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Abstract: Weather Report is an initiative from Weathernews Inc. to obtain sky images and current
weather conditions from the users of its weather app. This approach can provide supplementary
weather information to radar observations and can potentially improve the accuracy of forecasts
However, since the time and location of the contributed images are limited, gathering data from
different sources is also necessary. This study proposes a system that automatically submits weather
reports using a dash cam with communication capabilities and image recognition technology. This
system aims to provide detailed weather information by classifying rainfall intensities and cloud
formations from images captured via dash cams. In models for fine-grained image classification
tasks, there are very subtle differences between some classes and only a few samples per class.
Therefore, they tend to include irrelevant details, such as the background, during training, leading
to bias. One solution is to remove useless features from images by masking them using semantic
segmentation, and then train each masked dataset using EfficientNet, evaluating the resulting
accuracy. In the classification of rainfall intensity, the model utilizing the features of the entire
image achieved up to 92.61% accuracy, which is 2.84% higher compared to the model trained
specifically on road features. This outcome suggests the significance of considering information
from the whole image to determine rainfall intensity. Furthermore, analysis using the Grad-CAM
visualization technique revealed that classifiers trained on masked dash cam images particularly
focused on car headlights when classifying the rainfall intensity. For cloud type classification, the
model focusing solely on the sky region attained an accuracy of 68.61%, which is 3.16% higher than
that of the model trained on the entire image. This indicates that concentrating on the features
of clouds and the sky enables more accurate classification and that eliminating irrelevant areas
reduces misclassifications.

Keywords: weather report; dash cam; weather recognition; rainfall intensity; cloud type; image
classification; masking image; feature remove; deep learning; semantic segmentation

1. Introduction

Weather forecasting requires a large amount of current weather data. Weathernews Inc.
(WNI) has been working on “Weather Report”, in which users of Weathernews, a weather
app, are asked to report a single sky image and multiple weather variables. Using Weather
Report, WNI has achieved high-accuracy forecasting by detecting rain clouds, which
are precursors to thunderstorms, and obtaining rainfall intensities. WNI conducted a
verification by comparing the presence or absence of precipitation announced by WNI
and the Japan Meteorological Agency (JMA) at 5:00 AM on the same day with the actual
precipitation measured from 5:00 AM to 24:00 PM on that day [1]. Precipitation was defined
as rainfall of 1 mm or more, and less than 1 mm was defined as no precipitation. The
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target area consisted of the 56 regions designated by the Japan Meteorological Agency [2].
The verification metric used was the precipitation capture rate, which calculates the ratio
of cases where precipitation was observed to those where precipitation was predicted by
the forecast. As a result, the original forecasting system combining observation radar and
Weather Report has shown the potential to exceed the JMA benchmark in the national
average capture rate of precipitation in 2022 [3].

Recently, dash cams have acquired the ability to record images and can upload them
to the cloud via a network connection. Auto insurance companies use these cameras
to provide services that use AI to analyze and report an accident when an impact is
detected. Therefore, an approach is to propose a system that automatically submits
data to Weather Report using a dash cam with communication capabilities and image
recognition technology. The proposed system aims to provide detailed weather infor-
mation by classifying rainfall intensities and cloud formations from images captured via
dash cams.

One of the general challenges in image classification is the loss of accuracy due to
learning unnecessary information like background information. Aniraj et al. [4] confirmed
that removing the background information from an image and learning and evaluating
only the classification target can improve the classification accuracy. A method for feature
removal is suggested, which employs masking with semantic segmentation to enhance
classification accuracy. Semantic segmentation is a method of classifying each pixel in an
image into a category, and it is used to predict the sky and road areas in images. Here,
masking is applied to all areas except the predicted sky area and the predicted road area to
preprocess images for cloud type and rain intensity classification, respectively. The models
are trained and evaluated using the preprocessed data as described above. Moreover,
the effectiveness of the proposed method is verified based on the classification accuracy
using dash cam images.

1.1. Weather Report

Weather Report was devised to obtain images from the application users containing
sky and weather information and is shown in Figure 1. There are two sections in submitted
reports. First, it is necessary to take pictures of the sky, as these are essential for forecasting.
Second, the user chooses the current weather condition, the apparent temperature, and the
five-sense forecast from a list of options. The current weather condition is selected based
on the degree of shadows and the rainfall intensity.

The apparent temperature is selected based on the user’s perception of the temper-
ature, for example, “hot” or “cold”, while five-sense forecasts are selected based on the
user’s forecasting about the weather. For example, the user selects “I feel like it’s going
to rain” or “I feel like it’s going to be sunny” based on the weather conditions. WNI
operations personnel also use this information to determine which areas to focus on
for observation.

In addition to the sky images, more detailed information can be provided by adding
meteorological information. The weather report shown in Figure 1 was generated based
on sky images and meteorological information and is then submitted to WNI. WNI can
extract more detailed weather information than observational radar as they can forecast
the evolution of clouds and the intensity of rainfall in different areas.

To capture localized short-term weather phenomena such as squalls, it is important to
understand the current weather conditions using the Weather Report and minimize the
discrepancy between observations. In addition, since the amount of data is the most essen-
tial factor for accurate forecasting, Weather Report is a critical observational infrastructure.
However, since users are limited regarding the time at which and the place where they can
report data, it is necessary to obtain data from other sources.



Climate 2024, 12, 70 3 of 16

Figure 1. Example of a weather report. The user selects the current weather conditions, the perceived
temperature, and the five-sense forecast from a list of options.

1.2. Related Work
1.2.1. Weather Monitoring by Image Recognition

Sun et al. [5] aimed to improve the temporal and spatial resolution by monitoring
weather conditions from road surveillance camera images. A road weather dataset with
sunny, cloudy, rainy, snowy, and foggy weather labels was constructed using recorded
images from a road surveillance system in China. Their proposed model, the Deeply
Supervised Convolution Network, achieved a high classification accuracy of 96.81% on
the road weather dataset. In addition, they applied and verified the proposed model on
an actual road monitoring system. Comparing the classification data with recorded data
from weather stations, it was demonstrated that the proposed model could accurately
capture the weather conditions at a set distance from stations and the spatial resolution
was improved. Therefore, using image-based weather recognition in combination with
numerical data from observation sensors improves the reliability of observation data.

A higher spatial and temporal resolution is important because it can provide high-
quality weather forecasts. Since it has been proven that the temporal and spatial resolution
can be improved using roadway surveillance cameras, the same effect can be expected
using dash cams. Therefore, the purpose is to improve the temporal and spatial resolution
by using dash cam images to recognize weather conditions.

1.2.2. Feature Areas in Weather Recognition Using Images

Li et al. [6] proposed a weather classification model based on a three-channel convolu-
tional neural network (3C-CNN) based on ResNet50. This 3C-CNN learns global weather
features extracted from a whole image and sky and ground features extracted from the top
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and bottom of the image. The 3C-CNN was trained and evaluated on the WeatherDataset-6
(clear, cloudy, rainy, snowy, foggy, sandy conditions) [6] and two-class weather images
(clear, cloudy) [7]. They achieved a higher recognition accuracy than conventional CNN
models such as VGG16 when training only with all image features.

Ye et al. [8] considered that clouds are an essential indicator for weather forecasting
and conducted a classification of cloud images. The proposed model uses SVM to classify
cloud texture features extracted by CNN after encoding them with Fisher Vector. The
proposed approach is more effective in identifying the complex texture patterns of clouds
and achieves higher accuracy. Jinglin et al. [9] constructed 11 cloud image datasets, Cirrus
Cumulus Stratus Nimbus (CCSN), and classified cloud type using CNN models. They
trained a model using the CCSN dataset and visualized feature maps of each layer. The
results show that visual features such as the cloud shape and texture are important for
classifying cloud types.

Lin et al. [10] focused on the fact that not only the sky but also the road have a close
relationship with the weather, as ice and flooding have a significant impact on driving
safety. Therefore, they proposed a method of semantic segmentation model switching
according to weather conditions to predict road conditions. Their proposed method uses
four semantic segmentation models, where weights are stored separately for each condition
(sunny, cloudy, daytime rain, and night-time rain) to avoid cross-suppressing the weights in
a single model. After accurately identifying the current weather conditions using a weather
classification model, a weather-aware semantic segmentation model is used to predict the
road conditions. Their results suggest that the relationship between the weather and the
road conditions is critical for road condition predictions.

Based on these studies, it is clear that the visual features of the sky and road are
related and relevant in image-based weather recognition. The accuracy of the classification
model cannot be directly compared with that of the models presented in previous studies.
However, in this study, the rainfall intensity is classified based on road features, while the
cloud type is determined using sky features, with consideration of the interplay between
the sky and road conditions.

2. Methods
2.1. Proposal Automatic Weather Reporting System

WNI is used by Weather Report to provide supplemental weather information to radar
observations for forecasting purposes. Thus, this study propose an automatic weather
report submission system that utilizes a communicative dash cam and a deep learning-
based image recognizer. Figure 2 shows the flow of the automatic posting process. The
proposed system consists of six processes.

Figure 2. Flow of automatic reporting. The proposed system consists of six steps.
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2.1.1. Step 1 Automatic Image Acquisition

Dash cam can record video frames, date and time, location, speed, direction, and G-
sensor data. Meteorological institutes forecast the weather on a grid mesh of several
kilometers in length. The smaller the mesh, the more accurately cloud motion can be
captured. In order to match the 250 m mesh [11] resolution of WNI, the proposed system
will also automatically acquire and report data at 250 m intervals.

Japan has speed limits of 40 km/h and 60 km/h in urban and rural areas, respectively.
Therefore, the average vehicle speed is approximately 50 km/h (11 m/s). In order to take
pictures at intervals of 250 m, the system would have to take automatic pictures at intervals
of about 20 s.

2.1.2. Step 2 Selection of Sky Images

Although the system automatically captures images, it cannot always capture images
of the sky. It is difficult to determine the weather conditions in obstructed situations like
in tunnels because it is impossible to capture the sky adequately. Therefore, in a previous
study, semantic segmentation was proposed to predict the percentage of the sky occupied
in the image (sky occupancy) and to select appropriate images for prediction [12]. The
study uses the “BDD100K” dataset, which consists of dashcam images with weather labels
such as sunny, partly cloudy, overcast, and rainy. However, some images are assigned the
weather label “undefined”, such as images inside tunnels, where it is difficult to determine
the weather conditions based on visual information alone. The images were classified
into two groups: those for which weather conditions could be determined and those for
which the weather conditions were unpredictable, or “undefined”. When comparing the
sky occupancy in these two sets of images with that predicted by DeepLabv3+ [13], 90% of
the images for which it was difficult to determine the weather had a sky occupancy of less
than 20%. The results indicate that images with sky occupancy rates of 20% or higher are
suitable images for weather determination. In addition, dash cam images taken in Okinawa
Prefecture were clipped every 20 s to generate frame images. The results of the selection
of sky images using threshold values for these frame images showed that changes in the
sky and clouds due to weather changes could be captured. If the predicted sky occupancy
rate is greater than or higher than 20%, the system proceeds to Step 5; if it is less than 20%,
the process ends.

2.1.3. Step 3 Weather Recognition

The images selected in Step 2 are subjected to weather classification to predict whether
it will be “rainy” or “not rainy”. The weather classification model is trained using Efficient-
Net by labeling sunny, partially cloudy, and overcast as “not rainy” and rainy as “rainy” in
the BDD100K dataset. If the classification result is “rainy”, the system proceeds to Step 4; if
it is “not rainy”, the system proceeds to Step 5.

2.1.4. Step 4 Rainfall Intensity Level Classification

In conventional weather reports, users intuitively select the rainfall intensity based on
five onomatopoeic words shown in the first row of Table 1.WNI uses these five indicators
to determine the current intensity of rainfall. The user uses visual as well as auditory
information, i.e., rainfall sounds, to describe the rainfall intensity in detail. However, since
the proposed system uses only visual information from dash cam images for classification,
conventional detailed classification is difficult. In a previous study, Bartos et al. [14]
determined that vehicle wiper speeds (low, medium, and high) are positively correlated
with rainfall intensity, and they attempted to estimate the rainfall amount by combining a
prediction system with weather radar.

Therefore, in the proposed system, as shown in the second column of Table 1, the rain-
fall intensity is reduced from five to three levels based on the wiper rate, with WNI indices
of “light” (Potsu and Para), “medium” (Saa), and “heavy” (Zaza and Goo). The system
proceeds to Step 5 after classifying the rainfall intensity.
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Table 1. Comparison of WNI rainfall intensity indicators and those of the proposed system. First
column: the WNI indicators for rainfall intensity levels used in traditional weather reports. Second
column: the indicators of rainfall intensity levels used in the proposed system. Third column: the
amount of ten-minute rainfall corresponding to the WNI index. Fourth column: the criterion for the
user to determine the need for an umbrella and the difficulty of going outside.

WNI Indicators Proposal System Amount of Rainfall Criterion

potsupotsu
Light

Less than 1 mm No need for an umbrella

parapara 1∼2 mm Umbrellas are needed

sa Medium 2∼4 mm Ordinary rain

zaza
Heavy

4∼10 mm Need a large umbrella
Difficulty in going out

goo More than 10 mm
Downpour
Going Out Dangerous

2.1.5. Step 5 Cloud Type Classification

Observation of cloud development is essential in weather forecasting. In order to
predict the intensity, extent, and duration of rainfall, forecasters monitor the size, shape,
and motion of clouds through radar and satellite data. In the user’s report, the user
identifies the shadow conditions as “clear”, “faint”, or “none” and identifies the cloud
conditions at the location where their image was taken. However, since determining the
shadow conditions from dash cam images is difficult, there is concern about the accuracy
of the classification. Moreover, the amount and duration of the rainfall vary depending
on the cloud type. For example, cumulonimbus clouds lead to localized heavy rain and
thunderstorms such as guerrilla downpours, while turbulence clouds are thick gray clouds
that cover the entire sky and often cause long-lasting rainfall. Conventional weather reports
can confirm the development of clouds with shadow conditions classified as “none” but
cannot capture rainfall trends.

The purpose of this step is to classify cloud types from sky images and to under-
stand cloud development in more detail. The proposed system classifies clouds into three
types—cumulonimbus, stratus, and other clouds—and adds cloud-type information.

2.1.6. Step 6 Automatic Report

A weather report is created based on the image, time, and location obtained in Step 1
and the rainfall intensity and cloud type predicted in Steps 4 and 5. This weather report is
automatically edited via network communication.

In this paper, both the rainfall intensity and cloud type classification models described
in Steps 4 and 5 are trained and evaluated.

2.2. Feature Removal by Masking

Image classification via deep learning is the task of identifying the content of an image
by its labels, where the accuracy is dependent on the extracted features. However, images
contain background information that is not relevant to the classification task, which may
reduce the importance of appropriate features and weaken the decision-making power of
the classifier. Therefore, the accuracy can be improved by masking unnecessary regions
and learning only appropriate ones.

In dash cam images, as shown in Figure 3, the color and brightness of the sky and
road change depending on the weather conditions. Therefore, sky and road features are
critical for weather classification, and utilizing these features is essential for accuracy [6].
However, the appearance of the sky during rainfall events with different intensities is
less distinct than that of the sky in other weather conditions (clear, cloudy, and rainy). In
addition, consideration was given to learning the features of the road separately, given the
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relationship between weather and road conditions [5,10]. Therefore, masking is applied to
non-road areas to learn only road features.

Figure 3. Example of images for each weather label.

Experts have defined 10 types of clouds based on the cloud shape and top. Thus,
except for those of the sky, the considered features were unnecessary for classifying cloud
types. Therefore, masking is applied to non-sky areas to learn only sky features.

In this experiment, feature removal by masking using semantic segmentation is per-
formed on each dataset to improve the classification accuracy. Figure 4 shows the procedure
of creating a masked image. First, the required areas are predicted using semantic seg-
mentation and color mapped to white for the original image. For the rainfall intensity
dataset, the model predicts the road area, and for the cloud type dataset, it predicts the
sky area. Unnecessary areas are color mapped to black. Finally, using OpenCV, which is
an image processing library, the original and predicted images are combined to create a
masked image.

Figure 4. Procedure for creating masked images (upper: rainfall intensity dataset, lower: cloud dataset).

The pre-trained model with the BDD100K dataset [15] was used for automated driving
by Deeplabv3+ [13]. The intersection over union (IoU) serves as a crucial metric for
assessing the precision of semantic segmentation models. It quantifies the model’s accuracy
by dividing the overlap (intersection) between the predicted and ground truth areas by
their combined area (union). The goal is to achieve an IoU value as close to 100% as possible,
indicating a near-perfect segmentation accuracy. This model achieved an IoU of 94.41%
for sky-only and 94.43% for road-only BDD100K datasets, indicating that the model can
predict sky and road areas with sufficient accuracy.

Figure 5 shows the result of masking sky and road areas in each dataset. Figure 5a,c
show the successfully masked images, with only road and sky in the image. However,
some images were completely masked due to inaccurate predictions of road and sky
areas, as depicted in Figure 5b,d. The number of images that were unable to be masked
is 805/2700 for the rainfall intensity dataset and 63/786 for the cloud cover dataset. In
this section, this study propose a method to improve the image classification accuracy by
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learning only the features of road and sky areas through masking. It was concluded that
including the failed images in Figure 5b,d in the training dataset would not accurately
validate the feature removal performance by masking. Therefore, images from each dataset
that were unable to be masked were excluded, and only images where the road and sky are
visible were used to train the model.

Figure 5. Examples of masked images. (a) Rainfall intensity dataset: road mask, (b) rainfall intensity
dataset: failed road mask, (c) cloud type dataset: sky mask, (d) cloud type dataset: failed sky mask.

3. Experiments

Experiments were performed to evaluate the effectiveness of feature removal for dash
cam images using masking. A classification model was trained to predict the rainfall
intensity and cloud type from the masked images. Its accuracy was evaluated through a
comparison with the original images.

3.1. Rainfall Intensity Level Classification
3.1.1. Dataset

Although there is related research on rainfall estimation using images [16,17], there is
no open-source dataset consisting of dash cam images annotated with rainfall amounts.
A dataset was constructed using dash cam images and JMA observation records taken in
Okinawa Prefecture in 2022. The evaluation methodologies rely on the location and time of
images taken from dash cams, and the rainfall data published by JMA [18] were referenced
to label the images with the indices shown in the first column of Table 2. The temporal
resolution is every 10 min and the spatial resolution is 20 km to 30 km. Table 2 shows the
details of the rainfall intensity dataset and Figure 6 shows examples of images with each
rainfall intensity label. Additionally, out of the 2700 images collected, scenes where the sky
and road were not visible, or images where the masking described in Section 2.2 failed,
were excluded. The dataset consists of 604 images for light rain, 687 images for medium
rain, and 604 images for heavy rain, totaling 1895 images.

For data splitting, a ratio of 90% to 10% was used for the training and test sets. K-fold
cross-validation with k = 9 was applied to train and test the classifier. The performance
of the classifier was evaluated based on the average and maximum accuracies across the
nine iterations.
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Table 2. Details of the rainfall intensity dataset.

Class Amount of Rainfall Number of Images

light
Less than 1 mm

604
1∼2 mm

medium 2∼4 mm 687

heavy
4∼10 mm

604
More than 10 mm

Total 1895

Figure 6. Example images for each rainfall intensity label.

3.1.2. Model

In this experiment, models were trained on the dataset using EfficientNet [19], VGG16 [20],
ResNet50 [21], and Vision Transformer (ViT) [22], all of which are pre-trained models
provided by PyTorch [23–26]. EfficientNet is a CNN architecture and scaling method that
uniformly scales all depth, width, and resolution dimensions using composite coefficients.
EfficientNet achieves a high accuracy by balancing the scaling of these factors, which
reduces the computational complexity and the number of parameters. EfficientNet has
achieved high accuracy on various datasets, such as ImageNet, and is a general-purpose
method in image recognition. Therefore, high accuracy is also expected in this experiment.
The Adam optimizer was used with a learning rate of 5 × 10−4, a batch size of 8, and an
epoch number of 30. Training and testing were conducted on a computer equipped with
the Ubuntu 20.04.2 LTS OS, an Intel(R) Core(TM) i9-11900K CPU, NVIDIA GeForce RTX
3060 Ti GPU, and 8GB of memory.

3.1.3. Results and Discussion

The results from Table 3 offer a comprehensive overview of the performance of various
deep learning models on the classification of rainfall intensity. Average Acc is the average
of the classification accuracies for the nine times of the test data with k-fold cross-validation,
and the maximum Acc is the results of the model that achieved the highest classification
accuracies for the test data. EfficientNet stands out as the top performer, with an average
accuracy of 90.09% and a maximum accuracy of 92.61%. This underscores EfficientNet’s
superior ability to balance model scaling and complexity, which in turn translates to higher
precision in classifying rainfall intensity from the dataset provided. VGG16 and ResNet50,
both of which are established models in image recognition, show commendable perfor-
mance with average accuracies of 85.16% and 87.37%, and maximum accuracies of 90.34%
and 90.91%, respectively. Their respectable performance highlights their robustness and
the effectiveness of convolutional architectures for image-based classification tasks, despite
being surpassed by EfficientNet in this instance. ViT, on the other hand, demonstrates a
significantly lower accuracy with an average of 62.56% and a maximum of 67.05%. This
deviation can be attributed to ViT’s reliance on global dependencies between image patches,
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which might not be as effective for the specific task of rainfall intensity classification as it is
for other types of image classification tasks. The transformer model, being relatively novel
in image processing compared to CNN-based architectures, might require further tuning
or a different approach in preprocessing the data to better capture the relevant features for
this specific task. Given these findings, it is evident that EfficientNet’s architecture provides
a more suitable model for the rainfall intensity dataset, achieving the highest accuracy in
this experiment. Therefore, experiments in the masking process were conducted using
EfficientNet as the model.

Table 3. Comparison of rainfall intensity classification accuracy between EfficientNet, VGG16,
ResNet50, and ViT (average Acc, maximum Acc).

Model Average Acc (%) Max Acc (%)

EfficientNet 90.09 92.61

VGG16 85.16 90.34

ResNet50 87.37 90.91

ViT 62.56 67.05

Table 4 shows the results of the whole-area and road-area models for the test data.
The whole-area model learns the features of the entire image, while the road-area model
learns only road features. With the whole-area model achieving a 2.84% higher accuracy,
the average Acc values for the whole-area model and road-area model were 90.09% and
87.25%, respectively. This result indicates that the accuracy cannot be improved by only
using the features of the road. The F1-scores indicate that both models are able to classify
heavy rain with a high accuracy, but the accuracy tends to decrease for light and medium
rain. A possible reason for the lower accuracy for light and medium rain is the complexity
of the rainfall image near the boundary value. When the rainfall amount is around 2 mm,
which is the boundary value between light and medium rain, the differences in the size and
distribution of rain droplets are too small to be classified. These factors make it difficult to
accurately classify images with rainfall amounts near 2 mm in the light and medium rain
categories. Heavy rainfall has an upper limit of 4 mm or more and has a broader range of
rainfall than the other two categories, which makes it easier to distinguish the difference
in appearance. It is concluded that the model is less accurate for light and medium rain
compared to heavy rain.

Table 4. Comparison of accuracy between the whole-area model and the road-area model.

Model Average Acc (%) Max Acc (%)
F1-Score (%)

Light Medium Heavy

Original: whole-area model 90.09 92.61 88 91 99

Proposal: road-area model 87.25 89.2 84 84 100

Additionally, Grad-CAM [27] was utilized to explore the focus areas of the model.
Figure 7 shows the results of the visualization of the whole-area and road-area models.
GradCAM highlights the areas that were used as the basis for classification with warm
colors. The upper panel of Figure 7 shows that the tail lamps of a car are highlighted,
while the masked image in the lower panel of Figure 7 shows that the reflection of the
car lights on the road is highlighted. This result suggests that not only the road but also
the lights of the car are the basis for rainfall intensity classification. Rain is due to the
combination of moisture in clouds and the formation of large water droplets. The larger
the water droplets, the thicker and lower the clouds become, which reduces the amount
of sunlight transmitted through them. The image brightness decreases as the car lights
become more visible and the rainfall intensity increases, which is a significant feature
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of this model. Kanazawa et al. [28] attempted to predict rainfall intensities using pixel
values from surveillance camera images and a regression analysis. As a result, they found
a positive correlation between the rainfall intensity and luminance values. It seems that
as the rainfall intensity increases, the image gradually becomes hazier, and the luminance
value also increases because the difference between the brightness and darkness of the
image decreases. These results indicate a relationship between the rainfall intensity and
luminance values. Additionally, the road-area model did not accurately identify car lights
as a feature, resulting in a reduced accuracy; however, this model achieved an accuracy
of around 90%, indicating that the road area is a still significant feature for classifying
rainfall intensity.

Figure 7. Visualization of classification basis via Grad-CAM (upper: whole-area model, lower: road-
area model). Red boxes: focus area.

3.2. Cloud Type Classification
3.2.1. Dataset

The CCSN database [9], a cloud image dataset constructed by Jinglin et al, was utilized
in this study. This dataset consists of 10 types of cloud images defined by the World Meteo-
rological Organization, in addition to airplane clouds, totaling 2543 images. Table 5 shows
the details of the CCSN database. In the experiments, the dataset was reconstructed using
cumulonimbus (Cb) images, nimbostratus (Ns) images, and other images (the remaining
nine labels) from the CCSN database. Figure 8 shows example images for each label. The
cloud type dataset consists of 229 images for Cb clouds, 252 images for Ns clouds, and
242 images for other clouds, totaling 723 images. As described in Section 2.2, data that were
unable to be masked were removed from the dataset. Therefore, the number of Cd and Ns
images was less than the initial quantity. A ratio of 80% of the data was used as the train
data, with 20% allocated to the test data.

Similarly to rainfall intensity classification, the model was evaluated via k-fold cross-
validation. The performance of the classifier was evaluated based on the average and
maximum accuracies across the six iterations.
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Table 5. Details of the CCSN Database. The dataset used in the experiment was reconstructed using
Cb, Ns, and other images.

Cloud Name Symbol Initial Quantity Final Quantity Characteristics

Cumulonimbus Cb 242 229 Thunder cloud, icy, anvil-shaped top noted by heavy rain

Nimbostratus Ns 274 252 Rain cloud, grey cloud with a dark and a vague outline

Cirrus Ci 139

242

Feathery, wispy clouds of ice crystals

Cirrostratus Cs 287 Ice crystals, milky, translucent veil cloud

Cirrocumulus Cc 268 White flakes, fleecy clouds forming ripples

Altocumulus Ac 221 White or gray with shading and rounded clumps

Altostratus As 188 Mainly gray or bluish clouds, opaque and ice crystals

Cumulus Cu 182 Cauliflower shape, fluffy, associated by rain or snow showers

Stratocumulus Sc 340 Compound dark grey layer cloud rollers or banks

Stratus St 202 Low cloud, causes fog, drizzle, or fine precipitation

Contrails Ct 200 Aircraft engine exhausts generate these line-shaped clouds

Total 2543 723

Figure 8. Example images for each cloud label. Cb: cumulonimbus, Ns: nimbostratus, Other: Other
nine clouds.

3.2.2. Model

As was the case for rainfall intensity classification, models were trained on the dataset
using EfficientNet [19], VGG16 [20], ResNet50 [21], and Vision Transformer (ViT) [22], all
of which are pre-trained models provided by PyTorch [23–26]. The optimization process,
the learning rate, the batch size, and the number of epochs were all the same. Training and
testing were conducted on the same computer described in Section 3.1.2.

3.2.3. Results and Discussion

The results from Table 6 offer a comprehensive overview of the performance of various
deep learning models on the classification of cloud types. EfficientNet stands out as the top
performer, with an average accuracy of 65.45% and a maximum accuracy of 70.8%. In con-
trast, VGG16 and ResNet50, though established models, exhibit lower accuracies of 49.15%
and 63.75% (average), respectively. This disparity is primarily due to their lack of scalable
architecture, unlike EfficientNet, which adeptly balances model dimensions to enhance
classification precision. ViT’s performance, with an average accuracy of 55.35%, suggests
that, similar to its application in rainfall intensity classification, alternative preprocessing
or tuning may be essential for improving its effectiveness in cloud type classification. The
findings indicate EfficientNet’s architecture as optimal for cloud type dataset, achieving
the highest accuracy in this experiment. Therefore, experiments in the masking process
were conducted using EfficientNet as the model.
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Table 6. Comparison of cloud type classification accuracy between EfficientNet, VGG16, ResNet50,
and ViT (average Acc, maximum Acc).

Model Average Acc (%) Max Acc (%)

EfficientNet 65.45 70.8

VGG16 49.15 54.01

ResNet50 63.75 64.23

ViT 55.35 57.66

Table 7 shows the test data results for the whole-area and sky-area models. The whole-
area model learns the features of the entire image, while the sky-area model learns only
sky’s features. The average Acc is the average classification accuracy for the six iterations
of k-fold cross-validation on the test data, and the maximum Acc and F1-Score are the
highest classification accuracies for the test data, indicating the best-performing model. The
whole-area model achieved a 3.16% higher accuracy, with the average Acc of the whole-area
and sky-area models at 65.45% and 68.61%. Ns clouds are formed by the development of
Sc and St when contained in other clouds. They are similar in shape and color, as shown in
Figure 9. It was found that Ns clouds are more difficult to classify than Cb clouds.

The F1-Score for Cb in the whole-area model was 84%, which dropped to 80% when
masking was introduced. This decrease in score is due to its unique structural properties:
Cb extends vertically and occupies a significant portion of the image; compared to Ns and
others, it contains less unnecessary information, such as buildings and trees. Therefore,
the need for masking is not pronounced, and the loss of classification accuracy can be at-
tributed to the inadvertent removal of essential features. As shown in Figure 2, the selection
of sky images is based on a minimum of 20%, but a selection threshold should be set for
each cloud class.

Table 7. Comparison of accuracy between whole-area and sky-area models.

Model Average Acc (%) Max Acc (%)
F1-Score (%)

Cb Ns Other

Original: whole-area model 65.45 70.8 84 60 67

Proposal: sky-area model 68.61 72.26 80 69 69

Figure 9. Example images for Ns: nimbostratus clouds, Sc: stratocumulus clouds, and St: stra-
tus clouds.

Figure 10 shows the visualization results of Grad-CAM for the images predicted by
the whole-area and sky-area models. As shown in the visualization in the left part of
Figure 10, the whole-area model highlights the house in the right corner and misclassifies it.
However, the visualization in the lower panel highlights clouds as the subject because the
non-sky subject is masked. Thus, the sky-area model correctly classifies cloud types. The
Grad-CAM visualization results for each model show that the highlighted point is the same
for all models. For the whole-area model, about 40% (16/40) of the misclassified images
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highlighted non-clouds, while for the sky-area model, this value was about 29% (11/38).
The sky models were trained with only sky and cloud features, eliminating unnecessary
information via masking. Therefore, it is concluded that the sky-area model tends to use
visual features, such as the shape and color of clouds, as cues for classification, in contrast
to the whole-area model.

Figure 10. Visualization of classification basis via Grad-CAM (upper: whole-area model; lower:
sky-area model). Red boxes: focus area.

The pre-annotated, open-source CCSN database was used for this paper, as it was
determined that cloud-type annotation can be challenging for non-experts. Since the CCSN
database does not contain dash cam images, the accuracy of cloud classification from dash
cam images has not been evaluated. The proposed system can achieve the same level of
accuracy as the experimental results by masking the dash cam images to show only the sky.

In the proposed system, three images are taken per minute, which is due to the auto-
matic image capture interval being set to 20 s. Since the cloud type classification accuracy is
72.26%, it is believed that the system can adequately predict the cloud development status
if it can correctly classify and report two images per minute. Therefore, the accuracy of Ns
cloud classification is low, but the accuracy of cloud type classification is efficient in the
proposed system.

4. Conclusions

WNI has focused on improving the forecast accuracy of Weather Report using current
sky images and weather information. This study proposed an automatic weather report
submission system using communication-enabled dash cams and image recognition. The
rainfall intensity and cloud type were classified using dash cam images, and EfficientNet
was used to acquire weather information. Each model was trained with datasets from
which certain features were removed through a masking process to enhance accuracy.

For rainfall intensity classification, the focus was on road textures, and the model
was trained only on road features; the whole-area model achieved a 92.61% accuracy,
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which is 2.84% better than the road-area model. The F1-Score for heavy rain classifica-
tion was 99%. Early detection and information on heavy rainfall can be used in disaster
response for landslides and floods. Using the Grad-CAM visualization technique, it was
observed that the classifier, trained with masked dash cam images, focused on areas con-
taining car headlights during rainfall intensity classification. When classifying cloud types,
the model that focused only on the sky region achieved an accuracy of 68.61%, which is
3.16% higher than the model that was trained on the entire image. This indicates that
models focusing only on cloud and sky features produce better results than more gener-
alized approaches, and that ignoring irrelevant areas such as buildings can significantly
reduce misclassification events. However, it is necessary to verify the generality of the
proposed system due to the small size of the dataset and the fact that the images were not
from dash cams. In the future, an extended dataset will be created to include the angle
of view of dash cams. This dataset would be used to evaluate classification accuracy in
an environment that closely resembles the proposed system environment. To enhance
the efficiency of the masking process, test with the high-quality instance segmentation
model Segment Anything developed by Meta Research. This model archives high accu-
racy by incorporating bounding boxes, prompts, and images into its input. While the
current focus remains on classifying rainfall intensity levels, accurate real-time prediction
of rainfall necessitates a regression approach. To achieve this, a regression model will be
developed, utilizing a time-series dataset and incorporating an attention mechanism to
improve performance.
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