
Citation: Prots, A.; Voigt, M.; Mailach,

R. Improvements in Probabilistic

Strategies and Their Application to

Turbomachinery. Aerospace 2024, 11,

355. https://doi.org/10.3390/

aerospace11050355

Academic Editors: Philipp Bekemeyer

and Stefan Görtz

Received: 4 February 2024

Revised: 17 April 2024

Accepted: 22 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Article

Improvements in Probabilistic Strategies and Their Application
to Turbomachinery
Andriy Prots , Matthias Voigt * and Ronald Mailach

Chair of Turbomachinery and Flight Propulsion, Dresden University of Technology, 01069 Dresden, Germany;
andriy.prots@tu-dresden.de (A.P.); ronald.mailach@tu-dresden.de (R.M.)
* Correspondence: matthias.voigt@tu-dresden.de

Abstract: This paper discusses various strategies for probabilistic analysis, with a focus on typical
engineering applications. The emphasis is on sampling methods and sensitivity analysis. A new
sampling method, Latinized particle sampling, is introduced and compared to existing sampling
methods. While it can increase the quality of surrogate models, an optimized Latin hypercube
sampling is mostly preferable as it shows slightly better results. In sensitivity analysis, the difficulty
lies in correlated input variables, which are typical in engineering applications. First, the Sobol indices
and the Shapley values are explained using an intuitive example. Then, the modified coefficient of
importance is introduced as a new sensitivity measure, which can be used to reliably identify input
variables without functional influence. Finally, these results are applied to a turbomachinery test
case. In this case, the flow field of a compressor row is investigated, where the blades are subjected to
geometric variability. The profile parameters used to describe the geometric variability are correlated.
It is shown that the variability of the maximum camber and the thickness of the leading edge have a
decisive influence on the variability of the isentropic efficiency.

Keywords: probabilistic; turbomachinery; sampling; sensitivity analysis

1. Introduction

Probabilistic studies have been gaining increased importance in engineering applica-
tions, especially in the field of turbomachinery. They allow one to consider the variability of
components so that their impact on result values can be quantified. Different methods can
be used like sensitivity analysis, which can help to understand how changes in input pa-
rameters can affect the performance of turbomachinery components like compressors and
turbines. For example, Lange et al. [1] investigated the effect of manufacturing variability
on the performance of a high-pressure compressor. The blades were measured and parame-
terized to describe their geometric variability. This allowed them to assess the impact on
performance parameters such as pressure ratio and efficiency. In the following years, this
approach has been extended and applied to other components like turbines (Voigt et al. [2]
and Högner et al. [3,4]). The results from such an analysis can be fed back into the manufac-
turing process to implement improvements that reduce the impact of geometric variability.
Other examples of uncertainty quantification and sensitivity analysis are Seshadri et al. [5],
Lavagnoli et al. [6], Ghisu and Shahpar [7], and Fiedler et al. [8]. Furthermore, these results
can be used within a (robust) optimization (such as in Verstraete et al. [9], Padulo et al. [10],
Seshadri et al. [11], Dow and Wang [12], Kamenik et al. [13], and Dittmann et al. [14]).

One main problem in probabilistic studies is the increased numerical effort. In contrast
to the deterministic approach, numerical experiments such as CFD simulations have to
be carried out many times. To overcome this issue, surrogate models can be used. They
can be evaluated much faster so that probabilistic studies are accelerated. However, a
high-quality surrogate model is desirable. For this, a suitable sampling method must
be selected. In this paper, different sampling methods are discussed with respect to the
surrogate model quality.
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Another issue arises for sensitivity analysis. For most methods, uncorrelated input
variables are required. However, correlated input variables can be present in engineering
applications. Therefore, suitable methods are needed to account for correlated input
variables. In this paper, suitable methods for sensitivity analyses of engineering applications
are selected.

This paper is structured as follows. First, the theoretical foundations are given in
Section 2. Then, different sampling methods are discussed in Section 3, with the main
focus being on surrogate model quality. Section 4 discusses different methods of sensitivity
analysis, especially in terms of their application to problems with correlated input variables.
In Section 5, a sensitivity analysis of a turbomachinery test case is performed where the
conclusions of the previous two sections are applied. This paper is closed with a short
summary in Section 6.

2. Theoretical Foundation

In this section, a brief introduction into probabilistic methods is given. Further details
can be found in the standard works of statistics like in Montgomery and Runger [15].
Section 2.1 presents the general steps of a probabilistic study. Section 2.2 presents the
different types of surrogate models that are used in this paper. Section 2.3 discusses the
different metrics of the surrogate model quality.

2.1. Monte Carlo Simulation and Probabilistic Studies

Probabilistic methods are used to analyze systems, which are subject to variability or
uncertainty. For example, compressor blades are subject to manufacturing variability and
wear, which changes their geometric shape. This, in turn, has an impact on the flow field
and thus performance parameters like pressure ratio and efficiency. Probabilistic methods
can be used to quantify the impact of the variability or uncertainty of input variables.

Monte Carlo simulation (MCS) is a well-established method in this context. First, the
problem must be described mathematically and statistically. For this, the variability of the
examined objects must be captured by analyzing the actual components (Figure 1a). In the
context of compressor blades, optical or tactile measurements are usually performed. In the
next step, the captured data and their variability are described by parameters (Figure 1b).
To reduce the complexity of the subsequent steps, it is desirable to have as few parameters
as possible. Furthermore, these parameters should be interpretable by engineers such that
conclusions can be drawn from the statistical results. By analyzing the entire data set, the
parameters are statistically described. This includes both the marginal distributions of the
parameters and the correlations between them (Figure 1c).

Now, the numerical and statistical evaluation of the problem is performed. Based
on the statistical description of the input variables, a sample is generated (Figure 1d).
For the sample size, a compromise must be found between accuracy (large sample size)
and numerical effort (low sample size). Furthermore, for statistical analysis, the marginal
distributions should be represented well. For each realization of the sample (represented
by a dot), the deterministic model is evaluated to capture the system response for the given
values of the input parameters. Examples of deterministic models are CFD calculations
(Figure 1e) or the estimation of stresses and strains obtained using the finite element method
(FEM). For each realization, the result value of interest, such as the efficiency, is extracted.
In the final step, the entire sample is evaluated, yielding statistical measures like the mean
and standard deviation of the result value of interest (Figure 1f).
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Figure 1. Steps of a Monte Carlo Simulation on an example analysis of compressor blades. (a) Data ac-
quisition; (b) parameterization; (c) statistical description; (d) sampling; (e) deterministic calculations;
and (f) statistical evaluation.

The results of an MCS can now be used for further investigations. For example,
using its results, surrogate models can now be created, which can provide an accurate
approximation of the deterministic model, but they can also be evaluated much faster.
This enables further statistical evaluations, like sensitivity analyses, to identify the input
variables whose variance has the greatest influence on the variability of the result variables.
Another example is optimization. In classical optimization, one or more target variables
are improved. In a robust optimization, an additional goal is to ensure that these target
variables change only slightly when input variables change.

2.2. Surrogate Models

In probabilistic studies, the underlying deterministic models are usually complex,
and their evaluation is both time and computationally intensive. An alternative to this are
surrogate models, which can be evaluated much faster and can significantly reduce the
computational time.

With surrogate models, the relationship y = f (x) between the (multidimensional)
input variable x and result value y of the deterministic model is represented by a simplified
mathematical formulation. Typically, a surrogate model cannot exactly reproduce the
simulation model, and a surrogate model error ε = y − ỹ remains, where y is the actual
response of the deterministic model and ỹ is the response predicted by the surrogate model.
In the following, the polynomial surrogate model (Section 2.2.1) and the Gaussian process
(GP, Section 2.2.2) are discussed as they are used extensively in this work.

2.2.1. Polynomial Surrogate Models

A polynomial surrogate model is a linear model of the form

f̃ (x1, x2, . . . , xnd) = f̃ (x) =
nk

∑
j=1

cjϕj(x) , (1)



Aerospace 2024, 11, 355 4 of 21

where the nk basis functions ϕj(x) are polynomials with respect to the input variables.
Equation (1) can be written in the following matrix form:

f̃ (x) = bc , (2)

with b =
(
ϕ1(x) ϕ2(x) . . . ϕnk (x)

)
∈ R1×nk and c =

(
c1 c2 . . . cnk

)T ∈ Rnk×1.
The most common way to determine the coefficient c is via the least squares method,

where the residual sum of squares SSres is minimized as follows:

SSres =
nsim

∑
i=1

ε2
i =

nsim

∑
i=1

(yi − ỹi)
2 . (3)

The least squares solution for c is given by

c = (BT B)−1BTy . (4)

2.2.2. Gaussian Process

The GP is a Bayesian approach to regression that is becoming increasingly popular in
the machine learning community. It is defined as a set of infinitely many random variables,
where each finite subset has a multidimensional normal distribution (Rasmussen and
Williams [16]). In this section, the GP is briefly discussed. A detailed mathematical
description is given by Rasmussen and Williams [16].

The GP is defined by a mean function m(x) and a covariance function k(x, x′) (also
called kernel), with

m(x) = E[ f (x)] , (5)

k(x, x′) = E
[
( f (x)− m(x))( f (x′)− m(x′))

]
. (6)

The covariance function provides a mathematical formulation for the covariance between
two distinct points x and x′. In this paper, the following Gaussian kernel is used:

k(x, x′) = σ2
f exp

(
− 1

2l2
f

∥∥ x − x′
∥∥2

2

)
. (7)

Here, σ2
f is the signal variance, l f is the (multidimensional) length scale, and ∥x − x′∥2 is

the Euclidean distance between x and x′. Additionally, a noise variance σy is introduced to
consider the noise in the data. Further covariance functions are given by Rasmussen and
Williams [16].

The training of the model parameters θ = {l f , σf , σy} is performed by using the
maximum likelihood method. The model parameters are chosen to maximize the log-
marginal likelihood as follows:

log(p(y|X, θ)) =− 1
2
(y − m(X))T(K + σ2

y I)−1(y − m(X))− 1
2

log
(

det
(

K + σ2
y I
))

− nsim

2
log(2π) . (8)

2.3. Surrogate Model Quality

Before using a surrogate model, its quality must be quantified first. Two common meth-
ods are the coefficient of determination (Section 2.3.1) and cross validation (Section 2.3.2).

2.3.1. Coefficient of Determination

The coefficient of determination is a commonly used measure of the quality of a
surrogate model. It is calculated by comparing the vector of deterministic model responses
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y with the vector of responses ỹ predicted by the surrogate model. Various definitions can
be found in the literature (cf. KvÅlseth [17]) as follows:

R2
1 = 1 − ∑i(yi − ỹi)

2

∑i(yi − y)2 , (9)

R2
2 =

∑i(ỹi − y)2

∑i(yi − y)2 , (10)

R2
3 =

∑i(ỹi − ỹ)2

∑i(yi − y)2 , (11)

R2
4 = 1 − ∑i(εi − ε)2

∑i(yi − y)2 , (12)

R2
6 =

(
Cov(y, ỹ)√

Var(y) ·
√

Var(ỹ)

)2

=

(
∑i(yi − yi) ·

(
ỹi − ỹ

))2

∑i(yi − yi)
2 · ∑i

(
ỹi − ỹ

)2 , (13)

R2
7 = 1 − ∑i(yi − ỹi)

2

∑i y2
i

, (14)

R2
8 =

∑i ỹ2
i

∑i y2
i

. (15)

Here, εi = yi − ỹi is the model error for the realization i. Furthermore, y, ỹ, and ε are
the sample means of y, ỹ, and ε, respectively.

These sensitivity measures have different properties (cf. Prots [18]). To quantify the
surrogate model quality, R2

1 should be preferred. However, the R2
1 value can be significantly

reduced by a single or few data points that differs significantly from other observations
(outliers). Therefore, an actual vs. predicted plot should always be analyzed to detect
such points.

2.3.2. Cross Validation

Because the same data set is used for training the surrogate model and the computation
of the coefficient of determination, it cannot be used to make statements about the predictive
ability of a surrogate model. This is because, in engineering applications, the sample size is
limited due to time and resource constraints, and splitting the data set into a training and
test data set is also not feasible. For the best surrogate model quality, the whole data set
is used. To make a statement about the predictive ability in this case, cross validation can
be used.

In k-fold cross-validation, which is used in this paper, the data set is divided into k
subsets of approximately equal size. Then, the k − 1 of those subsets are used to train the
surrogate model. The remaining subset is used to test the surrogate model. This process is
repeated until each of those subsets was used for testing, thus resulting in a cross-validated
coefficient of importance R2

CV.
Because the quality of a surrogate model is evaluated with independent data sets, R2

CV
provides a better measure of the predictive quality of a surrogate model than the coefficient
of determination. Cross-validation is used only to assess the quality of the surrogate model.
The final surrogate model is built using all available data points.

3. Sampling Methods

The creation of the sample is an essential step of the MCS and has direct influence on
the surrogate model quality. In machine learning applications, the choice of the sampling
methods is equally important, as a representative database is desired. This section compares
different sampling methods, where the focus is on the impact on the surrogate model
quality. For this, Section 3.1 demonstrates the impact of the selected sampling method on
the surrogate model quality. Section 3.2 briefly discusses the existing sampling methods. In
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Section 3.3, these methods are applied to two mathematical test functions, and the quality
of the surrogate models are compared. Finally, Section 3.4 discusses how an existing sample
created with oLHS can be extended.

3.1. Space-Filling Properties and Surrogate Model Quality

The creation of the sample is an essential step of the MCS and has direct influence on
the surrogate model quality. This is illustrated in Figure 2 for a 1D test case. The dotted line
represents the true model, and the black points are the sample points. As can be seen, the
model is noisy and the realizations do not lie exactly on the dotted line. Using this sample,
the surrogate model is created, as shown in red. As can be seen, using a poor sampling
strategy can lead to a bad surrogate model (Figure 2a). The surrogate model quality can
be increased by adding more points, especially in areas without any realizations. Another
strategy would be to use a more uniform sampling in the beginning, as shown in Figure 2b.
Here, the surrogate model almost perfectly matches the true model.

(a) (b)

Figure 2. Comparison of 1D surrogate models with non-uniform and uniform sampling, where
nsim = 5. (a) Non-uniform sampling. (b) Uniform sampling.

The problem statement can now be extended to a multi-dimensional case. Besides the
marginal distributions, the correlation between the input variables must also be considered.
It is usually described using the Spearman rank correlation coefficient r̃. However, there is
no unique assignment between r̃ and the correlation structure. For example, both the point
clouds shown in Figure 3 have a rank correlation coefficient close to 0 but are inherently
different space-filling properties.

The point cloud in Figure 3a has poor space-filling properties. The large red ellipse
marks an area in which no realizations are present and thus no information about the
deterministic model behavior is available. On the other hand, the two realizations in
the blue ellipse lie next to each other so that one realization does not provide any new
information about the deterministic model compared to the other one. It would, therefore,
be beneficial to move one realization into the area of the red ellipse. The sample shown
in Figure 3b has good space-filling properties as no clusters or voids exist; therefore, it
is desirable.

0 1
x1

0

1

x 2

(a)

0 1
x1

0

1

x 2

(b)

Figure 3. Example of a 2D sample with poor and good space filling, where nsim = 50. (a) Poor space
filling. (b) Good space filling.
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3.2. Existing Sampling Methods

In this section, different existing sampling methods are presented, namely simple
random sampling (SRS, Section 3.2.1), Latin hypercube sampling (LHS, Section 3.2.2),
optimized LHS (oLHS, Section 3.2.3), Latinized particle sampling (LPS, Section 3.2.4), and
the Sobol sequence (Section 3.2.5). Furthermore, the methods for correlation control are
discussed in Section 3.2.6.

3.2.1. Simple Random Sampling

In SRS, the random numbers for each input variable are generated independently
without any constraints. First, nsim random numbers, which follow the uniform distribution
U(0; 1) are generated as follows:

q =
(
q1 q2 . . . qnsim

)
,

with 0 < qi < 1 for i = 1, . . . , nsim. To obtain the sample with the desired marginal
distribution, the inverse cumulative distribution function (CDF) F−1(x) is applied to q:

x = F−1(q)

=
(

F−1(q1) F−1(q2) . . . F−1(qnsim)
)

=
(
x1 x2 . . . xnsim

)
.

The realizations of the individual input variables are then combined either randomly
or a method for correlation control is applied.

3.2.2. Latin Hypercube Sampling

Latin hypercube sampling was introduced by McKay et al. [19], and it is a stratified
approach. In comparison to SRS, the estimates of statistical quantities like the mean or
standard deviation show a lower variation so that the same statistical significance can be
achieved with a smaller sample size. A random point is placed in each of the intervals

[0; 1/nsim] , [1/nsim; 2/nsim] , . . . , [(nsim − 1)/nsim; 1],

thus resulting in the vector
q =

(
q1 q2 . . . qnsim

)
,

with (i − 1)/nsim < qi < i/nsim for i = 1, . . . , nsim. Again, the inverse CDF is applied to
obtain the desired marginal distribution as follows:

x = F−1(q)

=
(
x1 x2 . . . xnsim

)
.

Furthermore, special treatment can be conducted for x1 and xnsim to further reduce the
variance of the statistical estimates (Huntington and Lyrintzis [20]).

In McKay et al. [19], the realizations of each input variable were combined randomly.
As this can introduce spurious correlations, a correlation control algorithm like restricted
pairing (RP) is usually applied.

3.2.3. Optimized Latin Hypercube Sampling

To remove the clusters and voids introduced by LHS, different approaches exist.
Two commonly used methods are simulated annealing (cf. Morris and Mitchell [21], and
Marrel [22]) and the enhanced stochastic evolutionary algorithm (Jin et al. [23]). Both
algorithms swap the value of an input variable of two randomly selected realizations until
a uniform space filling is reached (cf. Damblin et al. [24]). Note, the abbreviation oLHS
refers to an LHS sample that has been optimized with respect to the space-filling properties
and not the optimization method that was used to obtain it.
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3.2.4. Latinized Particle Sampling

Latinized particle sampling was introduced by Prots et al. [25], and it considers
the realizations as charged particles. Due to the repelling force, the realizations will be
separated. This process is simulated in an iterative way. For this, three different force types
are considered (Figure 4). The inner forces represent the repelling forces between any pair
of two realizations (Figure 4a,b). The outer forces act from the walls onto the realizations
(Figure 4c) so that they will remain within the sampling space. The frictional forces are used
to dissipate energy to stop the movement of the realizations (Figure 4d). In an iterative way,
the positions and velocities are updated until a force equilibrium is reached. Afterward,
the sample is Latinized to obtain the desired marginal distributions. Finally, a correlation
control algorithm can be applied to obtain the desired target correlation. More details can
be found in Prots [18].

(a) (b) (c)

(d) (e)
Figure 4. Calculation of forces for one iteration step. (a) The inner force (orange) between two
realizations; (b) the resulting inner force (orange) of all realizations; (c) the resulting outer force (red)
of all realizations; (d) the resulting frictional force (violet) of all realizations; and (e) the resulting total
force (black) of all realizations.

3.2.5. Sobol Sequence

The Sobol sequence (also called the LPτ sequence Sobol [26]) is a sampling method
where the realizations are generated in a deterministic way. It is based on the one-
dimensional van der Corput sequence [27] Φ2(k). Using different so-called direction num-
bers, a multi-dimensional sample can be created. More details are given by Lemieux [28].

3.2.6. Correlation Control

The discussed sampling methods do not have a means of setting a desired target
correlation matrix. However, in engineering applications, this is important as the input
variables are usually correlated. For this, correlation control algorithms like restricted
pairing (RP) can be used (Iman and Conover [29]). Here, a data matrix X is transformed
into the matrix X∗ with the desired target Spearman rank correlation matrix T̃. The
following steps are performed (cf. Dandekar et al. [30]):

1. Compute the lower triangular matrix P so that PPT = T̃ holds.
2. Compute the rank correlation matrix C̃ of the matrix X.
3. Compute the lower triangular matrix Q so that QQT = C̃ holds (e.g., using the

Cholesky decomposition, Benoit [31]).



Aerospace 2024, 11, 355 9 of 21

4. Compute the matrix S = PQ−1.
5. Compute the matrix R = XST .
6. Replace the values of R by their ranks in the corresponding column.
7. Sort the values of X according to their ranks in R to form the matrix X∗.

The result of the RP depends significantly on the initial matrix X. For LHS, it can be
scrambled multiple times before applying RP. For oLHS, LPS, and the Sobol sequence, the
initial matrix X remains unchanged to prevent the space-filling properties.

3.3. Comparison of Sampling Methods

The sampling methods are now compared with respect to the resulting quality of the
surrogate models. For this, the following steps are performed:

1. Create sample Xtrain.
2. Evaluate ytrain = f (Xtrain).
3. Create surrogate model f̃ (x) using Xtrain and ytrain.
4. Evaluate surrogate model quality.

The surrogate model quality is quantified using a separate test data set ytest = f (Xtest) as
follows:

R2
1,test = 1 − ∑n

i=1(ytest,i − ỹtest,i)
2

∑n
i=1(ytest,i − ytest)

2 , (16)

with ỹtest,i = f̃ (xtest,i). This procedure is repeated 250 times to obtain a distribution of
R2

1,test. The test data are the same for all repetitions and are created with LHS for simplicity
(ntest = 2000).

Because of the repetitions, it is not possible to perform this analysis for engineering
test cases. Therefore, two mathematical test functions will be analyzed.

3.3.1. Sasena Test Function

For this test, a 2D mathematical function, introduced by Ben Salem and Tomaso [32],
is analyzed. It is defined as

y(x) = 2 + 0.01(x2 + x2
1)

2 + (1 − x1)
2 + 2(2 − x2)

2 + 7 sin(0.5x1) sin(0.7x1x2) + ε , (17)

with x1, x2 ∼ U(0; 5). With σε ∼ N(0; σε), a normally distributed noise term is considered.
The analysis is performed for nsim = 50. The surrogate model is a GP.

Two test cases are analyzed. In the first test case, no noise is considered and the
parameter σy is set to 10−5. Figure 5a shows the distribution of R2

1,test. If the distribution
lies more to the right, then this means that the corresponding sampling method yields
better surrogate models in a statistical sense. In this particular case, the curves for oLHS
and LPS match and are more to the right compared to the curves of LHS and LSOB-S, such
that the former two sampling methods are superior.

0.7 0.8 0.9 1.0
R21,test

0.0
0.2
0.4
0.6
0.8
1.0

F(R
2 1,te

st)

(a)

0.7 0.8 0.9 1.0
R21,test

0.0
0.2
0.4
0.6
0.8
1.0

F(R
2 1,te

st)

(b)

LHS oLHS LSOB-S LPS
Figure 5. Empirical cumulative distribution function of R2

1,test for the surrogate models of the Sasena
test function. (a) Noise-free case and fixed σy = 10−5; (b) noisy case (σε = 2.5) and free σy.
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The same behavior can be observed for the second case, where a noise with σε = 2.5
was considered. During the surrogate model training, the parameter σy was set free and
was therefore also trained. Due to the noise, the quality of the surrogate model decreased
for all sampling methods Nevertheless, oLHS and LPS yielded the best surrogate models.

3.3.2. Oakley & O’Hagan Test Function

In the second test case, a 15D mathematical test function, introduced by Oakley and
O’Hagan [33], was analyzed. It is defined as

y(x) = aT
1 x + aT

2 sin(x) + aT
3 cos(x) + xT Mx , (18)

with x ∈ Rnsim×15. The values for a1, a2, a3, and M are given by Oakley [34]. The sample
size is nsim = 80.

For this test case, the results of the different types of surrogate models were analyzed.
For a polynomial surrogate model (Figure 6a), the largest differences could be seen. The
best surrogate models were obtained by oLHS, followed by LPS, LSOB-S, and LHS.

0.5 0.6 0.7 0.8
R21,test

0.0
0.2
0.4
0.6
0.8
1.0

F(R
2 1,te

st)

(a)

0.5 0.6 0.7 0.8
R21,test

0.0
0.2
0.4
0.6
0.8
1.0

F(R
2 1,te

st)

(b)

0.5 0.6 0.7 0.8
R21,test

0.0
0.2
0.4
0.6
0.8
1.0

F(R
2 1,te

st)
(c)

LHS oLHS LSOB-S LPS
Figure 6. Empirical cumulative distribution function of R2

1,test for the surrogate models of the Oakley
and O’Hagan test function and the uncorrelated input variables. (a) Polynomial; (b) the Gaussian
process and one-dimensional length scale; and (c) the Gaussian process and multi-dimensional
length scale.

For a GP with a 1D-length scale (Figure 6b), the order is the same. However, the differ-
ences between the sampling methods become marginal. For a GP with a multi-dimensional-
length scale (Figure 6c), there was virtually no difference between the sampling methods.

3.3.3. Summary

As demonstrated in this section, the performance of sampling methods with respect
to the quality of surrogate models depends on the selected test case and surrogate model.
However, when there was a difference between the sampling methods, then oLHS per-
formed the best, especially for the high-dimensional test case. Therefore, oLHS is preferred
when a high surrogate model quality is required.

3.4. Extension of oLHS

Another advantage of oLHS is that fixed realizations can be used. On example are
predefined points that should be included in the sampling. This is shown in Figure 7a,
where the red points were predefined. They can represent the nominal design or other
combinations of input variables of interest. The remaining points were added using the
oLHS approach, and the entire sample exhibited good space-filling properties.

Furthermore, this approach can be used to extend an existing sample to increase the
sample size. This is shown in Figure 7b. The red points represent the initial sample, which
was created with oLHS and has good space-filling properties (nsim = 40). Then, another
40 realizations were added (black points). As can be seen, the space-filling properties are
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still good. In comparison, Figure 7c shows the extension of the same sample using extended
LHS (eLHS, Schmidt et al. [35]), where the space-filling properties are not tracked and
the resulting sample has inferior space-filling properties in comparison to the extension
with oLHS.

(a) (b) (c)
Figure 7. Example of oLHS (black and red) with fixed realizations (red). (a) Predefined points; (b) an
extension of a sample; (c) and a comparison with eLHS.

4. Sensitivity Analysis
4.1. Basics of Sensitivity Analysis

Sensitivity analysis is “the study of how uncertainty in the output of a model (numerical
or otherwise) can be apportioned to different sources of uncertainty in the model input” (Saltelli
et al. [36] (p. 45)). An overview of sensitivity analysis methods can be found, for example,
in Saltelli et al. [37].

In engineering applications, a global sensitivity analysis is performed, where the
influence of the input variables in the entire definition range is quantified. Examples of
global sensitivity measures are the Sobol indices (Sobol and Levitan [38]), as well as the
Shapley values (Shapley [39]), which are discussed in the following.

The definition of both sensitivity measures is quite complex and not intuitive without
experience. Therefore, an illustrative example is introduced, which is then used to easily
describe the different sensitivity measures. For this, the restaurant order in Table 1 is ana-
lyzed. There, Alice, Bob, and Charlie each order something to eat and drink. Furthermore,
they give a tip at the end. Some orders can be assigned to one single person, and some
orders are shared between two people.

The behavior of the different sensitivity measures on a mathematical test function is
shown in Prots [18] and Prots et al. [40]. There, the effect of a correlation is demonstrated,
which cannot be considered in the simple example of Table 1.

Table 1. Illustrative example for sensitivity analysis.

Meal Drink Tip

Alice
Paella, $24

Coke, $3

Tip, $6Bob
Wine, $16

Charlie Burger, $15

4.1.1. Sobol Indices

With the Sobol indices, the influence of a subset of one or more input variables on
the variance of f (x) can be quantified. In the scope of this paper, the following types
are discussed:

• First-order Sobol sensitivity indices;
• Higher-order Sobol sensitivity indices;
• Total-effect Sobol sensitivity indices.
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These were originally defined for uncorrelated inputs. However, Kucherenko et al. [41] has
shown that these definitions are also valid for correlated input variables.

First-Order Sobol Sensitivity Indices

The first-order Sobol sensitivity index Si (also called the main sensitivity index MSI) is
defined as the partial variance contributed by the input variable xi, which is normalized to
the total variance as follows:

Si =
Var(E( f (x)|xi))

Var( f (x))
. (19)

The alternative definition

Si = 1 − E(Var( f (x)|xi))

Var( f (x))
(20)

can be derived from the law of total variance

Var( f (x)) = Var(E( f (x)|xi)) +E(Var( f (x)|xi)) . (21)

The number of MSIs is equal to the number of input variables nd.
Applying the MSIs to the example of Table 1 provides the values

S(A) = USD 3 , S(B) = USD 0 , S(C) = USD 15 ,

where S(A), S(B), and S(C) are the MSIs of Alice, Bob, and Charlie, respectively. As can be
seen, they equal the orders that were made by this person only. This means, that the MSI of
Bob is equal to 0 because he only has shared orders. Therefore, quantifying the importance
of Bob solely based on the MSI is misleading as it does not consider interaction effects.

This problem can be generalized: the MSI of an input variable can be 0, even if it has a
functional influence on the function. Therefore, it is not sufficient to only consider the MSIs.

Higher-Order Sobol Sensitivity Indices

The higher-order Sobol sensitivity index Si1,...,is (also called the interaction sensitivity
index, ISI) is defined as the partial variance caused by two or more input variables i1, . . . , is,
and it is normalized to the total variance. The second-order Sobol sensitivity index is
calculated as (Saltelli et al. [37])

Si1,i2 =
Var
(
E( f (x)|xi1 , xi2)

)
Var( f (x))

− Si1 − Si2 . (22)

Third-order Sobol sensitivity indices can also be analogously calculated in this manner.
The number of higher-order Sobol sensitivity indices is 2nd − 1 − nd, which rise expo-

nentially with increasing nd. Therefore, only the first-order Sobol sensitivity indices are
usually calculated. For small nd, the second-order Sobol sensitivity indices can also be com-
puted, where the number of indices is nd · (nd − 1)/2. However, if there is an interaction
effect that is caused by three or more input variables, this effect is then overlooked when
only calculating first-order and second-order Sobol sensitivity indices.

For the example of Table 1, the ISIs were

S(A, B) = USD 24 , S(A, C) = USD 0 , S(B, C) = USD 16 , S(A, B, C) = USD 6 .

The ISI of Alice and Bob is USD 24, as their meal order is the only one that both of
them share exclusively. Because there is no order where Alice and Charlie solely contribute,
their ISI is USD 0. The tip is included in the third-order ISI.

As already mentioned, the number of ISIs is very large in engineering applications, so
they they are not usually computed.



Aerospace 2024, 11, 355 13 of 21

Total-Effect Sobol Sensitivity Indices

The total-effect Sobol sensitivity index (TSI) ST,i of the input variable xi is the sum of
the MSI Si and all ISIs that include interaction effects with xi as follows:

ST,i = ∑
S⊆M:i∈S

SS . (23)

It can alternatively be calculated by (Saltelli et al. [37])

ST,i =
E(Var( f (x)|x∼i))

Var( f (x))
(24)

= 1 − Var(E( f (x)|x∼i))

Var( f (x))
, (25)

where f (x) is conditioned by all input variables except xi (written as x∼i). The number of
TSIs is equal to the number of input variables nd.

Applying the TSI to the example of Table 1, the TSIs are

ST(A) = USD 24 + USD 3 + USD 6 = USD 33 ,

ST(B) = USD 24 + USD 16 + USD 6 = USD 46 ,

ST(B) = USD 15 + USD 16 + USD 6 = USD 37 .

The TSI considers the total contribution of a given input variable. Thus, if ST is equal
to 0, it might be concluded that this input variable has no contribution to the variance
of f (x). This is true for uncorrelated input variables (Saltelli et al. [37]). However, for
correlated input variables, the TSI can become 0 for an input variable even if it has a
functional influence.

4.1.2. Shapley Values

Shapley values (Shapley [39]) are a concept in cooperative game theory that fairly
distribute the payoff generated by a coalition among its players by taking into account the
contributions of each member and the interactions among them. Their definition is similar
to TSIs. However, the ISIs are distributed equally to the corresponding input variables
as follows:

Shi = ∑
S⊆M:i∈S

SS
|S| , (26)

where |S| is the cardinality of S . The number of Shapley values is equal to the number of
input variables nd.

Applying the Shapley values to the example of Table 1 yields

Sh(A) =
USD 24

2
+ USD 3 +

USD 6
3

= USD 17 ,

Sh(B) =
USD 24

2
+

USD 16
2

+
USD 6

3
= USD 22 ,

Sh(C) = USD 15 +
USD 16

2
+

USD 6
3

= USD 25 .

As can be seen, the shared orders are distributed equally to the corresponding persons. In
this particular example, the Shapley value is equal to the amount each person would have
to pay.

The Shapley values are a suitable way through which to analyze a problem with inter-
actions. In general, this applies to both functional and correlation interactions. However,
if x1 is an input variable, which does not have a function impact on f (x) but has a high
correlation to an input variable x2 with a high impact, it will still obtain a high Shapley
value. Furthermore, the Shapley value of x2 will decrease. In theory, one could add many
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such correlated variables without a functional influence so that the Shapley value of x2
will be reduced even further. It is, therefore, critical to identify input variables without
functional influence.

4.2. Modified Coefficient of Importance

As discussed, the Sobol indices and Shapley values are not sufficient to analyze a
system with correlated input variables, as both can become 0 for input variables with
functional influence. Hence, it is not reliably possible to identify input variables without
functional influence. Therefore, an additional sensitivity measure is used, which is the
modified coefficient of importance (mCoI, Prots [18], and Prots et al. [40]).

The mCoI is based on the coefficient of importance introduced by Bucher [42], and
it combines this concept with the idea of the quantification of variable importance by a
random forest (Breiman [43]). First, a test sample Xtest is created and evaluated, thereby
yielding ytest = f (Xtest). Then, for each input variable xi, a copy of Xtest is created. Unlike
for the CoI, the values of xi are not set constant but are permuted, thus yielding X i

test.
Evaluating this data set gives yi

test = f (X i
test). Now, the mCoI for the input variable xi is

calculated as

mCoIxi = 1 − R2
4(ytest, yi

test) , (27)

with R2
4 as the coefficient of determination from Equation (12).

If xi is an input variable with a functional influence, then this means that, after
permuting, yi

test is much different than ytest so that the R2
4 is low and the mCoI is close to

1.0. On the other hand, if xi has no functional influence, then ytest and yi
test are very similar

and R2
4 is close to 1.0, thus resulting in a low mCoI value.

For a better interpretation of the mCoI, the values are normalized so that

nd

∑
i

mCoIxi = 1 . (28)

This process is now repeated nrepeats times (e.g., nrepeats = 500), and the median value is
used as the mCoI.

Because many function evaluations are required for the mCoI, f (X) is usually rep-
resented by a surrogate model. For a result with statistical significance, a high-surrogate-
model quality is required. For the sensitivity analysis, all three measures (Sobol indices,
Shapley values, and mCoI) are computed. The mCoI is used to identify the input variables
without functional influence. The remaining sensitivity measures can then be used.

5. Application to Turbomachinery

In this final section, the sensitivity analysis is performed for a turbomachinery test
444 case. First, the test case is presented in Section 5.1. Then, the probabilistic setup is
shown in Section 5.2 and the results of the sensitivity analysis are discussed in Section 5.3.

5.1. Turbomachinery Test Case

In the turbomachinery test case, the post-service compressor blades of an industrial
mid-stage rotor of a high-pressure compressor, which are subject to manufacturing variabil-
ity and wear, were analyzed. The optical measurements were performed with an ATOS
Scanbox 5108 from GOM. From the internal investigations conducted at the Chair of Turbo-
machinery and Flight Propulsion of the Technische Universität Dresden, the measurement
accuracy was estimated to be about 20 µm. A total of 77 optically measured blades were
obtained from this analysis.

The variability of the blades was parameterized using the approach introduced by
Lange et al. [44] and Heinze [45]. There, the profile parameters similar to the NACA
parameters were used to describe the camber and thickness distribution to represent the
manufacturing variability. Additionally, positional parameters were used to describe a
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change in the position of the blade. These parameters are visualized in Figure 8 and listed
in Table 2.
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Figure 8. Visualization of the blade profile parameters. (a) Profile Parameters. (b) Thickness
parameters. (c) Camber parameters.

Table 2. The geometric blade profile parameters (cf. Lange et al. [1] (Table 1)).

Symbol Variable

posax, postan Axial and tangential positions of the section outline at the leading edge
λ Stagger angle
lch Chord length

tLE, tTE Thickness of the leading edge and trailing edge
xtLE , xtTE Position of tLE and tTE on the chord
tmax Maximum thickness of the profile
xtmax Position of tmax on the chord

βLE, βTE Angle of the camber line at the leading edge and trailing edge
cmax Maximum camber of the profile
xcmax Position of cmax on the chord

To obtain the distribution of the profile parameters, a population of blades was an-
alyzed. In the first step, the profile parameters are obtained for each blade. For this, the
profile contours (sections) are extracted on different span positions as the intersection
between the blade body and the rotating body that results from a streamline. At each span
position, the 14 profile parameters are retrieved, thereby resulting in the parameter matrix

Pi =
[

pi,1, pi,2, . . . , pi,nsec

]T
∈ Rnsec×14 , (29)

where i is the index of the analyzed blade, pi,j is the parameter vector for section j, and nsec
is the number of sections (here nsec = 48).

In the next step, the delta parameters ∆Pi = Pref − Pi are obtained, where Pref is
the parameter matrix of a reference model. In the original approach by Lange et al. [44],
the nominal design (ND) is used as the reference model. Heinze et al. [45] introduced a
so-called median model Pref, which was obtained by analyzing the entire population of the
blades. For each profile parameter at each section, the median of the population was used
to create Pref. Using the median model, the radial distribution of the delta parameters is
more similar, which simplifies their description.

The main driving forces of the geometric variability for the analyzed blade popu-
lation are manufacturing variability and wear. Therefore, the parameters are strongly
correlated in the radial direction, so that the nav ≤ nsec averaging domains can be used in
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a radial direction for dimensionality reduction (cf. Lange et al. [46]), thus resulting in the
parameter set

∆Pi =
[
∆pi,1, ∆pi,2, . . . , ∆pi,nav

]T
∈ Rnav×14 with nav ≤ nsec . (30)

Usually, nav = 1 is used to keep the number of input variables small. To demonstrate the
effect of correlations for the sensitivity analysis, nav = 4 was also used. The correlation
matrices are shown in Figure 9. For nav = 4, each block represents an averaging section.

β LE β TE pos
ax

l ch c ma
x

t max x t LE x t TE x c ma
x

x t ma
x

λ pos
tan

t LE t TE

βLEβTEposaxlchcmaxtmaxxtLExtTExcmaxxtmaxλpostantLEtTE
–1.0 –0.6 –0.2 0.2 0.6 1.0

r̃
(a)

I II III IV

I

II

III

IV

–1.0 –0.6 –0.2 0.2 0.6 1.0
r̃
(b)

Figure 9. Correlation matrix of the profile parameters for the turbomachinery test case. (a) nav = 1.
(b) nav = 4.

The result value of interest is the isentropic efficiency ηis, which is defined as

ηis =
∆his

∆h
, (31)

with ∆his and ∆h as the changes in the specific enthalpy of the isentropic and real process,
respectively. The 3D CFD calculations were performed with the Rolls-Royce proprietary
HYDRA CFD system using a stator–rotor–stator configuration. The geometry of the vanes is
kept constant to focus only on the effect of the blades. The flow domain is discretized using
the tool PADRAM, thus resulting in an O-H-grid mesh of approximately 4.6 × 106 nodes.
The flow field is calculated with stationary Reynolds-averaged Navier-Stokes equations
with the Spalart-Allmaras turbulence model. Boundary conditions are specified as radial
profiles of the total temperature, total pressure, radial and tangential flow angles, and the
Spalart variable at the inlet. A flow capacity is specified at the outlet of the domain. The
analyzed operating point is at the design point speed line near peak efficiency. The flow
field around the blade is visualized in Figure 10. There, the wall shear stress (an indicator
for the boundary layer state) and the Mach number are shown.



Aerospace 2024, 11, 355 17 of 21

0
Wall Shear Stress

1
Mach Number

Figure 10. The flow field around the blade.

5.2. Probabilistic Setup

To perform sensitivity analysis, a surrogate model is needed. For each nav, a separate
MCS is performed since each case has a different set of input variables. The sample sizes
are nsim = {80, 320} for nav = {1, 4}, respectively. All samples are created using oLHS in
combination with RP. For all input variables, a normal distribution is assumed.

A surrogate model is then created for each MCS. For all three values of nav, a first-
order polynomial surrogate model is created. The actual vs. predicted plots are shown in
Figure 11. The surrogate models can predict ηis well, and no clear outliers can be seen. This
is also reflected in the high values of R2

1 > 0.98 and R2
1,CV > 0.98. This means that these

surrogate models can be used for further analysis.

-1 0 1
normalized ηis

-1

0

1

nor
ma

lize
dη̃

is

R21 = 0.99, R21,CV = 0.98

(a)

-1 0 1
normalized ηis

-1

0

1

nor
ma

lize
dη̃

is

R21 = 0.99, R21,CV = 0.98

(b)
Figure 11. Actual vs. predicted plots for the turbomachinery test case. (a) nav = 1. (b) nav = 4.

5.3. Sensitivity Analysis

The results of the sensitivity analysis are shown in Figure 12. For a better comparability
of the results, the parameters were grouped for nav = 4. A group consists of the same
profile parameters in the different averaging domains. Based on the mCoI, tLE, cmax, and
xtLE can be identified as the most important input variables for the isentropic efficiency ηis.
All other input variables have a significantly smaller mCoI value, which are close to 0.

For the Shapley values and first-order Sobol indices, there is a good agreement for most
input variables. For βLE, on the other hand, larger differences are present. For example,
Sh(βLE) = 0.01 and S1(βLE) = 0.01 for nav = 1. For nav = 4, however, both values
increased (Sh(βLE) = 0.05 and S1(βLE) = 0.15). This must be caused by the correlations of
βLE with other input variables, since functional interactions are not modeled in the used
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first-order polynomial. For nav = 4, the first-order Sobol sensitivity index increased again
(S1(βLE) = 0.29). A similar behavior could be observed for βTE. In all three cases, however,
the corresponding mCoI values for both βLE and βTE were close to 0; as such, both profile
parameters were identified as one without functional influence in all three cases.

In this example, the advantage of the mCoI over the total-effect Sobol index was further
illustrated. Due to the correlations between the profile parameters (especially for nav = 4),
the significance of ST decreases. Thus, input variables without functional influence cannot
be reliably determined. For example, ST(xtLE) = 0.01 for nav = {2, 4}. The mCoI, on the
other hand, clearly shows that xtLE has a non-negligible influence on ηis.

The identification of important and unimportant input variables is an important step
for a further analysis of the compressor blade. For example, if a robust optimization is
performed, input variables without functional influence can be removed from the analysis
to reduce the search space. But it can also have practical applications. For example, the
manufacturing process can be changed in such a way that the variability for variables
without functional influence is increased in order to save costs during production.
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Figure 12. Results of the sensitivity analysis of the turbomachinery test case for different numbers of
averaging domains. (a) nav = 1. (b) nav = 4.

6. Summary

In this paper, different strategies of probabilistic analyses were discussed. These allow
for taking the uncertainty in geometry and boundary conditions into account. Monte Carlo
simulation (MCS) is a popular method but requires an increased numerical effort. Hence,
even small improvements in probabilistic methods can have a large impact.

The first part of this paper discussed and analyzed different sampling methods. There,
the focus was laid on the quality of surrogate models because they can be evaluated quickly
and can serve as a replacement for a complex numerical model. The discussed methods
were Latin hypercube sampling (LHS), optimized LHS (oLHS), the Sobol sequence, and
Latinized particle sampling (LPS). They exhibit different properties with respect to the
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space filling of a sampling space. For different mathematical test cases, these methods were
used to create surrogate models. The best ones were obtained with oLHS, which should
therefore be used if a high surrogate model quality is desired.

In the second part of this paper, methods for sensitivity analysis were discussed. The
Sobol indices and Shapley values were explained on an intuitive example. However, since,
for correlated input variables, these are not sufficient to identify input variables without
functional influence, the modified coefficient of importance (mCoI) was discussed as an
additional sensitivity measure.

In the third part, these methods were applied to a turbomachinery test case. There,
the blades of a compressor row were subject to geometric variability so that the isentropic
efficiency was also subject to variability. To perform the sensitivity analysis, a MCS was
first performed to create a surrogate model using oLHS as the sampling method. Then,
a sensitivity analysis was performed for the different sets of input variables. There, the
advantage of the mCoI was demonstrated as it could reliably identify the input variables
without functional influence. It was shown that, for this particular test case, the variability
of the maximum camber and thickness of the leading edge had the largest effect on the
variability of the isentropic efficiency.
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GP Gaussian process
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MSI First-order Sobol sensitivity index
ND Nominal design
oLHS Optimized Latin hypercube sampling
RP Restricted pairing
SRS Simple random sampling
TSI Total-effect Sobol sensitivity index



Aerospace 2024, 11, 355 20 of 21

References
1. Lange, A.; Voigt, M.; Vogeler, K.; Schrapp, H.; Johann, E.; Gümmer, V. Impact of Manufacturing Variability and Nonaxisymmetry

on High-Pressure Compressor Stage Performance. J. Eng. Gas Turbines Power 2012, 134, 112601. [CrossRef]
2. Voigt, P.; Högner, L.; Fiedler, B.; Voigt, M.; Mailach, R.; Meyer, M.; Nasuf, A. Comprehensive Geometric Description of

Manufacturing Scatter of High-Pressure Turbine Nozzle Guide Vanes for Probabilistic CFD Analysis. J. Turbomach. 2019,
141, 081002. [CrossRef]

3. Högner, L.; Voigt, M.; Mailach, R.; Meyer, M.; Gerstberger, U. Probabilistic Finite Element Analysis of Cooled High-Pressure
Turbine Blades—Part A: Holistic Description of Manufacturing Variability. J. Turbomach. 2020, 142, 101008. [CrossRef]

4. Högner, L.; Voigt, M.; Mailach, R.; Meyer, M.; Gerstberger, U. Probabilistic Finite Element Analysis of Cooled High-Pressure
Turbine Blades—Part B: Probabilistic Analysis. J. Turbomach. 2020, 142, 101009. [CrossRef]

5. Seshadri, P.; Parks, G.T.; Shahpar, S. Leakage Uncertainties in Compressors: The Case of Rotor 37. J. Propuls. Power 2015,
31, 456–466. [CrossRef]

6. Lavagnoli, S.; De Maesschalck, C.; Paniagua, G. Uncertainty Analysis of Adiabatic Wall Temperature Measurements in Turbine
Experiments. Appl. Therm. Eng. 2015, 82, 170–181. [CrossRef]

7. Ghisu, T.; Shahpar, S. Affordable Uncertainty Quantification for Industrial Problems: Application to Aero-Engine Fans. J. Turbo-
mach. 2018, 140, 061005. [CrossRef]

8. Fiedler, B.; Muller, Y.; Voigt, M.; Mailach, R. Multidisciplinary Sensitivity Analysis of the Cooling System of a High-Pressure
Turbine Blade in the Pre-Design Phase. In Proceedings of the ASME Turbo Expo 2021: Turbomachinery Technical Conference
and Exposition, Virtual, 7–11 June 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; GT2021-58507.
[CrossRef]

9. Verstraete, T.; Amaral, S.; Van den Braembussche, R.; Arts, T. Design and Optimization of the Internal Cooling Channels of a
High Pressure Turbine Blade—Part II: Optimization. J. Turbomach. 2010, 132, 021014. [CrossRef]

10. Padulo, M.; Campobasso, M.S.; Guenov, M.D. Novel Uncertainty Propagation Method for Robust Aerodynamic Design. AIAA J.
2011, 49, 530–543. [CrossRef]

11. Seshadri, P.; Shahpar, S.; Parks, G.T. Robust Compressor Blades for Desensitizing Operational Tip Clearance Variations. In
Proceedings of the ASME Turbo Expo 2014: Turbomachinery Technical Conference and Exposition, Düsseldorf, Germany, 16–20
June 2014; American Society of Mechanical Engineers: New York, NY, USA, 2014; GT2014-26624. [CrossRef]

12. Dow, E.A.; Wang, Q. The Implications of Tolerance Optimization on Compressor Blade Design. J. Turbomach. 2015, 137, 101008.
[CrossRef]

13. Kamenik, J.; Voutchkov, I.; Toal, D.J.; Keane, A.J.; Högner, L.; Meyer, M.; Bates, R. Robust Turbine Blade Optimization in the Face
of Real Geometric Variations. J. Propuls. Power 2018, 34, 1479–1493. [CrossRef]

14. Dittmann, M.; Schmidt, R.; Meyer, M. Application of Adjoint-Enhanced First Order Second Moment Method for Robust Design
Optimization of a High Pressure Compressor Rotor. J. Turbomach. 2022, 145, 021010. [CrossRef]

15. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 3rd ed.; Wiley: New York, NY, USA, 2003.
16. Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2.
17. Kvålseth, T.O. Cautionary Note about R2. Am. Stat. 1985, 39, 279–285. [CrossRef]
18. Prots, A. Strategies for Improved Performance of Probabilistic Simulations. Ph.D. Thesis, Technische Universität Dresden,

Dresden, Germany, 2024.
19. McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the

Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245.
20. Huntington, D.; Lyrintzis, C. Improvements to and Limitations of Latin Hypercube Sampling. Probabilistic Eng. Mech. 1998,

13, 245–253. [CrossRef]
21. Morris, M.D.; Mitchell, T.J. Exploratory Designs for Computational Experiments. J. Stat. Plan. Inference 1995, 43, 381–402.

[CrossRef]
22. Marrel, A. Mise en oeuvre et Exploitation du Métamodèle Processus Gaussien pour l’Analyse de Modèles numéRiques—Application

à un code de Transport Hydrogéologique. Ph.D. Thesis, Institut National des Sciences Appliquées de Toulouse, Toulouse,
France, 2008.

23. Jin, R.; Chen, W.; Sudjianto, A. An Efficient Algorithm for Constructing Optimal Design of Computer Experiments. J. Stat. Plan.
Inference 2005, 134, 268–287. [CrossRef]

24. Damblin, G.; Couplet, M.; Iooss, B. Numerical Studies of Space-Filling Designs: Optimization of Latin Hypercube Samples and
Subprojection Properties. J. Simul. 2013, 7, 276–289. [CrossRef]

25. Prots, A.; Voigt, M.; Mailach, R. A charged particle-inspired sampling scheme for improved surrogate model quality. Probabilistic
Eng. Mech. 2023, 72, 103447. [CrossRef]

26. Sobol, I.M. On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals. USSR Comput. Math. Math.
Phys. 1967, 7, 86–112. [CrossRef]

27. van der Corput, J.G. Verteilungsfunktionen. I. Proc. Akadamie Van Wet. Amst. 1935, 38, 813–821.
28. Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling; Springer Series in Statistics; Springer: Dordrecht, The Netherlands, 2009.
29. Iman, R.L.; Conover, W.J. A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables. Commun. Stat.

Simul. Comput. 1982, 11, 311–334. [CrossRef]

http://doi.org/10.1115/1.4007167
http://dx.doi.org/10.1115/1.4042892
http://dx.doi.org/10.1115/1.4047778
http://dx.doi.org/10.1115/1.4047779
http://dx.doi.org/10.2514/1.B35039
http://dx.doi.org/10.1016/j.applthermaleng.2015.02.048
http://dx.doi.org/10.1115/1.4038982
http://dx.doi.org/10.1115/GT2021-58507
http://dx.doi.org/10.1115/1.3104615
http://dx.doi.org/10.2514/1.J050448
http://dx.doi.org/10.1115/GT2014-26624
http://dx.doi.org/10.1115/1.4030791
http://dx.doi.org/10.2514/1.B37091
http://dx.doi.org/10.1115/1.4055578
http://dx.doi.org/10.2307/2683704
http://dx.doi.org/10.1016/S0266-8920(97)00013-1
http://dx.doi.org/10.1016/0378-3758(94)00035-T
http://dx.doi.org/10.1016/j.jspi.2004.02.014
http://dx.doi.org/10.1057/jos.2013.16
http://dx.doi.org/10.1016/j.probengmech.2023.103447
http://dx.doi.org/10.1016/0041-5553(67)90144-9
http://dx.doi.org/10.1080/03610918208812265


Aerospace 2024, 11, 355 21 of 21

30. Dandekar, R.A.; Cohen, M.; Kirkendall, N. Sensitive Micro Data Protection Using Latin Hypercube Sampling Technique. In
Inference Control in Statistical Databases, From Theory to Practice; Springer: Berlin/Heidelberg, Germany, 2002; pp. 117–125.
[CrossRef]

31. Benoit, E. Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des moindres
carrés à un système d’équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky). Bull.
Géodésique 1924, 2, 67–77. [CrossRef]

32. Ben Salem, M.; Tomaso, L. Automatic Selection for General Surrogate Models. Struct. Multidiscip. Optim. 2018, 58, 719–734.
[CrossRef]

33. Oakley, J.E.; O’Hagan, A. Probabilistic Sensitivity Analysis of Complex Models: A Bayesian Approach. J. R. Stat. Soc. Ser. B Stat.
Methodol. 2004, 66, 751–769. [CrossRef]

34. Oakley, J.E. psa_example.txt. Available online: http://www.jeremy-oakley.staff.shef.ac.uk/psa_example.txt (accessed on
16 July 2021).

35. Schmidt, R.; Voigt, M.; Mailach, R. Latin Hypercube Sampling-Based Monte Carlo Simulation: Extension of the Sample Size and
Correlation Control. In Uncertainty Management for Robust Industrial Design in Aeronautics; Springer: Berlin/Heidelberg, Germany,
2019; pp. 279–289. [CrossRef]

36. Saltelli, A.; Tarantola, S.; Campolongo, F.; Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley:
New York, NY, USA, 2004; Volume 1.

37. Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. Global Sensitivity Analysis: The
Primer; John Wiley: Hoboken, NJ, USA, 2008.

38. Sobol, I.M.; Levitan, Y.L. On the Use of Variance Reducing Multipliers in Monte Carlo Computations of a Global Sensitivity Index.
Comput. Phys. Commun. 1999, 117, 52–61. [CrossRef]

39. Shapley, L.S. 17. A Value for n-Person Games. In Contributions to the Theory of Games (AM-28), Volume II; Kuhn, H.W., Tucker,
A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–318. [CrossRef]

40. Prots, A.; Schlüter, L.; Voigt, M.; Meyer, M.; Mailach, R. Sensitivity Analysis of Performance Parameters of a Compressor Blade
with Correlated Profile Parameters. In Proceedings of the ASME Turbo Expo 2023: Turbomachinery Technical Conference
and Exposition, Boston, MA, USA, 26–30 June 2023; American Society of Mechanical Engineers: New York, NY, USA, 2023;
GT2023-102442. [CrossRef]

41. Kucherenko, S.; Tarantola, S.; Annoni, P. Estimation of Global Sensitivity Indices for Models with Dependent Variables. Comput.
Phys. Commun. 2012, 183, 937–946. [CrossRef]

42. Bucher, C. Computational Analysis of Randomness in Structural Mechanics: Structures and Infrastructures Book Series; CRC Press: Boca
Raton, FL, USA, 2009; Volume 3.

43. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
44. Lange, A.; Vogeler, K.; Gümmer, V.; Schrapp, H.; Clemen, C. Introduction of a Parameter Based Compressor Blade Model for

Considering Measured Geometry Uncertainties in Numerical Simulation. In Proceedings of the ASME Turbo Expo 2009: Power
for Land, Sea, and Air, Orlando, FL, USA, 8–12 June 2009; American Society of Mechanical Engineers: New York, NY, USA, 2009;
GT2009-59937.

45. Heinze, K. Eine Methode für Probabilistische Untersuchungen zum Einfluss von Fertigungsstreuungen auf die Hochzyklische
Ermüdung von Verdichterschaufeln. Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2016.

46. Lange, A.; Voigt, M.; Vogeler, K.; Schrapp, H.; Johann, E.; Gümmer, V. Probabilistic CFD Simulation of a High-Pressure
Compressor Stage Taking Manufacturing Variability Into Account. In Proceedings of the ASME Turbo Expo 2010: Power for Land,
Sea, and Air, Glasgow, UK, 14–18 June 2010; American Society of Mechanical Engineers: New York, NY, USA, 2010; GT2010-22484.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/3-540-47804-3_9
http://dx.doi.org/10.1007/BF03031308
http://dx.doi.org/10.1007/s00158-018-1925-3
http://dx.doi.org/10.1111/j.1467-9868.2004.05304.x
http://www.jeremy-oakley.staff.shef.ac.uk/psa_example.txt
http://dx.doi.org/10.1007/978-3-319-77767-2_17
http://dx.doi.org/10.1016/S0010-4655(98)00156-8
http://dx.doi.org/10.1515/9781400881970-018
http://dx.doi.org/10.1115/GT2023-102442
http://dx.doi.org/10.1016/j.cpc.2011.12.020
http://dx.doi.org/10.1023/A:1010933404324

	Introduction
	Theoretical Foundation
	Monte Carlo Simulation and Probabilistic Studies
	Surrogate Models
	Polynomial Surrogate Models
	Gaussian Process

	Surrogate Model Quality
	Coefficient of Determination
	Cross Validation


	Sampling Methods
	Space-Filling Properties and Surrogate Model Quality
	Existing Sampling Methods
	Simple Random Sampling
	Latin Hypercube Sampling
	Optimized Latin Hypercube Sampling
	Latinized Particle Sampling
	Sobol Sequence
	Correlation Control

	Comparison of Sampling Methods
	Sasena Test Function
	Oakley & O'Hagan Test Function
	Summary

	Extension of oLHS

	Sensitivity Analysis
	Basics of Sensitivity Analysis
	Sobol Indices
	Shapley Values

	Modified Coefficient of Importance

	Application to Turbomachinery
	Turbomachinery Test Case
	Probabilistic Setup
	Sensitivity Analysis

	Summary
	References

