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Abstract: In this study, a modern principal component analysis (PCA) of the chemical properties
of lunar soils was conducted. American and Soviet results acquired during the Apollo and Luna
missions, respectively, were analyzed and compared. The chemical composition of the lunar soil
was the focus of our analysis, the main aim of which was to assess any possible differences between
the results provided by the missions in question. The results were visualized in two- and three-
dimensional spaces. The use of PCA virtual variables enabled the chemical composition of the lunar
soil to be fully visualized—something impossible to achieve using traditional techniques—and key
similarities and differences among the properties of the lunar soil samples were determined. The
sources of any differences were then conceptualized. The work reported in this paper offers new
directions for future studies, especially research into the design of new lunar soil simulants for lunar
construction and civil engineering programs.

Keywords: lunar regolith; Apollo space program; Luna space program; PCA analysis

1. Introduction

In recent years, major space agencies such as NASA (Artemis program), ESA (Arg-
onaut mission), CNSA (Chang’e missions), Roskosmos (Luna missions), and ISRO (Chan-
drayaan missions) have focused on the Moon as a target for space exploration. In addition,
many other space agencies are planning future activities associated with lunar missions,
and these will likely result in a greatly improved understanding of the mechanical and
geotechnical properties of the lunar regolith.

The onset of lunar exploration using space probes was closely related to the competi-
tion between the USA and the Soviet Union in the second half of the 20th century. During
the American Apollo (1969–1972) and Soviet Luna (1970–1976) missions, samples of lunar
soil were collected and transported back to Earth. In addition, some properties of the lunar
regolith were studied in situ on the Moon [1].

Altogether, the Apollo and Luna missions resulted in the transportation of lunar rock
to Earth in quantities of 383.4 kg and 0.3 kg, respectively (see Table 1).

In subsequent years, some of these rock samples were thoroughly tested, while others
were kept sealed for possible future experiments. As a result of the numerous experiments
that were conducted using the original samples, a great deal of knowledge was acquired
about this lunar soil.

Using modern computers and software, it is possible to execute complex statisti-
cal analyses that were almost impossible when the above-listed samples were originally
obtained. One of these analytical methods is principal component analysis (PCA). This
was invented by Karl Pearson in 1901 [2] and later developed by Harold Hotelling in the
1930s [3,4].
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Table 1. Lunar soil samples brought back to Earth by Apollo and Luna missions.

Mission
(Start Date)

Samples Returned
(kg)

Route Travelled
on the Moon (km)

Type
of Flight

Landing
Coordinates

Landing Place
Description

Apollo 11 (16 July 1969) 21.7 0.25 manned 0.67408◦ N 23.47297◦ E mare
Apollo 12 (14 November 1969) 34.3 1.5 manned 3.01239◦ S 23.42157◦ W mare
Apollo 14 (31 January 1971) 44.8 3.3 manned 3.64530◦ S 17.47136◦ W highlands/mare
Apollo 15 (26 July 1971) 76.8 27.9 manned 26.1322◦ N 3.6339◦ E mare
Apollo 16 (16 April 1972) 95.8 27 manned 8.97301◦ S 15.50019◦ E highlands
Apollo 17 (07 December 1972) 110.0 30 manned 20.1908◦ N 30.7717◦ E mare
Luna 16 (12 September 1970) 0.101 n/a unmanned 0.5137◦ S 56.3638◦ E mare
Luna 20 (14 February 1972) 0.030 n/a unmanned 3.5333◦ N 56.5500◦ E highlands
Luna 24 (9 August 1976) 0.170 n/a unmanned 12.7145◦ N 62.2097◦ E mare

The origins of PCA derive from the fact that the handling of large datasets comprising
multiple objects with numerous variables and parameters poses a significant challenge for
humans. Data presented in complex tables and multidimensional matrices are particularly
difficult for human analysis. PCA computational algorithms are widely acknowledged as
successful applications of linear algebra, enabling effective data reduction and the extraction
of latent information from raw datasets. PCA has proven to be a very versatile statistical
tool in fields such as biology [5], medicine [6], pharmacology, and climatology [7]. Today,
PCA methodology is also successfully used in civil engineering (e.g., for the classification of
steel fibers used as reinforcement for concrete [8] or for the design of concrete mixes [7]), as
well as image processing and signal denoising [8]. The authors of the present paper proved
in a previous study that PCA is highly effective in conducting quality assessments of lunar
soil simulants (LSSs) [9]. Traditional approaches to selecting the appropriate parameters as
benchmark criteria for the development of LSSs have often fallen short of scientific and
engineering expectations. Consequently, the exploration and analysis of extensive datasets
containing information on the physical, chemical, mechanical, and geometrical properties
of lunar soil should perhaps rely instead on multivariate statistical methods such as PCA.
Keeping all the above facts in mind, we decided to perform a PCA analysis of the lunar soil
samples from the Apollo and Luna missions. The primary objective of our analysis was
to evaluate potential disparities among the findings obtained by these missions. The first
task of our research program, then, was to confirm the reliability of the Apollo and Luna
datasets. It must be remembered that both these datasets were published during the Cold
War by the two competing superpowers of the age. The activities of these powers were
always susceptible to political bias and a vast array of national security issues. In this light,
for the present study, we decided to focus on identifying the key chemical constituents
that should be prioritized in the development of new simulants (especially those intended
for civil engineering applications). A previous evaluation of existing LSSs conducted by
us [7,8] proved that they were not suitable for use in the development of future lunar
building materials and construction technologies.

For the present study, we chose to depict our results in both two- and three-dimensional
spaces. By generating virtual variables (which convey the vast majority of the information
carried by the original variables), we achieved a comprehensive visualization of the chemi-
cal composition of the lunar soil, a task that was previously unattainable using conventional
techniques. The use of PCA analysis enabled the identification of a minimal set of essential
parameters for a precise evaluation of the lunar soil using a simple experimental setup.
Using this method, a detailed examination of the key similarities and differences among the
properties of specific lunar soil samples is feasible. It should be remembered that statistical
treatments should always be associated with deterministic behavioral frameworks, so that
the theoretical consistency of the results may be confirmed. In the present study, we sought
to assess the reliability of the results based on statistics.

The successful use of PCA for the analysis of the lunar soil would enable the creation,
classification, standardization, and large-scale production of new LSSs, which would be
reliable, available in large quantities, and reasonably affordable. Such LSSs are urgently
needed by the research community (e.g., for testing possible future techniques and tech-
nologies for lunar construction). In short, a successful analysis of the lunar soil based on
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multivariate statistics involving numerous parameters would allow a thorough and feasible
assessment of its key properties.

2. Available Data

For our analysis, we used a number of sets of data on the chemical composition of
the lunar soil. Table 2 presents data on the composition of the lunar soils obtained by the
Apollo missions 11–17. These datasets were sourced from [9–14].

Table 2. Composition (wt. %) of lunar soil samples obtained by Apollo missions.

No. SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mission

1 42.1 7.8 13.7 15.8 0.2 7.9 12 0.5 0.1 0.1 11
2 42.2 7.8 13.6 15.3 0.2 7.8 11.9 0.47 0.16 0.05 11

3 42.6 3.6 14.2 15.4 0.22 9.7 10.4 0.43 0.24 - 12
4 46 2.8 12.5 17.2 0.22 9.7 10.9 0.48 0.24 - 12

5 48.2 1.73 17.6 10.41 0.14 9.26 11.25 0.61 0.51 0.53 14
6 47.3 1.6 17.8 10.5 0.1 9.6 11.4 0.7 0.6 - 14
7 48.1 1.7 17.4 10.4 0.14 9.4 10.7 0.7 0.55 0.51 14

8 46.95 1.6 12.7 16.29 0.217 10.75 10.49 0.33 0.092 0.16 15

9 45.35 0.49 28.25 4.55 0.06 5.02 16.21 0.42 0.09 0.1 16
10 45.2 0.58 26.4 5.29 0.7 6.1 15.32 0.52 0.14 0.12 16
11 44.65 0.56 27 5.49 0.7 5.84 15.95 0.44 0.13 0.1 16
12 44.9 0.47 27.7 5.01 - 5.69 15.7 0.51 0.22 0.16 16
13 44.77 0.37 28.99 4.35 0.07 4.2 16.85 0.44 0.06 0.05 16
14 45 0.54 27.3 5.1 0.3 5.7 15.7 0.46 0.17 0.11 16

15 41.67 6.52 13.57 15.37 0.21 10.22 11.18 0.34 0.09 0.06 17
16 39.82 9.52 11.13 17.41 0.25 9.51 10.85 0.32 0.07 0.06 17
17 40.09 9.32 10.7 17.85 0.24 9.92 10.59 0.36 0.08 0.07 17
18 42.2 5.09 15.7 12.4 0.15 10.3 11.5 0.24 0.07 - 17

Table 3 presents data on the composition of the lunar soils obtained by Luna 16 (cases
19–52), Luna 20 (cases 53–59), and Luna 24 (cases 60–90). The datasets were sourced
from [15–20] in the case of Luna 16, from [19,21–24] in the case of Luna 20, and from [25–31]
in the case of Luna 24. The original datasets had only partial information regarding the
contents of Cr2O3, Fe2O3, and S. Therefore, due to this lack of quantitative information, only
10 oxides were taken into account as variables in the PCA calculations (see Table 4). Cases
1–4, 8, 15–52, and 60–90 concern mare regions, cases 9–14 and 53–59 concern highlands,
and cases 5–7 concern areas of transition between highlands and mare regions. In Tables 2
and 3, empty data slots can be observed. For the PCA calculations, these slots were filled
with the average values for soil and basalt within each table.

Table 3. Composition (wt. %) of lunar soil samples obtained by Luna missions.

No. SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mission

19 41.7 3.39 15.32 16.8 0.21 8.73 12.2 0.37 0.1 - 16
20 41.2 3.46 15.4 16.55 0.2 8.82 12.8 0.36 0.12 - 16
21 42.5 3.3 15.45 16.3 0.2 8.96 12.42 0.36 0.1 - 16
22 41.3 3.42 15.15 16.9 0.22 8.6 12.55 0.28 0.1 - 16
23 41.93 3.36 15.33 16.66 0.2 8.78 12.53 0.34 0.1 0.12 16
24 43.8 4.9 13.65 19.36 0.2 7.05 10.4 0.38 0.15 0.12 16
25 42.95 5.5 13.88 20.17 0.2 6.05 10.8 0.23 0.16 0.14 16
26 45.5 4.04 13.95 17.77 0.26 5.95 11.96 0.63 0.21 0.15 16
27 45.17 2.9 16.98 13.21 0.22 4.02 13.32 0.69 0.17 - 16
28 43.36 4.37 15.13 17.48 0.27 4.97 12.77 0.7 0.17 - 16
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Table 3. Cont.

No. SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mission

29 44.2 2.48 16.45 13.67 0.2 4.3 12.65 0.69 0.21 - 16
30 46.6 6.1 15.7 17.2 0.28 3.7 11.3 0.46 0.24 0.12 16
31 42.8 3.17 16.4 17.6 0.26 8.8 12.9 0.43 0.144 - 16
32 35.3 3.7 8.7 25.6 0.29 5.5 9.1 0.56 0.2 - 16
33 36.8 3.8 8.8 25.7 0.28 5.6 8.7 0.66 - - 16
34 52 4.2 8.9 25.2 0.26 4.2 8.7 0.62 0.26 - 16
35 44.1 4.2 9.3 23.1 0.27 4.8 9.4 0.53 0.23 - 16
36 - 3.5 9.1 22.5 0.23 10.3 12.3 0.4 0.21 - 16
37 48.1 5.3 13.1 24.2 0.28 6.3 12 0.44 0.17 - 16
38 46.6 4.8 13 19.9 0.32 8.6 10.4 0.4 0.19 - 16
39 - 5.3 12.2 21.6 0.27 9.5 11.6 0.46 - - 16
40 59.1 4.8 13.6 22.7 0.29 7.8 11.9 0.46 0.17 - 16
41 46 4.2 9.6 17.6 0.27 7 10.5 0.53 0.18 - 16
42 46.3 1.02 20.2 11.1 0.17 2.32 14.8 0.83 0.44 0.23 16
43 47.3 2.03 19 12.1 0.21 3.1 14.3 0.68 0.32 0.13 16
44 46.3 2.16 19.3 12.9 0.2 3.8 15 0.52 0.19 0.05 16
45 46.7 2.48 16 14.1 0.23 3.7 15.4 0.55 0.25 0.1 16
46 44.6 3.5 16.5 15.3 0.23 4.6 14.3 0.39 0.18 0.02 16
47 43.2 4.8 14.3 16.4 0.27 4.9 13.4 0.47 0.21 0.06 16
48 44.1 3.7 14.5 16.6 0.26 5.2 14.2 0.5 0.24 0.05 16
49 45.6 3.5 14.2 17.3 0.25 5.2 13.3 0.34 0.24 0.11 16
50 43.7 4.8 12.1 18.8 0.3 6.3 12.2 0.45 0.24 0.1 16
51 42.6 1.05 19.4 18.7 0.22 4.1 12.2 0.56 0.29 0.07 16
52 41.3 1.93 11.5 21.6 0.28 12 9.3 0.39 0.17 0.05 16

53 45.6 0.46 22.9 7.5 0.106 9.15 14.5 0.4 0.069 - 20
54 45.1 0.55 22.3 7 0.13 9.8 15.1 0.5 0.1 0.16 20
55 45.4 0.47 23.44 7.37 0.1 9.19 13.38 0.29 0.067 0.06 20
56 45.8 0.533 21.6 7.02 0.13 9.85 14.9 0.46 0.1 0.17 20
57 44.4 0.56 22.9 7.03 0.12 9.7 15.2 0.55 0.1 0.14 20
58 42.8 0.47 23.6 6.6 0.1 9.5 14.4 0.35 0.06 0.14 20
59 44.2 0.52 19.1 6.91 0.12 13.37 13.3 0.48 0.47 0.17 20

60 43.9 1.3 12.5 19.8 0.25 9.4 12.3 0.31 0.04 0.11 24
61 43.3 1.13 15.2 16.3 0.22 8.69 13.1 0.42 0.04 0.14 24
62 43.5 1.09 15.5 16.2 0.21 8.87 12.9 0.51 0.04 0.13 24
63 43.6 1.13 15.9 16.2 0.23 8.8 13.3 0.25 0.04 0.13 24
64 43.7 1.23 16 16.1 0.22 8.75 13.1 0.43 0.06 0.12 24
65 45.2 0.89 13.8 20.5 0.27 6.35 12.7 0.24 0.01 - 24
66 48 1 13.1 19.5 0.31 5.2 13.1 0.29 0.04 0.11 24
67 43.9 0.74 19 16.6 0.19 5.2 14 0.5 0.06 - 24
68 45.5 0.96 13.9 18.4 0.24 6.3 13.3 0.37 0.02 0.02 24
69 45.3 1.16 12.4 20.3 0.27 7.5 12.2 0.37 0.03 - 24
70 47.3 0.37 26.8 6.99 0.11 1.03 17.1 0.66 0.04 - 24
71 47.6 0.2 9.94 14.7 0.25 13 12.2 0.21 0.03 - 24
72 41.1 0.58 10.4 24.9 0.38 11.6 8.64 0.29 0.02 - 24
73 47.1 1.27 12.8 17.6 0.25 7.16 12.9 0.3 0.04 - 24
74 44.8 0.82 11.1 21.9 0.29 10.4 9.94 0.32 0.18 - 24
75 46.9 0.8 13 19.3 0.28 6.53 13.1 0.44 0.23 - 24
76 46.5 0.67 13.3 17.2 0.29 7.2 13.1 0.3 0.04 0.02 24
77 46.4 0.79 13.7 18.5 0.3 6.5 13.3 0.28 0.04 - 24
78 46.6 0.86 12.9 17.4 0.2 6.3 13.3 0.31 0.04 0.04 24
79 48.3 1.06 12 18.1 0.25 6.8 12.7 0.4 0.04 0.02 24
80 44.6 0.8 12.7 17.8 0.26 6.5 13.7 0.29 0.03 0 24
81 46.1 1.14 11.9 17.4 0.24 6.2 12.8 0.02 0.04 0.02 24
82 42.8 0.3 16.4 15.3 0.24 6.2 15.3 0.41 0.06 0.01 24
83 43.8 0.35 12.7 20.3 0.3 8 13.5 0.36 0.05 0.02 24
84 44.3 0.09 11.6 20.5 0.3 7.6 12.7 0.36 0.04 0.05 24
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Table 3. Cont.

No. SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 Mission

85 46 0.84 15.8 15.5 0.15 5.8 13.9 0.3 0.03 0.04 24
86 46.4 0.28 15.8 16.3 0.17 5.8 13.9 0.34 0.03 - 24
87 47.8 0.31 14.8 15.8 0.25 5.9 13.9 0.32 0.03 0.03 24
88 45.4 0.66 8.9 19.2 0.37 15.4 8.9 0.2 0.05 - 24
89 43.1 0.15 6.9 20.1 0.25 20.8 6.9 0.12 0.03 - 24
90 44.2 0.62 7.7 21.6 0.43 18.2 7 0.15 0.05 0.03 24

Table 4. Contributions of variables to PCA factors.

Variable
Designation

Chemical
Assignment

Contribution of the Variable [%]
F1 F2 F3

1 SiO2 2.42 0.02 0.24
2 TiO2 2.99 14.06 8.69
3 Al2O3 23.51 3.61 0.53
4 FeO 20.96 2.44 7.81
5 MnO 3.68 0.76 8.2
6 MgO 7.85 0.04 48.41
7 CaO 18.61 10.9 3.56
8 Na2O 10.31 16.86 7.36
9 K2O 4.19 31.34 0.33

10 P2O5 5.48 19.97 14.87

3. Methodology

The sequence of the five steps involved in the PCA methodology is summarized in
Figure 1.
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The PCA methodology is essentially a data transformation technique consisting of
five consecutive steps [32]. In the first step, the range of the continuous original variables is
standardized so that each contributes equally to the analysis. For the PCA to function, all
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variables should have the same scale. The analysis of an exemplary vector v, onto which it
is possible to project any point, is, therefore, conducted as follows:

V1 = [2 0 1]; ||v||2 = 22 + 02 + 12 = 5 (1)

The normalized vector is then obtained, as follows:

V1 =

[
1√
5

0
1√
5

]
(2)

The second step involves covariance matrix computation. Essentially, this is carried
out to assess how the original variables vary from the mean value with respect to each
other. In the third step, eigenvalues are computed to establish the principal components
of the dataset. In the fourth step, components of lesser significance (characterized by
low eigenvalues) are discarded. Finally, in the fifth step, data are reoriented from the
original axes to those represented by the principal components. In the present study, a PCA
classification of the Apollo and Luna soil samples was conducted using the Statistica v. 13.3
computer program.

The acquisition of uncorrelated linear combinations of the original variables by PCA
methodology is summarized in Figure 2. New virtual variables (called principal com-
ponents) are created that cover the majority of the information provided by the original
untreated variables. It should be remembered that the principal components are usu-
ally more difficult to interpret in comparison to physical variables, and also that they do
not have any direct physical meaning, because they are artificially computed as linear
combinations of the original variables.
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4. Results and Discussion

The results of the PCA processing of the datasets shown in Tables 2 and 3 are summa-
rized in Table 4. The variables characterized by the highest contributions to three factors
of the performed PCA analysis (marked with bold red) were as follows: factor 1 (F1)—
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Al2O3, FeO, and CaO; factor 2 (F2)—K2O, P2O5, and Na2O; and factor 3 (F3)—MgO, P2O5,
and TiO2.

A PCA plot in two-dimensional space of factors F1 and F2 is presented in Figure 3.
The PCA identifies the smallest number of factors or components necessary to explain
all the variance, or as much as possible. In this context, a factor or component is a set of
variables that, when combined in a linear fashion, explains some proportion of the observed
variance [33]. In Figure 3, the two factors explain over 55% of the variability, and the lunar
soil samples are clearly separated along both axes (factor F1 and F2).
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Figure 3. Factor scores F1 and F2 in two-dimensional space. Cases 1–18 (blue circles) are from Apollo
missions and cases 19–90 (red squares) are from Luna missions.

It can be seen that the samples from Apollo 14 (orange circle) and Apollo 16 (green
circle) are significantly differentiated from the rest of the population. However, the samples
from the other Apollo missions (yellow circle) fit with the samples from the Luna missions.

Figure 4 shows the PCA distribution of the variables set in 2D-factor-loading space.
Samples characterized by high values of Al2O3 (variable 3) and CaO (variable 7) are located
in the lower-left quarter of the chart (see Table 4 and Figure 4), which includes samples from
the Apollo 16 mission (see Table 2, samples 9–14; and Figure 3) and Luna 20 mission (see
Table 3, samples 53–59). These results are characteristic of samples taken from highlands
(see Table 1). Samples characterized by high values of Na2O (variable 8), K2O (variable 9),
and P2O5 (variable 10) are located in the upper-left quarter of the chart (see Table 4 and
Figure 4), which mainly applies to samples from the Apollo 14 mission taken from areas
of transition between highlands and mares (see Table 1). Samples characterized by high
values of TiO2 (variable 2) and FeO (variable 4) are located in the upper-right quarter of the
chart (see Table 4 and Figure 4), which applies to samples from the Apollo 11, 12, 15, and
17 missions (see Table 2 and Figure 3) and Luna 16 mission (see Table 3). These results are
characteristic of samples taken from mare regions (see Table 1).

In the two-dimensional space presented in Figure 3, some reasonably clear clusters of
results may be identified. The first covers results from Apollo 14 (surrounded by an orange
circle), and the second covers results from Apollo 16 (surrounded by a green circle). The
rest of the results are scattered in the central part of the two-dimensional space, forming
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a loose cloud compatible with the Apollo 11, 12, 15, and 17 missions (marked with the
yellow circle). When analyzing Figure 3, it should be remembered that, during the Apollo
14 mission, samples of lunar soil from the mare–highland border region near the Fra Mauro
crater were collected (see Table 1 for landing coordinates). Samples 5 and 7 (see Figure 3)
can be identified as outliers without any knowledge of landing sites; however, together
with sample 6, their position in the chart is justified. This is because breccias are dominant
in the samples taken by Apollo 14. This is in contrast to those missions that landed at
mares, where the predominant rocks were basalts. Apollo 16 obtained highland lunar soil.
The rest of the Apollo missions obtained mare/oceanus samples. With regard to the Soviet
missions, Luna 16 landed in Mare Fecunditatis, Luna 20 landed in highlands [34,35], and
Luna 24 landed in a mare area.
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A two-factor analysis showed that the highland and border-region lunar samples
differed significantly from the mare samples. The samples from highlands were charac-
terized by relatively high amounts of Al2O3 and CaO and low amounts of TiO2 and FeO
(variables 3, 7, 2, and 4, respectively; see Table 4 and Figure 4). The specimens from mares
varied, forming only a loose cluster of points with some significant outliers (e.g., samples
42, 70, 89, and 90). To obtain more definite outcomes, the authors decided to conduct a PCA
in three-dimensional space. A PCA performed in 3D space (factor scores F1, F2, and F3)
makes it possible to obtain more detailed information about differences between cases than
is possible using a 2D analysis. The resulting PCA plot in 3D space for factors F1, F2, and
F3 is presented in Figure 5.

The three factors explain over 68% of the variability. The graph shows that the lunar
soil samples are clearly separated along all three axes (factors F1, F2, and F3). The factor F3
samples collected by Apollo 14 (violet) and 16 (black) form clusters separate from the rest
of the Apollo samples and most of the Luna samples; however, the Luna 20 cluster, which
was close to the Apollo 16 cluster on the 2D chart, is placed significantly higher than the
Apollo 16 cluster on the 3D chart due to the high amounts of MgO and P2O5.
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In Figure 6, the PCA distribution of the variables set in 3D-factor-loading space is
presented. The variables that most heavily influence the distribution of the samples along
the F3 axis are 6 (MgO), 10 (P2O5), and 2 (TiO2).
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squares), Luna 16; cases 53–59 (orange dashes), Luna 20; cases 60–90 (blue circles), Luna 24).
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Before drawing conclusions, it is worth noting that the Apollo missions resulted in a
total mass of samples that was a thousand times greater than that obtained by the Luna
missions. This discrepancy may be readily explained. The Luna missions were stationary.
The automatic lander and, consequently, any collection of samples, was confined to the
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specific landing point. During the Apollo missions, human astronauts were able to walk
around the landers. During missions 15, 16, and 17, they could also drive a Lunar Rover.
Table 1 summarizes the routes travelled on the lunar surface during particular missions.
Differences in lunar soil results may also be explained by variations in the procedures by
which samples were collected and tested by different missions. However, the analysis
carried out in the present study confirms the high consistency of results with respect to the
chemical composition of the lunar regolith obtained during the Apollo and Luna missions.

5. Conclusions

The analysis conducted in the present study allows a number of conclusions to be
drawn, as follows:

• The PCA technique enables the swift and reliable categorization of soil samples ob-
tained from both mare and highland areas of the lunar surface.

• The calculation method used allows for the identification of chemical factors that may
contribute to the grouping of objects within clusters depicted on PCA graphs.

• In terms of chemical composition, the samples obtained by the American Apollo
missions appear to be very similar to those obtained by the Soviet Luna missions; the
reliability of the Apollo and Luna datasets is, therefore, confirmed.

• The analysis reveals close similarities in the chemical compositions of samples origi-
nating from the same type of land, i.e., highlands or mares.

• The PCA method may be applied to distinguish the types of rocks contained in tested
samples of lunar regolith.

• The creation of a new type of LSS (dedicated for civil engineering applications)
is enabled.
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