derivative theorem on the Laplace transform (see [58],
p. 54), we obtain the following conclusion:

Corollary 1. The transform of the distribution function of the time required to hit level L is

Ak,i(L, s) =
1
s
− pk,i(L, s), (35)

transform of its density is
ak,i(L, s) = 1 − spk,i(L, s), (36)

while the average time to hit L is
Bk,i(L) = pk,i(L, 0), (37)

where pk,i(L, s) is given in Theorem 1.

3.3. Overflow Characteristics

In all of the previous considerations, level L was an arbitrary level. Hence, all the
proven formulas are also valid for L = B. Therefore, we can easily obtain several overflow
characteristics by substituting L = B into the previous results.

Namely, the transform of the probability that in (0, t) there is no buffer overflow is

pk,i(B, s), (38)

the transform of the distribution function of the time to overflow is

1
s
− pk,i(B, s), (39)

the transform of its density is
1 − spk,i(B, s), (40)

and the average time to buffer overflow is

pk,i(B, 0), (41)

where pk,i(L, s) is given in Theorem 1.

3.4. Buffer Flush Time

Let ξk,i denote the first time when the buffer becomes empty given that initially the
queue was of size k > 0 and that the initial modulating state was i. Let Xk,i(t) be the tail of
the distribution of ξk,i, i.e.,

Xk,i(t) = P{ξk,i(t) ≥ t}. (42)

Apparently, when constructing equations for Xk,i(t), we have to separately treat the
cases k ≥ 2 and k = 1.

We begin with the former case. For 2 ≤ k ≤ B, we have

Xk,i(t) =
B−k

∑
v=0

m

∑
j=1

∫ t

0
Xk+v−1,j(t − y)Hi,j(k, v, y)dF(y) + 1 − F(t), 1 ≤ i ≤ m. (43)

Equation (43) is derived by conditioning upon the first transmission completion time,
y. Its first segment is devoted to the event y ≤ t. In this event, v new packets are deposited
in the buffer by the time y, and it must hold v ≤ B − k. No matter how many packets are
deposited in the buffer by y, its is not possible that the buffer will be empty at y. Therefore,
at y, the conditional probability that the buffer will be empty later than t is Xk+v−1,j(t − y).
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The second segment of (43) is devoted to the event y > t, which comes about with
probability 1 − F(t). In this event, the queue size at t will for sure be greater than or equal
to 2. Therefore, the buffer cannot be flushed by t in this event.

Denoting

xk,i(s) =
∫ ∞

0
e−syXk,i(y)dy, (44)

xk(s) = [xk,1(s), . . . , xk,m(s)]
T , (45)

f (s) =
∫ ∞

0
e−sy(1 − F(y))dy, (46)

and applying the convolution theorem to (43) yields

xk(s) =
B−k

∑
v=0

U(k, v, s)xk+v−1(s) + f (s) e, 2 ≤ k ≤ B. (47)

In the case k = 1, we have

X1,i(t) =
B−1

∑
v=1

m

∑
j=1

∫ t

0
Xv,j(t − y)Hi,j(1, v, y)dF(y) + 1 − F(t), 1 ≤ i ≤ m. (48)

Equation (48) is acquired in the same way as (43) and is almost identical. The only
difference is the summation over v, which in (43) begins from v = 0, whereas in (48) it
begins from v = 1. Indeed, the summation cannot begin from v = 0 when k = 1. If the
initial buffer occupancy is 1 and no new packets are deposited in the buffer by y, then the
buffer gets flushed at y, before t.

By using the convolution theorem on (48) we get

x1,i(s) =
B−1

∑
v=1

m

∑
j=1

ui,j(1, v, s)xv,j(s) + f (s), 1 ≤ i ≤ m. (49)

Applying matrices to (49) yields

x1(s) =
B−1

∑
v=1

U(1, v, s)xv(s) + f (s) e. (50)

In this way, we obtain a system of Bm linear Equations (47) and (50). Introducing a
vector of unknowns of size Bm

x(s) = [x1,1(s), . . . , xB,m(s), . . . , xB,1(s), . . . , xB,m(s)]
T , (51)

we may obtain the standard algebraic solution of this system, which is presented in the
subsequent theorem.

Theorem 2. The transform of the distribution of the amount of time needed to flush the buffer is:

x(s) = (L(s)− I)−1c(s), (52)

where
L(s) = [li,j(s)]i=1,...,B;j=1,...,B, (53)
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li,j(s) =


U(i, j, s), if i = 1, j < B,

U(i, j − i + 1, s), if 1 < i, i − 2 < j < B,

0, otherwise,

(54)

c(s) = − f (s) e. (55)

Let Zk,i denote the average time taken to flush the buffer, given that initially the queue
was of size and that the initial modulating state was i. We have

Zk,i =
∫ ∞

0
(1 − P{ξk,i(t) < t})dy =

∫ ∞

0
Xk,i(y)dy, (56)

which leads to the following corollary:

Corollary 2. The average time needed to flush the buffer starting from a queue of size k is

Zk,i = xk,i(0), (57)

where xk,i(0) is given in Theorem 2. Specifically, the average time needed to flush the buffer starting
from the full buffer is xB,i(0).

Before the numerical values can be obtained from the proven formulas, we need two
final components.

First, several of the obtained results are given in the form of the Laplace transform.
Therefore, they have to be inverted back to the time domain. There are a variety of
algorithms that can be employed for this task. In all of the numerical results in the next
section, the Zakian algorithm [59], is utilized.

Second, several of the obtained formulas are based on the characteristics Hi,j(k, v, t)
and qk(u, v) defined in the previous section. They are easy to obtain using the method
developed in [60]. Specifically, we have

qk(0, 0) = 1, qk(0, v) = 0, v ≥ 1, (58)

qk(u, 0) = (d(k))u, u ≥ 1, (59)

qk(u, v) = 0, min{B − k, u} < v, (60)

qk(u, v) = qk(u − 1, v)d(k) + qk+1(u − 1, v − 1)(1 − d(k)), u ≥ 1, v ≥ 1, (61)

and

H(k, v, s) = M(k, s)B(s)
∞

∑
u=0

R(u)
v

∑
n=1

qk(u, n)H(k + n, v − n, s), v ≥ 1, (62)

H(k, 0, s) = M(k, s)B(s), (63)

where
H(k, v, s) =

[
hi,j(k, v, s)

]
i=1,...,m;j=1,...,m, (64)

hi,j(k, v, s) =
∫ ∞

0
e−st Hi,j(k, v, y)dy, (65)

M(k, s) =

(
I − B(s)

∞

∑
u=0

qk(u, 0)R(u)

)−1

. (66)
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4. Examples

In the numeric examples, we utilize the subsequent parameters of the arrival process:

D0 =

 −0.41432418 0.00020600 0.00017250
0.00080333 −0.17568617 0.11229700
0.00160594 0.00321116 −0.11592928

, (67)

D2 =

 0.12177200 0.00096959 0.00004783
0.00056003 0.05614150 0.00084104
0.00025211 0.02497810 0.00935528

, (68)

D5 =

 0.12804300 0.00129245 0.00006378
0.00074737 0.00037369 0.00112106
0.00033582 0.03330180 0.00037369

, (69)

D7 =

 0.16006100 0.00161631 0.00007972
0.00093372 0.00046636 0.00140107
0.00041952 0.04162950 0.00046636

. (70)

These parameters were chosen to mimic strong correlation of packet traffic, with the
1-lag autcorrelation R1 = 0.32. Moreover, they were normalized to provide an arrival rate
of 1. The mean size of a batch is 4.66.

The buffer size is B = 32 packets. If not declared, the following active management
is administered:

d(i) =


0, for i < 20,
0.006(i − 20)2, for 20 ≤ i < 32,
1, for i ≥ 32.

(71)

Therefore, it is a square-type rejection function.
The packet transmission time has the following probability density:

F′(t) = 0.086154e−0.4t + 1.33385e−1.7t, t > 0, (72)

This distribution is also normalized so that the average transmission time is F = 1.
The standard deviation of the transmission time is 1.5.

In Figure 5, the probability that buffer occupancy is under L until t is depicted for a
few values of the critical level L. As we can see, this probability decreases quickly in time
and goes below 0.5 for a relatively small t, even if L is high. This effect can be explained by
the strong, positive autocorrelation of the packet arrival process.

At the end of this section, we will see a different picture in the case of a negative correlation.

0 20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

P0,1HL,tL

L=32

L=16

L=8

L=4

L=2

Figure 5. Probability that the size of the queue is under L in interval (0, t), for different values of L.
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In Figure 6, the distributions (densities) of the time to reach the critical level L are
shown for a few values of L. The average values for these distributions are 2.4, 3.4, 8.9,
29.7, and 107.5 for L = 2, L = 4, L = 8, L = 16, and L = 32, respectively. As could be
expected, for small L, the probability mass in Figure 6 is strongly concentrated around 0,
and the average value is very small. However, even for the full buffer (L = 32), the average
time to hit, 107.5, is considerably small. This again is a result of the very strong, positive
autocorrelation of the arrival process.

0 10 20 30 40 50
t

0.05

0.10

0.15

0.20

a0,1HL,tL

L=32

L=16

L=8

L=4

L=2

Figure 6. Density function of the time to cross level L, for different values of L.

Now, we will check how the level-crossing characteristics depend on the service speed
and parameterization of AQM (i.e., d(i)).

To achieve this, we will apply a scaled version of the transmission time, aϕ, where
a > 0 is a scaling parameter while ϕ is a random variable distributed according to (72).
Naturally, we have F = a. Therefore, scaling a from 0 to 1.5 will automatically scale the
average transmission time from 0 to 1.5.

Furthermore, we will use a parameter-dependent AQM mechanism in the form

d(i, C) = d(C + i), (73)

where C > 0 is a parameter, whereas function d(i) is defined in (71). The larger the value of
C, the more aggressive the active management is—it deletes more packets and for lower
queue sizes.

In Figure 7, the probability of not hitting level 25 by the time 100 s is depicted as a
function of F and C. As can be expected, the probability increases with C and decreases
with F. Furthermore, the dependence on F is gradual, while the dependence on C has a
sharp step. Indeed, for a sufficiently aggressive deletion policy, there is a high probability
of keeping the queue low.

Figure 7. Probability that the size of the queue is below L = 25 in interval (0, 100) depending on the
average transmission time, F, and the active management parameter, C.
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In Figure 8, the average time to flush the buffer is shown as a function of F and C.
As anticipated, this average time decreases with C and increases with F. No sharp steps
like the one seen in Figure 7 are present. This is easy to explain. Namely, when obtaining
Figure 8, it was assumed that the buffer was initially full, so every packet inside had already
passed the AQM mechanisms. Of course, this mechanism will still be applied to newly
arriving packets, but when the transmission process is fast, the average time to flush is
more affected by the packets already deposited in the buffer.

Figure 8. Average time needed to flush the buffer, depending on the average transmission time, F,
and the active management parameter, C.

4.1. Application Scenarios—Sample Solutions

Consider now a wireless sensor node utilizing the N-policy, as described in Section 1,
where the output radio interface is activated when the size of the queue reaches 30 packets.

From formula (57), we can directly obtain the average buffer flush time for given
values of F and C. For instance, if F = 0.3 and C = 0, then the average buffer flush time is
Z30,1 = 17.9. The energy consumption of the output radio interface in one flush cycle is
obviously proportional to this time. Therefore, we can easily compute this energy if we
know the energy consumption of an active radio per second.

Next, we may ask how long the idle period is, i.e., the period when the size of the
queue grows from 0 to 30. This can be computed from formula (37) using F = ∞, because
transmission is suspended during the idle period. For C = 0, the duration of the idle period
is B0,1(30) = 19.8.

Then, we can reverse the first problem mentioned and ask: what is the minimum
transmission rate during the active period that guarantees the average buffer flush time
(active period) to be no more than 100 s?

The solution to such a problem with C = 0 can be obtained by taking a vertical slice
of Figure 8 for C = 0. This slice is depicted in Figure 9. As is visible in Figure 9, the
maximum transmission time that provides ZB,1 ≤ 100 is Fmax = 0.604, which translates to
a minimum transmission rate of 1.65 packets/s.

In the previous problem, we optimized only the transmission rate to achieve a specific
goal. Obviously, we can simultaneously optimize C as well.

Namely, we can ask: which combinations of parameters (F, C) provide an average
flush time of no more than 100 s?

To solve such a problem, we horizontally cut Figure 8 at the level of 100.
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Figure 9. Average time needed to flush the buffer depending on the average packet transmission
time. C = 0.

The result is depicted in Figure 10. The grey area in Figure 10 represents the set of all
combinations of parameters (F, C) that provide an average buffer flush time below 100 s.

Figure 10. Combinations of parameters C and F which provide an average time required to flush the
buffer below 100 s (grey area).

4.2. Negative Autocorrelation

All of the previous calculations were carried out for the positively correlated traf-
fic, parameterized in (67)–(70). In the remaining calculations, we will use the following
traffic parameters:

D0 =

 −3.78786308 0.00186793 0.00155732
0.00111028 −0.24331756 0.15448543
0.00220899 0.00441555 −0.16055692

, (74)

D2 =

 0.01116435 0.93579975 0.00046591
0.00082677 0.00041293 0.07903847
0.03687142 0.00037182 0.00041293

, (75)

D5 =

 0.01260169 1.24763555 0.00062213
0.00110267 0.00055087 0.00165446
0.04915794 0.00049606 0.00055087

, (76)

D7 =

 0.01575349 1.55961752 0.00077744
0.00137856 0.00068882 0.00206830
0.06144994 0.00393258 0.00068882

. (77)
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For these parameters, the arrival rate is 1 again, the mean batch size is 4.66 again, but the
1-lag autcorrelation is R1 = −0.32. Therefore, we now have a strong negative autocorrelation.

All the remaining parameters of the system are unaltered. Therefore, comparing the
new results with the previous ones, we will see the raw effect of autocorrelation.

In Figure 11, the probability that the size of the queue is under L until t is depicted
for a few values of L. This figure is to be compared with Figure 5 procured for the
positive autocorrelation.

First of all, we see significant influence from autocorrelation; the figures differ sub-
stantially from each other. For high and moderate critical levels L, the probability of not
hitting L decreases much slower in Figure 11 than in Figure 5. However, for a low value of
L, this probability decreases much faster in Figure 11 than in Figure 5.

0 20 40 60 80 100
t

0.2

0.4

0.6

0.8

1.0

P0,1HL,tL

L=32

L=16

L=8

L=4

L=2

Figure 11. Probability that the size of the queue is under L in interval (0, t) for different values of L.
Negative autocorrelation.

In Figure 12, distributions (densities) of the time to hit L are shown for a few values of
L. The average values for distributions shown in Figure 12 are 0.3, 2.8, 13.1, 40.0, and 247.1
for L = 2, L = 4, L = 8, L = 16, and L = 32 respectively.

Figure 12 is to be compared with Figure 6, which shows the positive autocorrelation.
For small L, the probability mass in Figure 12 is more concentrated around 0 than in

Figure 6, while for high L, a reverse effect is seen. We see this effect also when comparing
the average hitting times. We have average hitting times of 0.3 vs. 2.4 (L = 2); 2.8 vs. 3.4
(L = 4); 13.1 vs. 8.9 (L = 8); 40.0 vs. 29.7 (L = 16); and 247.1 vs. 107.5 (L = 32). In each pair,
the first value is calculated for the negative autocorrelation, while the second is calculated
for the positive autocorrelation.

These results clearly indicate that neither positive nor negative autocorrelation result
in all the level-crossing characteristics being uniformly worse. In some cases, the positive
autocorrelation produces worse results (i.e., higher hitting probabilities, shorter hitting
times), while in other cases, the negative autocorrelation produces worse results. This
observation is rather surprising.
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a0,1HL,tL
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Figure 12. Density function of the time to cross level L for different values of L. Negative autocorrelation.
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So far, we have seen the effect of autocorrelation for different values of the critical
level L.

In Figure 13, we can see the effect of autocorrelation for different values of t. Namely,
in this figure, the probability that the size of the queue is kept below 4 in interval (0, t) is
depicted for both positive and negative autocorrelation.

We see again that neither positive nor negative autocorrelation prevails. For a small t,
positive autocorrelation induces a higher no-hit probability, while for a large t, the opposite
is true.

0 2 4 6 8 10
t

0.2

0.4

0.6

0.8

1.0

P0,1H4,tL

negative autocorrelation
positive autocorrelation
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0.4

0.6

0.8

1.0

P0,1H4,tL

negative autocorrelation
positive autocorrelation

Figure 13. Probability that the buffer occupancy is under 4 in (0, t) for positive and
negative autocorrelation.

In the next two figures, the dependence of the level-crossing characteristics on the
transmission speed and the active management parameterization is depicted for the nega-
tive autocorrelation.

In Figure 14, the probability that the size of the queue is kept below level 25 until
t = 100 is shown as a function of F and C. This figure is to be compared with Figure 7,
which was obtained for the positive autocorrelation. We see that the no-hit probability
decreases more slowly with F when the autocorrelation is negative. On the flip side, the
no-hit probability increases more quickly with C when the autocorrelation is negative.

Finally, the average buffer flush time as a function of F and C is depicted in Figure 15,
which can be compared with Figure 8, obtained for the positive autocorrelation.

Once more, we can see the tremendous effect of autocorrelation—the surfaces shown
in these figures differ greatly. Among other things, the whole surface in Figure 15 is convex,
while the surface in Figure 8 has convex and concave parts.

Figure 14. Probability that the size of the queue is under 25 in interval (0, 100) depending on the
average transmission time, F, and the active management parameter, C. Negative autocorrelation.
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Figure 15. Average time needed to flush the buffer, depending on the average transmission time, F,
and the active management parameter, C. Negative autocorrelation.

5. Conclusions

We derived several level-crossing metrics for a buffer with an AQM mechanism. These
metrics include the probability of keeping the queue size below a predefined level L, the
distribution of the time needed to hit level L, the buffer overflow probability, the average
time until overflow, the distribution of the buffer flush time, and its mean value.

Among other things, these metrics characterize the performance of the AQM mecha-
nism by assessing how effectively it prevents the queue of packets from growing too long
and how it assists in flushing the buffer quickly, if necessary.

A general modeling framework was used in derivations, with a general service time
distribution, general rejection function, and a powerful model of the arrival process.

Through numerical examples, we explored the influence of various model parameters
on different level-crossing metrics and demonstrated the utility of the obtained formulas.

A special emphasis was placed on the investigation of traffic autocorrelation impact
on the level-crossing characteristics. It was shown that autocorrelation significantly affects
these characteristics, with neither positive nor negative autocorrelation uniformly worsen-
ing all metrics. In some cases, positive autocorrelation results in higher hitting probabilities
and shorter hitting times, while in others, negative autocorrelation produces worse results.
This is a rather unexpected finding.

The obtained results are especially useful in the analysis of the energy efficiency of
a wireless sensor node equipped with the N-policy and AQM. Under such a policy, the
output radio is switched off until the queue of packets reaches a critical size.

As demonstrated in Section 4.1, the obtained formulas allow for computing the average
duration of the idle period and the average duration of the active period. Combining the
two, we can obtain the long-run fraction of time when the output ratio is on. Therefore, we
can compute its average energy consumption over time.

There are other possible directions for future work on the performance of a wireless
sensor node with the N-policy and AQM. The active and idle periods of this mechanism
are not the only two characteristics of interest. Equally important are, for instance, the
queuing delay and the packet loss ratio. These characteristics have not yet been found for a
buffer with the N-policy and AQM.

Other future work could be devoted to level-crossing characteristics for an AQM of a
different type. Here, we consider the popular type of AQM, which rejects packets based on
buffer occupancy. However, this is not the only possible type. In other AQMs, packets can
be rejected based on queuing latency, virtual queues, empty buffer events, and other factors.
Moreover, the rejection probability in some AQMs is updated at regular time intervals
rather than upon new packet arrivals.
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