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Abstract: Periodic orbit families around asteroids serve as potential trajectories for space probes,
mining facilities, and deep space stations. Bifurcations of these families provide additional candidate
orbits for efficient trajectory design around asteroids. While various bifurcations of periodic orbit
families around asteroids have been extensively studied, period-multiplying bifurcations have
received less attention. This paper focuses on studying period-multiplying bifurcations of periodic
orbit families around asteroids. In particular, orbits with periods of approximately 7 and 17 times that
of the rotational period of asteroid 216 Kleopatra were computed. The computation of high-period
orbits provides insights into the numerical aspects of simulating long-duration trajectories around
asteroids. The previous literature uses single-shooting and multiple-shooting methods to compute
bifurcations of periodic orbit families around asteroids. Computational difficulties were encountered
while using the shooting methods to obtain period-multiplying bifurcations of periodic orbit families
around asteroids. This work used the Legendre–Gauss collocation method to compute period-
multiplying bifurcations around asteroids. This study recommends the use of collocation methods to
obtain long-duration orbits around asteroids when computational difficulties are encountered while
using shooting methods.
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1. Introduction

There is a growing interest in the study of orbital mechanics around asteroids, as asteroids
are rich sources of carbonaceous, silicate, and metallic resources. The profitable mining of
these resources requires a thorough understanding of the orbital mechanics around asteroids.
A crucial prerequisite for this understanding is an accurate gravitational field model, as the
fidelity of the simulated orbital dynamics is directly tied to the quality of the gravitational
model employed.

Numerous space missions have been conducted to visit various asteroids (for example,
NASA’s Shoemaker to asteroid 433 Eros [1], JAXA’s Hayabusa probe to asteroid (25143)
Itokawa [2], the Chinese National Space Administration’s (CNSA) Chang’e-2 to asteroid
(4179) Toutatis [3], the Rosetta mission to comet 67P [4], NASA’s OSIRIX-Rex to asteroid
Bennu [5], and JAXA’s Hayabusa 2 probe to asteroid 162173 Ryugu [6]). These missions
involved a close fly-by, landing on the asteroid’s surface, and asteroid surface material
sample return (see [7–9] for a detailed study on asteroid fly-by, landing, and sample return
missions), yielding extensive imaging of the asteroids. The collected image data were then
used to determine the asteroid’s polyhedral shape and density.

The polyhedral shape of an asteroid is the polyhedral approximation of the asteroid
obtained through the discretization of the asteroid’s surface into polygons. Fujiwara et al.
obtained asteroid 25143 Itokawa’s polyhedral shape using data from JAXA’s Hayabusa
mission [10] to 25143 Itokawa. Though space missions provide valuable data, it is not
feasible to conduct space missions to every asteroid for which the study of orbital mechanics
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is sought. Radar observations and lightcurve data are used to obtain the polyhedral shapes
of asteroids to which no space missions have been conducted. Ostro et al. constructed a
high-resolution polyhedral shape of asteroid 216 Kleopatra consisting of 4096 edges and
2048 triangular faces using data from radar observations [11]. Polyhedral models can also
be obtained from lightcurve inversion techniques [12]. The polyhedral shape is used to
construct the gravitational field of the asteroid.

Werner and Scheeres derived closed-form expressions for the gravitational fields of
bodies bounded by a polygonal surface and, in particular, computed the gravitational field
of asteroid 433 Eros by using its polyhedral shape [13]. The closed-form expressions in [13]
are known as the polyhedral model of gravitation for asteroids. The polyhedral model of
gravitation provides the required gravitational field information to study orbital motion
around asteroids.

The study of orbital mechanics around an asteroid involves the computation of tra-
jectories that a spacecraft would follow when the spacecraft is under the gravitational
influence of the asteroid. Since no closed-form solutions are available, trajectories are
computed by employing numerical integration schemes (see [14] for details on numerical
integration schemes used in astrodynamical problems).

The computation of periodic orbit families and their bifurcations is a current area
of focus in the study of orbital mechanics around asteroids, as these orbits serve as po-
tential trajectories to station spacecraft exploring an asteroid. A periodic orbit family is
a continuous set of periodic orbits parameterized by a single parameter [15]. Lara and
Peláez developed an analytic continuation technique to obtain periodic orbit families for
astrodynamical systems with three degrees of freedom [16]. The computation of periodic
orbits not only provides suitable trajectories for asteroid missions but also offers insights
into selecting appropriate numerical methods for studying orbital motion. For example,
Pal et al. showed showed that explicit Euler integration gave inaccurate results for periodic
trajectories involved in the relative motion of two spacecraft in the Earth’s gravitational
field and recommended the use of the Lindstedt–Poincare method for the accurate com-
putation of periodic trajectories [17]. Zeng and Liu used an indirect method based on the
optimal control framework to obtain periodic orbits around elongated asteroids [18]. Yu
et al. introduced the hierarchical grid search method to compute periodic orbits around
asteroids [19]. Using the hierarchical grid search method, Yu et al. computed 29 periodic
orbit families around the asteroid 216 Kleopatra [19]. Periodic orbits around various other
asteroids were also computed using the hierarchical grid search method [20–24].

The bifurcations of periodic orbit families around asteroids provide the structure of
periodic orbit families around the asteroid. The structure of periodic orbit families refers to
the relationship between the various computed periodic orbit families. These relationships
could be of two types. In the first type, two periodic orbit families are connected through a
common periodic orbit that is an extremum with respect to the period, making the families
part of a larger single periodic orbit family. In the second type of relationship, two periodic
orbit families are not part of a larger family but share a common periodic orbit.

The bifurcation of periodic orbit families helps locate points of extrema along the
periodic orbit family with respect to the period or energy; such kinds of bifurcations are
called first-kind bifurcations. The first kind of bifurcation of periodic orbit families around
asteroids has been well studied in the literature [25–27]. Ni et al. showed that multiple
first-kind bifurcations occur along a periodic orbit family around an asteroid [28]. The
bifurcation of periodic orbit families also helps to identify additional periodic orbit families;
such kinds of bifurcations are called second-kind bifurcations. Jiang and Baoyin studied
tangent bifurcations in the gravitational field of asteroids 216 Kleopatra and 433 Eros [29].
Tangent bifurcations are a particular type of second-kind bifurcation.

Period-multiplying bifurcations are another type of second-kind bifurcation. Period-
multiplying bifurcations of periodic orbit families are bifurcations in which the periodic
orbit family intersecting the bifurcating orbit has approximately integer multiples of periods
of the other periodic orbit family that contains the bifurcating orbit. Vanderbauwhede
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proved that period-multiplying bifurcations of any integer multiple exist for a periodic orbit
family in Hamiltonian systems [30]. Li et al. computed period-multiplying bifurcations of
periodic orbit families in the Jupiter–Ganymede system using the shooting method [31].
The computed period-multiplying orbits were leveraged for low-energy transfers within
the Jupiter–Ganymede system. Period-multiplying bifurcations of periodic orbit families
provide more candidates for trajectory design.

The numerical computation of period-multiplying bifurcations of periodic orbit fam-
ilies is difficult because of the large time-scale separation in the underlying dynamics.
Pellegrini and Russell studied the computation of long-period periodic orbits in the Earth–
Moon gravitational system and recommended appropriate numerical integration schemes
to compute the trajectories accurately [32]. On the other hand, the literature has paid
little attention to period-multiplying bifurcations around asteroids. Liu et al. were able to
locate period-doubling bifurcations around asteroids Bennu and Steins [26]. Brown and
Scheeres located and computed period-multiplying bifurcations up to integer five around
the asteroid Bennu [33]. However, computational issues were reported while using the
shooting methods to obtain period-multiplying bifurcations in certain locations, and period-
multiplying bifurcations of integers greater than five were neither located nor computed.
The location and computation of period-multiplying bifurcations of larger integers can
provide more periodic orbits that can be leveraged for trajectory design. Their geometry
and stability properties can make them more attractive than the parent periodic orbit family
that they bifurcated from.

This paper aims to locate and compute period-multiplying bifurcations of periodic
orbit families around asteroids. The vertical orbit family emanating from one of the equi-
librium points of 216 Kleopatra [34] is taken as the parent periodic orbit family for which
period-multiplying bifurcations are sought. The parent periodic orbit family is computed
through the shooting method. Period-multiplying bifurcations along the parent periodic
orbit family are located. The shooting method is predominantly used in the existing litera-
ture for computing periodic orbit families around asteroids [35]. However, it is found in
this work that the shooting methods fail to compute period-multiplying bifurcations of
periodic orbit families around asteroids accurately. This work uses the Legendre–Gauss col-
location method to compute the period-multiplying bifurcations of periodic orbit families
around asteroids.

The study in this paper involves the asteroid 216 Kleopatra, but the methods applied
in this paper are general and can be applied to any other asteroid. Kleopatra was chosen as
it is representative of a large number of naturally elongated asteroids in the solar system,
like 433 Eros, 4769 Castalia, 243 Ida, and 4179 Toutatis [19,36]. The choice of Kleopatra is
justified by the cohesive strength that helps it to avoid body disruption, making Kleopatra
an ideal candidate for space missions [36]. Radar observations of Kleopatra and subsequent
estimates from radar observations show that the interior of Kleopatra has an unconsolidated
rubber pile structure [11], supporting the findings that Kleopatra’s cohesive strength avoids
body disruptions [36]. The previous literature [33] studied period-multiplying bifurcations
around much smaller and nearly axisymmetrical asteroid Bennu. Period-multiplying
bifurcations of periodic orbit families around larger naturally elongated asteroids have not
been studied in the literature.

The following are the objectives of this paper: (1) The computation of the vertical
periodic orbit family emanating from an equilibrium point of Kleopatra. (2) Locating
period-multiplying bifurcations in the computed vertical periodic orbit family. (3) Using the
Legendre–Gauss collocation scheme to compute the located period-multiplying bifurcations.

The following are the methodologies used in this paper: (1) The shooting method is used
to obtain the vertical periodic orbit family. (2) High fidelity numerical integrators—MATLAB’s
ode-78 or ode-89—are used in the shooting methods. (3) The Legendre–Gauss collocation
scheme [37] is used to compute the period-multiplying bifurcations of the vertical periodic
orbit family.
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The following are the contributions of the paper: (1) The computation of high-period
orbits through period-multiplying bifurcations of periodic orbit families around aster-
oids. Previous literature using the hierarchical grid search method computed periodic
orbits with a maximum period of 3 times the rotational period of asteroids [19]. This
work found periodic orbits of periods 6 and 13 times the rotational period of the asteroid
Kleopatra by computing period 7- and period 17-multiplying bifurcations of the vertical
periodic orbit family around the asteroid Kleopatra. (2) The demonstration of the success
of collocation schemes in studying orbital mechanics around asteroids, making collocation
schemes a reliable method to study orbital mechanics around asteroids when shooting
methods fail. Previous literature uses shooting methods to compute periodic orbit fami-
lies (see, e.g., [19,29]). Computational difficulties were reported when using the shooting
method to obtain period-multiplying bifurcations of periodic orbit families around asteroid
Bennu [33]. This work used the Legendre–Gauss collocation method as an alternative to
the shooting method to compute period-multiplying bifurcations of periodic orbit families
around asteroids.

Previous literature only studied tangent bifurcations of periodic orbits around as-
teroids (see [25–29]). Period-multiplying bifurcations of periodic orbit families around
asteroids have only been gaining interest recently. Brown and Scheeres could only compute
period-multiplying bifurcations of integer five and less [33]. Computational difficulties
were a reason for the failure to compute higher period-multiplying bifurcations. This
paper proposes the Legendre–Gauss collocation scheme to overcome the computational
difficulties in computing higher period-multiplying bifurcations. As an application of the
proposed methodology, period 7 and period 17 bifurcations of the vertical periodic orbit
family were successfully computed using the Legendre–Gauss collocation scheme. This
paper demonstrates the successful application of collocation techniques to solve orbital
mechanics problems around asteroids. Specifically, the Legendre–Gauss collocation method
is proposed as an alternative to shooting methods to obtain long-duration orbits around
asteroids when computational difficulties are encountered while using shooting methods.

2. Governing Equations

The equation governing the motion of spacecraft in the gravitational field of a uni-
formly rotating asteroid is given in the body-fixed frame of the asteroid as

r̈ + 2ω × ṙ = ∇U − ω × (ω × r) (1)

where ω and U are the angular velocity and the gravitational potential of the asteroid,
respectively. In Equation (1), r represents the position vector of the spacecraft with respect
to the center of mass of the asteroid, and the derivatives are with respect to the body-fixed
frame. The ordinary differential equation (Equation (1)) is conservative and autonomous.

Equation (1) can be written in the following form by defining the effective potential of
the rotating asteroid:

r̈ + 2ω × ṙ = ∇V (2)

where V = −1
2
(ω × r) · (ω × r) + U is the effective potential of the asteroid. The energy

or the Jacobi constant of the governing equation (Equation (2)) is given as follows:

C = V(r) +
1
2

ṙ · ṙ (3)

The gravitational potential U of an asteroid and its corresponding gradients can
be obtained through the polyhedral model of gravitation. Towards this, the asteroid is
approximated as a homogeneous polyhedron. The gravitational field of the resulting
homogeneous polyhedron represents the asteroid’s gravitational field. The work in this
paper uses the gravitational potential of a homogeneous polyhedron with triangular facets.
The expressions for the gravitational potential, its gradient, and double gradient can be
found in [13].
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This paper uses the asteroid Kleopatra as an example to demonstrate the computations
of orbital motion around asteroids. The asteroid Kleopatra represents a large group of
prolate dumb-like-shaped asteroids in the solar system [19]. Kleopatra represents a large
number of naturally elongated asteroids whose gravitational field cannot be accurately
computed by the classical spherical harmonics model [36]. The classical spherical harmonics
model diverges when applied to compute the gravitational field near the surface of naturally
elongated asteroids. Previous literature [33] computed period-multiplying bifurcations
of periodic orbit families around the small asteroid Bennu. This work chose a much
larger asteroid Kleopatra to study period-multiplying bifurcations. The high-resolution
polyhedral model of Kleopatra derived in [11] consists of 4092 edges and 2048 triangular
faces. The work in this paper used this high-resolution model for Kleopatra.

3. Equilibrium Points and Their Stability

Equilibrium points are the most straightforward possible solutions to Equation (1)—
the equation governing the motion of spacecraft around a rotating asteroid. Equilibrium
points are stationary solutions given by the zeros of the effective gravitational field (right-
hand side of Equation (1)) [19]. Zeng et al. and Wen and Zeng computed equilibrium
points around asteroids using the finite element model and the dipole segment model,
respectively [38,39].

3.1. Computation of Equilibrium Points

The equilibrium points of the governing equation (Equation (1)) are obtained by
denoting ṙ = 0 and r̈ = 0 and solving the following resulting equation for r.

ω × (ω × r) = −∇U(r) (4)

No closed-form solutions exist to Equation (4). The non-linear equation has multiple
solutions [40]. Wang et al. calculated the total number of equilibrium points for several
asteroids [40]. Specifically, for Kleopatra, four equilibrium points are outside the body
and three are inside it. Jiang calculated the position of these four exterior equilibrium
points using Newton’s iteration method [34]. The initial locations of the equilibrium points
in [34] are calculated as the critical points of the effective potential in the equatorial plane
of Kleopatra, since Kleopatra is nearly symmetric about the equatorial plane [34]. This
method fails for other asteroids that are equatorially asymmetrical (e.g., 25143 Itokawa).
This paper used particle swarm optimization (PSO) [41] to obtain the approximate locations
of the equilibrium points of Kleopatra. An iterative root-solving method was then used to
correct the obtained location of multiple solutions to the required tolerance.

3.2. Stability of Equilibrium Points

The stability of an equilibrium point is the behavior of solutions to Equation (1) that
lie close to the equilibrium point. It can be determined by inspecting the solutions of the
linear variational equation of Equation (1) about the equilibrium point.

Let v = [r, ṙ]T, where r = [x, y, z]T and ṙ = [ẋ, ẏ, ż]T. The second-order govern-
ing equation of motion in Equation (1) is written more compactly as

v̇ =

 0 I

−ΩΩ −2Ω

v +

 0

∇U

 (5)

where 0 and I are the zero and identity matrices of order three, respectively, and Ω is the
cross-product matrix containing the body-fixed frame components of the angular velocity
of the asteroid.
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The linear variational equation about an equilibrium point of the non-linear Equation (5) is

∆v̇ =

 0 I

−ΩΩ −∇∇U(xeq, yeq, zeq) −2Ω

∆v (6)

where ∇∇U(xeq, yeq, zeq) is the Hessian matrix of the gravitational potential evaluated
at an equilibrium point. The matrix on the right-hand side of Equation (6) is called the
system matrix.

The eigenspectra of the linear system of differential equation (Equation (6)) are linear
invariant subspaces corresponding to the eigenvalues of the system matrix. The center
subspaces are the eigenspaces corresponding to pairs of purely imaginary eigenvalues
of the system matrix. This work used the center subspaces of the equilibrium points to
generate small-amplitude periodic orbits around equilibrium points.

4. Periodic Orbits

Consider a system of autonomous ordinary differential equations

v̇ = f (v) (7)

where X ∈ R6 and f : R6 → R6 is smooth.
The following equations form the initial value problem to the above differential equation.

v̇ = f (v) (8)

v(t0) = v0

The solution to Equation (8) is denoted as v(t, v0), that is,
∂

∂t
v(t, v0) = f (v(t, v0)) and

v(t0, v0) = v0. v0 is called the initial condition and the solution v(t, v0) is called the
trajectory or orbit of v0. The smooth vector field f produces solutions to the initial value
problem that are unique and smooth with respect to the initial condition [42]. A periodic
trajectory is one for which there exists a T such that v(t + T, v0) = v(t, v0) for all t.

A conserved quantity for the differential equation (Equation (7)) is the smooth func-

tion C : R6 → R that satisfies
d
dt

C(v(t, v0)) = 0 for all solutions v(t, v0) to Equation (8).
Differential equations for which a conserved quantity exists are called conservative systems.
This conserved quantity for the differential equation (Equation (5)) is called the energy or
the Jacobi constant. In addition to being conservative and autonomous, Equation (5) is also
Hamiltonian. A Hamiltonian system is a conservative system in which the force can be
expressed as the gradient of a scalar potential, and the scalar potential depends only on the
position variables. For Equation (5), the energy or Jacobi constant is given by Equation (3),
and the effective potential of the asteroid gives the scalar potential. Periodic orbits in
Hamiltonian systems are always part of a two-dimensional surface; the two-dimensional
surface is a subset of R6 and is filled with periodic trajectories [15].

4.1. Continuation of Periodic Orbits

The existence and computation of periodic orbit families in Hamiltonian systems are
well studied (see [15] for a detailed discussion). Here, in this section, a brief review is
presented. A periodic point v0 ∈ R6 is any point that satisfies for a minimal T > 0 (called
the period) the relation v(t + T, v0) = v(t, v0) for all t. An immediate observation is that all
points belonging to a periodic trajectory are periodic points corresponding to that particular
periodic trajectory. One such periodic point is chosen, and that unique point represents
the periodic orbit. A phase condition ensures that the chosen point is representative of the
periodic orbit and not any other point that lies on the periodic orbit.
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Boundary value formulation:
The computation of periodic orbit families is equivalent to the continuation of a

two-point boundary value problem described below.
A well-posed boundary value problem (BVP) is formulated by adding an unfolding

parameter to Equation (7). The unfolding parameter embeds the original conservative
differential equation into an extended one-dimensional family of dissipative systems. The
resultant set of equations are

u̇ = T f (u) + λ∇C(u) (9)

u(1) = u(0)

where Equation (7) is non-dimensionalized with respect to time to give T the period as a
free variable. Here, λ is the unfolding parameter. The unfolding parameter is added as an
additional parameter to ensure the well-posedness of the following equations used for the
continuation of periodic orbit families.

p = u(1; p, T, λ) (10)

(p − p0) · (T0 f (p0)) = 0

Here, u(t; p, T, λ) is the general solution to the first equation of Equation (9) with the initial
condition p and parameters T and λ. The first equation of Equation (10) represents the
periodicity condition. The second equation is the Poincare orthogonality phase condition
to ensure the uniqueness of the representative periodic point for a period orbit. p0 is the
computed or known periodic point and T0 is its corresponding period. Equation (10) is
solved for the unknowns p, T, and λ.

A solution to Equation (10) exists if and only if λ = 0, that is, periodic solutions exist
only for the original conservative system (λ = 0) and not for dissipative systems (λ ̸= 0) [15].
Hence, the solutions of Equation (9) are indeed periodic solutions of Equation (7).

The variational equation about a periodic orbit is as follows:

V̇ = T0D f (u(t, p0, T0))V , V(0) = I (11)

where D f (u(t, p0, T0)) =
∂ f
∂u

(u(t, p0, T0)) is the Jacobian of the vector field f evaluated
along the trajectory.

The solution to the above equation evaluated at t = 1, that is, M = V(1), is the
monodromy matrix of the periodic orbit u(t, p0, T0) with period T0. The monodromy
matrix can be shown to be

M =
∂u
∂p

(1, p0, T0) (12)

by deriving the variational equation of (9) about the periodic orbit u(t, p0, T0).
The monodromy matrix has two purposes. First, its eigenspectrum decides the sta-

bility of the periodic trajectory. Second, it governs the well-posedness of continuation of
the boundary value problem Equation (9). The monodromy matrix has +1 as an eigen-
value with a minimum algebraic multiplicity of two. Furthermore, the monodromy matrix
is a symplectic matrix. Hence, the eigenspectrum of a monodromy matrix is given by

{1, 1, ρ1,
1
ρ1

, ρ2,
1
ρ2

}. Here, ρ1 and ρ2 are either both real values or they are complex con-

jugates of one another. Accordingly, the monodromy matrix’s possible eigenspectra are
limited. All possible eigenspectra of the monodromy matrix can be found in [27]. The
possible eigenspectra, however, only hold for six-dimensional systems (a single spacecraft
influenced by the gravitational field of an asteroid). The periodic orbit is stable when all the
eigenvalues of the monodromy matrix have an absolute value equal to one. The periodic
orbit is unstable if at least one eigenvalue of the monodromy matrix has an absolute value
greater than one.
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The following theorem ensures the well-posedness of Equation (10).

Theorem 1 (Existence and uniqueness of periodic orbit families). Let u(t, p0, T0) be a solution
to Equation (9) whose monodromy matrix has a unity eigenvalue with a geometric multiplicity of
dimension one. Then, a unique solution curve exists to Equation (10) along which λ = 0.

The proof of the above theorem can be found in [15].
Pseudo arc-length continuation is used to solve Equation (10) to obtain the one-

dimensional curve of periodic solutions:

p = u(1; p, T, λ)

(p − p) · (T0 f (p0) + λ0∇C(p0)) = 0 (13)

(p − p0) · (ṗ0) + (T − T0)Ṫ0 + (λ − λ0)λ̇0 − ∆s = 0

where (p0, T0, λ0) is a known periodic point along the curve of periodic points, and ∆s
is the continuation step-size. (p0

′, T0
′, λ0

′) is the tangent at (p0, T0, λ0) to the curve of
periodic solutions.

4.2. Small-Amplitude Periodic Orbits

As explained in the previous section, the continuation of periodic orbits requires a
known periodic trajectory. The center manifold theorem states that a locally unique center
manifold exists near an equilibrium point with pairs of purely imaginary eigenvalues.
The manifold is the same dimension as the linear center subspace. The linear center
subspace is the tangent space to the center manifold at the equilibrium point. The system
matrix in Equation (6) has non-resonant, purely imaginary eigenvalues [40]. The Lyapunov
center theorem states that the center manifold of the equilibrium point contains local one-
dimensional periodic orbit families equal in number to that of pairs of non-resonant, purely
imaginary eigenvalues. Such local periodic orbit families near an equilibrium point are
well approximated by closed-form solutions of the linear system (see [34]) as follows:

s(t) = Xeq + (d + jl)ejκt + (d − jl)e−jκt (14)

where κ ∈ R+, d + jl, and d − jl are the basis vectors for the eigenspace corresponding to
eigenvalues ejκ and e−jκ , respectively. Then, v(t, p0) = s(t) with p0 = Xeq + 2u is taken as
the starting periodic orbit to begin the continuation.

4.3. Global Periodic Orbits

The local periodic orbit families can be extended to obtain global periodic orbits
through continuation. These global periodic orbits eventually exit the small neighborhood
of an equilibrium point and cover a much larger region around the asteroid. The following
theorem gives sufficient conditions for parametrizing the periodic orbit family by the
energy or the time period.

Theorem 2 (Parametrizing periodic orbit families by energy or the time period). Let u0(t)
be a periodic orbit of Equation (9) whose monodromy matrix has a unity eigenvalue with algebraic
multiplicity two. Then, the family of periodic solutions through u0(t) are parametrizable by the
energy or the time period in the vicinity of u0(t).

This means that when the algebraic multiplicity of the unity eigenvalue of the mon-
odromy matrix is greater than two, an extremum point with respect to the energy or the
time period is possible. The energy or the time period on either side of the point of interest
is computed to confirm that it is indeed an extremum point. During the continuation of
small-amplitude periodic orbit families, these extremum points are found by keeping track
of the eigenvalues of the monodromy matrix of the periodic orbit members of the family as
the continuation progresses.
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5. Bifurcations of Periodic Orbit Families

The eigenspectrum of the monodromy matrix of periodic orbit members of the periodic
orbit family governs the occurrence and the type of bifurcation that occur in the periodic
orbit family. When the algebraic multiplicity of the unity eigenvalue of the monodromy
matrix is greater than two, there is a possibility of the periodic point being the bifurcation
point of the first kind; that is, it is an extremum point with respect to the Jacobi constant.
When the geometric multiplicity of the unity eigenvalue of the monodromy matrix is two,
the periodic point becomes the bifurcation point of the second kind, and an additional
curve of periodic points intersects with the original curve at the bifurcation point.

The first kind of bifurcation is when the stability of periodic orbit members of the
family changes along the bifurcation point with no additional families emanating from the
bifurcation point. These kinds of points are also possible extremum points with respect to
energy as the sufficient conditions of Theorem 2 fail. The second kind of bifurcation is when
the stability transition is accompanied by additional periodic orbit families intersecting the
computed periodic orbit family at the bifurcation point. For this to happen, the conditions of
Theorem 1 must fail; that is, the unity eigenvalues no longer have a geometric multiplicity of
one. Due to the properties of the monodromy matrix (the monodromy matrix is symplectic),
the pathways to the stability transition are limited in number, and all possible stability
transitions are listed in [27].

In this paper, multiple bifurcation points of the first kind were found to occur as the
continuation of the vertical periodic orbit family progressed.

5.1. Period-Multiplying Bifurcation

If (p0, T0) is a solution to Equation (10), then (p0, kT0, 0), ∀ k ∈ Z is also a solution.
The continuation of the solution (p0, kT0, 0), ∀ k ∈ Z yields the same curve of periodic
solutions continued from (p0, T0, 0) but with the members of the family being traversed
k times. This means that if (p(s), T(s), 0), s ∈ [−ϵ, ϵ] for some ϵ > 0 is the solution
curve obtained by continuation from (p0, T0, 0), then (p(s), kT(s), 0) is the solution curve
obtained by continuation from (p0, kT0, 0). The relationship between the monodromy
matrices of the members of the family, when traversed once and traversed k times, is
as follows.

∂u(1, p0, kT0, 0)
∂p

=

(
∂u(1, p0, T0, 0)

∂p

)k

(15)

The kth period-multiplying bifurcation consists of finding periodic solution curves with
a period nearly k times that of the original family and intersecting the original family
at (p0, kT0, 0). These bifurcations appear as the bifurcations of the second kind of the
Equation (10), with the curve of periodic solutions being traversed k times, that is, with
T0 being replaced with kT0. Using Equation (15), a kth period-multiplying bifurcation
is possible at periodic points with kth roots of unity as eigenvalues of its monodromy
matrix. The following theorem from [30] gives sufficient conditions for the occurrence
of period-multiplying bifurcations at periodic points having eigenvalues that are roots
of unity.

Theorem 3 (Period-multiplying bifurcations). If a periodic point’s monodromy matrix has a pair

of simple roots of unity (the pair of roots of unity is of the form exp
(

2π ja
b

)
with gcd(a, b) = 1),

and, further, it has no other roots of unity, then the periodic point is part of another family that has
periods approximately b times the period of the parent family. The bifurcation is called an integer b
period-multiplying bifurcation.

During the continuation of the parent family, the unit circle eigenvalues of the mon-
odromy matrix of the periodic orbit members are monitored for the satisfaction of the
criteria provided in Theorem 3.
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5.2. Branch-Switching

Branch-switching refers to the computation of the new branch of periodic solutions that
intersects the original branch of periodic solutions at the bifurcation point. Let (p0, T0, 0)
be a period-multiplying bifurcation point of Equation (9). Let the original branch of
solutions be (p(s), T(s), 0), s ∈ [−ϵ, ϵ] with (p(0), T(0), 0) = (p0, T0, 0). This means that
(p(s), T(s), 0), s ∈ [−ϵ, ϵ] are solutions to Equation (13). Branch-switching computes
the intersecting branch of solutions (q(s), B(s), 0), s ∈ [−ϵ, ϵ] such that (q(0), B(0), 0) =
(p0, T0, 0) and (q(s1), B(s1), 0) ̸= (p(s2), T(s2), 0), ∀ s1, s2 ∈ [−ϵ, ϵ] and s1, s2 ̸= 0.

In this work, fixed-parameter branch-switching was used to switch over to the period-
multiplied branch of solutions. In fixed-parameter branch-switching, any two of the n + 2
components of the variables (p, T, λ) are chosen to parametrize the curve of solutions
through the bifurcation point. Without the loss of generality, let p1

0 and p3
0 be the cho-

sen components, with p0 =
[
p1

0 p2
0 p3

0 p4
0 p5

0 p6
0
]T . Then, the following equations are

solved to obtain a member of the new branch of periodic solutions that intersect the
original branch:

q = Z(1; q, B, λ)

(q − p0) · (T0 f (p0) + λ∇C(q)) = 0 (16)

q1 = p1
0 + ∆s

q3 = p3
0

Whenever ∆s ̸= 0, Equation (16) gives solutions on different branches. The choice of ∆s
requires the trial and error solving of Equation (16).

Once a member of the new curve of solutions is computed through fixed-parameter
branch-switching, the new curve of solutions is obtained by continuation from the com-
puted member.

6. Numerical Techniques to Solve BVP

Solutions to Equation (13) requires the computation of state u(1; p̄, T, λ) and the partial

derivatives
∂u
∂p

(1; p, T, λ),
∂u
∂T̄

(1; p̄, T, λ), and
∂u
∂λ

(1; p, T, λ). Since no closed-form solutions

exist, numerical integration schemes compute the required state and the partial derivatives.
There are two ways in which numerical integration schemes are used to obtain the required
computations: the single-shooting method and the multiple-shooting method.

In the single-shooting method, the numerical integration scheme is applied to the
following initial value problem to obtain the required computations:

u̇(t; p, T, λ) = T f (u(t; p, T, λ)) + λ∇C(u(t; p, T, λ))

d
dt

(
∂u
∂p

(t; p, T, λ)

)
= TD f (u(t; p, T, λ))

∂u
∂p

(t; p, T, λ) + λDg(u(t; p, T, λ))

d
dt

(
∂u
∂T

(t; p, T, λ)

)
= f (u(t; p, T, λ)) + TD f (u(t; p, T, λ))

∂u
∂T

(t; p, T, λ) + λDg((Z(t; p, T, λ))) (17)

d
dt

(
∂u
∂λ

(t; p, T, λ)

)
= g(u(t; p, T, λ)) + TD f (Z(t; p, T, λ))

∂Z
∂λ

(t; p, T, λ) + λDg(u(t; p, T, λ))

u(0, p, T, λ) = p
∂Z
∂p

(0; p, T, λ) = I

∂Z
∂p

(0; p, T, λ),
∂Z
∂p

(0; p, T, λ) = 0

where g(Z(t, p, T, λ)) = ∇C(u(t, p, T, λ)).
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The disadvantage of the single-shooting method is the build-up of errors when us-
ing the numerical integration scheme to propagate the solution starting from an initial
condition [32]. The multiple-shooting method (see [43]) discretizes the time interval, and
the numerical integration scheme is used in the smaller intervals. Hence, the required
computations are obtained by solving the states and the partial derivatives at the times 0 =
a0, a1, a2, . . . , ad, 1 = ad+1. The grid step size is given as max(a1, a2 − a1, . . . , 1 − ad).

The collocation method is another way to solve boundary value problems with no
closed-form solutions. It involves finding an approximation polynomial such that it sat-
isfies the boundary condition and its derivative matches the vector field at the chosen
collocation points within each subinterval [0, a1], [a1, a2], . . . , [ad, 1]. The number of such
collocation points in each interval equals the degree of the approximating polynomial in
the corresponding interval.

The collocation problem for the computation of periodic orbit families is formulated
as follows:

The function u(t) is discretized into the state values u(al−1), l = 1, 2, . . . d + 1 at
the grids. Within each grid interval, the function is discretized into Gaussian values
u(tl,m), l = 1, 2, . . . d + 1 and m = l = 1, 2, . . . N at the following collocation points:

u̇(tl,m) = T f (u(tl,m)) + λ∇C(u(tl,m))

u(a0)− u(ad+1) = 0 (18)

T0 f (p0) · (u(a0)− u0) = 0

(u(a0)− p0) · (p0
′) + (T − T0)T0

′ + (λ − λ0)λ0
′ − ∆s = 0

where tl,m, l = 1, 2, . . . d + 1 and m = 1, 2, . . . N are the N collocation points in each interval
[al−1, al ]. Here, (p0, T0, λ0) is a known periodic point along the curve of periodic points,
and ∆s is the continuation step size. (p0

′, T0
′, λ0

′) is the tangent at (p0, T0, λ0) to the
curve of periodic solutions. In Equation (18), u̇(tl,m) in each interval is expressed in terms
of the Gaussian values at that interval by using the Legendre polynomials (see [44] for the
derivation). The unknowns in Equation (18) are the state values, Gaussian values, the time
period T, and the unfolding parameter λ.

The choice of collocation points decides the type of collocation method. The most
commonly chosen collocation points are the Gaussian points. Collocation schemes have
been used to solve boundary value problems in astrodynamics. Calleja et al. used Gaussian
collocation to solve boundary value problems in the Earth–Moon system to compute
periodic orbits and connecting orbits [45]. The work in this paper used the Legendre–Gauss
collocation scheme [37], which is known to be robust for highly non-linear problems.

7. Results and Discussion

In order to compute the period-multiplying bifurcations, the vertical periodic orbit
family emanating from the equilibrium point 1 of Kleopatra was chosen as the parent
family. The polyhedral model of Kleopatra is constructed from [11]. The polyhedral model
of Kleopatra derived in [11] consists of 4092 edges and 2048 triangular faces. The work in
this paper used this polyhedral model of Kleopatra. The body-fixed axes of Kleopatra are
aligned along its principal moment of inertia axes. The origin of the body-fixed coordinate
system is placed at the center of mass of Kleopatra. The positive z-axis of the body-fixed
frame is the spin axis of Kleopatra. The density and the rotational period of Kleopatra
were taken to be 3600 kg m−3 and 19,404 s (5.39 h), respectively. Period-multiplying
bifurcations were located and computed along the parent family. Specifically, period 7- and
a period 17-multiplying bifurcations were located and computed. A period 7 bifurcation
was computed in order to show the effectiveness of the Legendre–Gauss collocation method
to compute period-multiplying bifurcations of periodic orbit families around asteroids.
A period 17 bifurcation was computed in order to show the capabilities of the Legendre–
Gauss collocation method in obtaining accurate long-duration trajectories. The failure of
the shooting method to compute period-multiplying branches can be overcome by using
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the Legendre–Gauss collocation method. A very large integer k may not be feasible as such
computations require tolerances beyond machine precision.

The shooting method was used for the computation of the parent family. MATLAB
R2021b’s ode78 or ode89 subroutines were used for numerical integration in the shooting
method. The integration tolerances that were used for MATLAB’s ode78 or ode89 sub-
routines were as follows: relative tolerance—10−11 and absolute tolerance—10−14. The
Legendre–Gauss collocation scheme was used for branch-switching and the subsequent
continuation of the period-multiplying branches.

7.1. Equilibirum Points and Their Stability

The position of Kleopatra’s four outside equilibrium points was obtained using a parti-
cle swarm optimization [46] followed by Newton’s iteration. Table 1 shows the computed
positions of the four equilibrium points in the body-fixed frame of Kleopatra. The accu-
racy of the equilibrium points obtained in this work is the same as obtained in previous
literature studies on the computation of equilibrium points of Kleopatra (see [34,40] for
the computation of equilibrium points of Kleopatra using symmetrical techniques). Hence,
particle swarm optimization is a reliable technique to find initial locations of equilibrium
points in the gravitational field of asteroids that are asymmetrical with respect to the equator.
Figure 1 shows the position of the four outside equilibrium points in the body-fixed frame
of Kleopatra. Interior equilibrium points are important in the study of the internal structural
stability of an asteroid. In this paper, equilibrium points were computed in order to obtain
small-amplitude periodic orbits around them. Interior equilibrium points would have
these small-amplitude periodic orbits lying completely inside the body. Hence, interior
equilibrium points are not relevant to the study of this paper. Readers can refer to [40] for
information on the computation of equilibrium points inside Kleopatra. Specifically, for
Kleopatra, there are three interior equilibrium points [40].

Table 1. Positions of equilibrium points of 216 Kleopatra in kilometers.

Equilibrium Point x-Coordinate y-Coordinate z-Coordinate

1 143.12 km 3.08 km 0.34 km
2 −144.80 km 5.14 km −1.44 km
3 −1.18 km 100.66 km −0.93 km
4 1.29 km −102.06 km −0.13 km

Figure 1. Position of equilibrium points in the body-fixed frame.
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The stability of the equilibrium points was obtained by computing the eigenvalues
of the system matrix of the variational equation (see Equation (6)). The pattern of the
eigenvalues of the system matrix observed is studied in the literature [40]. It can be
seen from Table 2 that small-amplitude periodic orbits exist in the center subspaces of
equilibrium points because the Jacobian of the vector field of all the four equilibrium points
of Kleopatra has at least one pair of purely imaginary eigenvalues. The center subspace of
the first equilibrium point corresponding to the eigenvalue pair ±8.077j was used for the
computation of the vertical orbit family. The small-amplitude periodic orbits in the center
subspace corresponding to ±8.077j were continued to obtain the V1 family.

Table 2. Eigenvalues of Jacobian of vector field evaluated at equilibrium points of 216 Kleopatra.

Equilibrium Point Eigenvalues

1 ±7.3032, ±8.1884j, ±8.077j
2 ±8.1152, ±8.9717j, ±8.02j
3 3.9139 ± 5.9390j, −3.9139 ± 5.9390j, ±6.2489j
4 3.8934 ± 5.8917j, −3.8934 ± 5.8917j, ±6.3127j

7.2. Period-Multiplying Orbits
7.2.1. V1 Family

The V1 family is the vertical periodic orbit family obtained from the continuation of
the vertical small-amplitude periodic orbits close to the first equilibrium point (equilibrium
point 1 of Kleopatra). The periodic orbit members of the V1 family eventually intersect
with the surface of the asteroid as the continuation progresses. The continuation of the V1
family was stopped once a periodic orbit member collided with the surface of the asteroid
during continuation. This part of the V1 family is taken as the parent family from which
period-multiplying bifurcations are sought.

The eigenvalues of the monodromy matrices of the members along the parent family

were of the form {σ,
1
σ

, 1, 1, v ± nj} with v1 + n2 = 1, σ ∈ R and 0.58 ≤ v ≤ 1. For the V1

family, σ was found to be of the order of O
(
102) to O

(
103) . The eigenvalue σ is called the

unstable floquet multiplier of the periodic orbit. The time period of the members along
the parent family lie in the range [0.78Th, 0.94Th], where Th is the rotational period of the
asteroid. Hence, no resonant periodic orbits (periodic orbits whose periods are integer
multiples of the rotational period of the asteroid) exist in the V1 family.

Period-multiplying bifurcations along the parent family were located by monitoring
the unit circle eigenvalues v ± nj of the monodromy matrix of the periodic orbit mem-
bers. The eigenvalues of the monodromy matrix on the unit circle were checked for the
satisfaction of the conditions of Theorem 3. No period-multiplying bifurcations with an
integer multiplying factor of six or less were present along the parent family. Multiple
period-multiplying bifurcations with integer factors of greater than seven were located
along the parent family.

Among the located period-multiplying bifurcations, one period 7- and one period
17-multiplying bifurcation were chosen for computation. Figure 2 shows the parent V1
family. Figure 3 shows the same parent V1 family from a different viewing angle. The
different color lines in Figures 2 and 3 indicate the different periodic orbit members of the
V1 family. It can be seen from the viewing angle of Figure 3 that the V1 family starts as an
elliptical orbit around the first equilibrium point and grows to a figure eight orbit covering
a much larger region around the asteroid.
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Figure 2. V1 family of periodic orbits.

Figure 3. V1 family of periodic orbits viewed from Y-axis.

7.2.2. Period 7-Multiplying Bifurcation

One period 7 bifurcation was located along the parent V1 family. Since seven is a
prime number, all the complex seventh roots of unity satisfy the conditions of Theorem 3.
However, all the unit circle eigenvalues of the monodromy matrix of periodic orbit members
of the parent V1 family were found to be on the right half of the complex plane. Only one
pair of the seventh root of unity has a positive real part (0.6235 ± 0.7818j). A periodic orbit
member with this specific unit circle eigenvalue was located along the V1 parent family.

Fixed branch-switching was performed to switch to the period 7 branch that intersects
with the parent family at this bifurcating member. The Legendre–Gauss collocation scheme
was used for branch-switching and the subsequent continuation of the period 7 branch.

A uniform time grid with a step size of
1

150
on the interval [0, 1] was used. The degree of
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the Legendre basis polynomials used on each interval was 24. To ensure a smooth branch
switch, it is important to avoid any false solutions that may arise due to the numerical
method being used. In this study, spurious solutions were avoided by increasing the degree
of the Legendre basis polynomials used to obtain the true converged solution.

Like its parent V1 family, the period 7-multiplying branch also intersected with the
surface of the asteroid as the continuation progressed. The continuation was stopped when
the members started colliding with the asteroid’s surface. Figure 4 shows a member of the
period 7-multiplying branch at intermediate stages of continuation in comparison with the
bifurcating member of the V1 family. Figure 5 shows a member of the period 7-multiplying
branch at final stages of continuation.

Figure 4. A member of the period 7 branch at the intermediate stage of continuation.

At the beginning of the continuation of the period-multiplying branch, the members
looked almost identical to the respective parent branches. As the continuation progressed,
the members gained additional revolutions over the figure eight shape of the bifurcating
parent family member. At the initial stages of continuation, the members of the period
7 branch maintained the figure eight shape of the bifurcating parent family member. From
Figure 4, it can seen that the gap between the revolutions increases, making the figure eight
shape noticeably thicker. It can be seen from Figure 5 that at final stages of continuation,
the shapes of the members no longer have the figure eight shape but still resemble the
shape of the parent family. Throughout the continuation of the period 7 branch, a constant
amplitude along the z-axis and y-axis was observed to be maintained, but the amplitude
along the x-axis increased.

The shooting method did not work for the computation of the period 7-multiplying
branch. After obtaining a member of the period 7 branch at the final stages of continua-
tion (Figure 5) using the Legendre–Gauss collocation method, the reproduction of results
was attempted using the multiple-shooting method on the same time grid (uniform time

grid with step size of
1

150
on the interval [0, 1]) used in the Legendre–Gauss collocation.

The multiple-shooting method applied to obtain the period 7 orbit at the final stage of
continuation did not converge even when a finer uniform time grid was used. The multiple-
shooting algorithm was stopped midway during the iteration at the minimum residual,
and the trajectory was obtained (Figure 6). Figure 6 shows that such a reproduction fails,
as the result is neither periodic nor roughly accurate to the period 7 branch member. The
multiple-shooting method produces an erroneous solution that eventually collides with
the asteroid’s surface, whereas the actual correct solution does not collide with the as-
teroid. This shows the unreliable nature of studying long-duration trajectories around
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asteroids using shooting methods. It can be inferred from Equation (15) that periodic
orbit members of the period-multiplying branch are more sensitive to disturbances in
initial conditions than periodic orbit members of the parent branch. This is because the
floquet multipliers (eigenvalues of the monodromy matrix) of the periodic orbit are the
measure of the sensitivity of the periodic orbit with respect to the initial conditions [32].
The unstable floquet multiplier of the period 7 bifurcating member of the parent vertical
periodic orbit family was found to be of O

(
102). Hence, from Equation (15), the floquet

multiplers of the period 7-multiplying branch members are of the order O
(
1014). Pelle-

grini and Russell proposed that the computational difficulties observed during shooting
methods are because of the usage of variable step numerical integrators to compute pe-
riodic orbits with large floquet multipliers [32]. They further showed that the fixed-step
integration of Equation (17) overcomes the problems encountered in shooting methods.
Several successful applications of the shooting methods using fixed-step integration have
been demonstrated in the computation of periodic orbits having floquet multipliers of
the order O

(
106) in the Earth–Moon system. This work used the fixed-step integration of

Equation (17) for the multiple-shooting method to compute period-multiplying bifurcations
of periodic orbit families in asteroid environments. Computational difficulties were still
observed when the multiple-shooting method with fixed-step integration was applied to
obtain period-multiplying bifurcations around asteroids, as explained above. Extra care
must be taken even if the problem of studying long-duration trajectories around asteroids
is recast into a boundary value problem (as is performed in this paper, by computing
periodic orbits through a two-point boundary value problem as opposed to grid-search
methods used in the literature [19]). In this work, shooting methods could not obtain
period-multiplying branches of periodic orbit families around asteroids. The boundary
value problem was solved successfully by using the Legendre–Gauss collocation method.
Hence, the Legendre–Gauss collocation method is proposed as an alternative to study
long-duration orbits around asteroids when computational difficulties are encountered
while using shooting methods to obtain long-duration orbits around asteroids.

Figure 5. A member of the period 7 branch at the final stage of continuation obtained through the
collocation method.
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Figure 6. A member of the period 7 branch at the final stage of continuation obtained through the
shooting method.

7.2.3. Period 17-Multiplying Bifurcation

Two period 17 bifurcations were located along the parent V1 family. Of the 17 roots,
only 4 have positive real parts (0.7390 ± 0.6737j and 0.9325 ± 0.3612j). Two periodic orbit
members with these specific unit circle eigenvalues were located along the V1 parent
family. The periodic orbit member whose monodromy matrix has an eigenvalue pair
of 0.7390 ± 0.6737j was chosen to compute the period-multiplying branch. The floquet
multiplier of the bifurcating periodic orbit member of the parent V1 family was found to be
of the order of O

(
102).

A uniform time grid with a step size of
1

240
on the interval [0, 1] was used. The degree

of the Legendre basis polynomials on each interval was 32.
The period 17-multiplying branch collided with the surface of the asteroid as the

continuation progressed. The continuation was stopped at the collision. Figure 7 shows
a member of the period 17 branch during the initial stages of continuation. The initial
members of the period 17 branch were identical to the parent family. Figure 7 shows that
at the initial stages of continuation, the period 17 branch members maintained the figure
eight shape of the parent family members; this behavior was similar to the period 7 branch.

Figure 7. A member of the period 17 branch during the initial stages of continuation.
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On the other hand, at the intermediate and final stages of continuation, the period
17 branch exhibited different behavior from the period 7 branch. Figure 8 shows the evolu-
tion of the period 17-multiplying branch as the continuation progresses from intermediate
to final stages. The intermediate members of the period 17 branch do not have a figure
eight shape. Moreover, the shape of the period 17 branch does not resemble the shape of the
parent family members. At the final stages of continuation, the y-amplitude of the period
17 branch members increased in addition to the increase in x-amplitudes. The z-amplitude
was constant as the continuation progressed.

Figure 8. Evolution of the period 17 branch.

8. Conclusions

This paper presented a systematic approach for computing high-period periodic orbits
around asteroids. The methodology involved first computing a parent periodic orbit
family by computing a small-amplitude periodic orbit about an equilibrium point of the
asteroid and then using the continuation technique to obtain the other periodic orbits, thus
obtaining a family of periodic orbits. After identifying the locations at which the parent
family bifurcates to give rise to a period-multiplying periodic orbit family, the members of
the period-multiplying periodic orbit family were computed. This is in contrast with the
grid search method used in the literature.

The single-shooting method using high-fidelity integrators like ode78 or ode89 was
used to obtain the parent family. A collocation-based scheme was required to compute
the members of the period-multiplying branch, as even multiple-shooting using ode78 or
ode89 failed to give a converged solution. The limitation of shooting methods in computing
high-period periodic orbits also points to the inappropriateness of using standard solvers
like ode78 or ode89 for simulating long-duration trajectories about asteroids.

As a demonstration of the methodology presented, period 7 and period 17 periodic
orbit families about the asteroid Kleopatra were computed. Upon continuation, the period
17 orbits that bifurcated from the parent family resulted in an orbit that is very different
from the orbit of the parent family, pointing to its potential use in certain missions that
require orbits with certain coverage. While a stability analysis of the computed high-period
orbits remains as future work, the potential for identifying high-period orbits that are more
stable compared to the parent family opens exciting avenues for further research.
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