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Abstract: Friction is an inevitable phenomenon in mechanical systems that affects the dynamic char-
acteristics of systems. To reduce the modeling complexity of complex multi-rigid-body mechanisms,
a novel explicit canonical dynamic modeling method considering joint friction is proposed. Based on
the explicit dynamic modeling theory that we have proposed, the solution of the constraint force re-
quired by the joint friction modeling of multi-rigid-body mechanisms is derived and improved, which
greatly simplifies the solution of the constraint force. According to the obtained explicit expression of
the constraint force equations, two joint friction models of the Coulomb–viscous effect and Stribeck
effect are derived in analytical form. Moreover, the Stribeck effect of the joint is experimentally
analyzed. A five-axis tree-chain mechanism and a three-loop closed-chain mechanism are chosen to
demonstrate the method and compared with ADAMS software. Moreover, the proposed model is
analyzed and compared with other methods.

Keywords: multi-rigid-body mechanisms; explicit dynamics; joint constraint force; joint friction

1. Introduction

For multi-rigid-body mechanisms in real working environments, joint friction is an
inevitable phenomenon and can cause problems, such as limit cycle oscillation and stick–
slip motion [1,2]. Many existing studies regard joint friction as an external disturbance,
and researchers have reduced its impact on system control performance by enhancin1g
the robustness of system controllers [3]. However, the nonlinear characteristics of joint
friction, such as hysteresis and undesired stick–slip motion, are particularly obvious when
the mechanism is moving at low or high speeds, which leads to a high gain control
loop and limited control precision of the system and, thus, affects the smoothness of the
mechanism [3–6]. Accurate modeling of the joint friction of multi-rigid-body mechanisms
and feedforward control compensation can improve the motion accuracy and smoothness
of mechanisms, so the dynamic modeling of multi-rigid-body mechanisms considering
joint friction has attracted the attention of many scholars [7–10]. Complex multi-rigid-body
mechanisms have many motion components and complex structures, which make dynamic
modeling considering joint friction difficult [11]. In many existing studies of complex
multi-rigid-body dynamic modeling considering joint friction, the joint friction modeling
either oversimplifies the joint dynamic expression or adopts planar joint models, which
will make the calculated friction difficult to reflect the actual situation [1–3]. Therefore,
it is important to establish the accurate expression of the joint friction model of complex
multi-rigid-body mechanisms.

The complete dynamic model of multi-rigid-body mechanisms considering joint fric-
tion in real work usually contains two parts: one is the inertial dynamics caused by link
motions, and the other is about the joint friction [12]. In terms of the inertial dynamic mod-
eling of multi-rigid-body mechanisms, the methods can be divided into recursive implicit
modeling based on the Newton–Euler equation and iterative explicit modeling based on the
Lagrangian equation [13–16]. The recursive implicit modeling method is popular because
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of its excellent computational efficiency. For example, Walker and Orin [17] proposed
the composite rigid body algorithm (CRBA); Featherstone [18] proposed the articulated
body algorithm (ABA), which improved the CRBA. Compared with the recursive implicit
modeling method, the advantage of the iterative explicit modeling method is that it can
systematically generate the closed form of the dynamic equations, and the method can also
explicitly analyze each dynamic effect according to the model [13]. This iterative explicit
modeling method that can provide direct insight into the model structure is more conducive
to the design of the control system; for example, to compensate gravity loads, the explicit
model of gravity can be directly used [3,13]. Uicker [19] first proposed the pseudo-inertial
matrix method to further derive the Lagrangian equation, simplifying energy analysis and
derivative operations. Li [20] further derived the Uicker equation and eliminated some
partial derivative terms. Siciliano [21] proposed the generalized momentum method to
obtain explicit dynamic equations, but this method still requires a large number of calcu-
lations on intermediate variables, such as Jacobian matrices and Christoffel symbols. To
solve the problems of the existing explicit modeling methods, we recently proposed an
explicit canonical dynamic modeling method [22,23], which can directly obtain the final
dynamic expressions of multi-rigid-body mechanisms.

Regarding the joint friction modeling of multi-rigid-body mechanisms, there is cur-
rently no model that can fully and accurately describe all the phenomena caused by
friction [12] because joint friction is affected by many factors, such as the load, speed, and
even the temperature [24–26]. The friction model used in engineering often involves a
tradeoff between simplicity and accuracy [27]. The linear friction model composed of
Coulomb friction and viscous friction is still widely used because this friction model is
simple and can also describe the main contribution of the joint friction in many cases [12].
However, this linear friction model cannot describe the highly nonlinear characteristics of
joint friction at low speeds [1,5]. To solve this problem, the nonlinear model considering the
Stribeck effect is adopted in the joint friction modeling of multi-rigid-body precision mech-
anisms [28]. A widely used friction model is proposed by Bo and Pavelescu [29], which
takes into account the Coulomb, viscous, stiction, and Stribeck friction effects. However,
this model is a velocity-based model that does not capture the micro-slip phenomenon and
is not continuous. To capture the micro-slip phenomenon, several friction models based
on the concept of bristle deflection have been proposed, such as the bristle model [30], the
LuGre model [31], and the Gonthier model [32], among others [33,34]. However, these
models become more complex and often discontinuous because of additional state variables
associated with bristle deflection. Recently, Brown and McPhee [35] proposed an advanced
simple velocity-based continuous friction model and compared it with common continuous
friction models, such as those by Andersson et al. [36], Hollars [37], and Specker et al. [38].

According to whether the kinematic chains of multi-rigid-body mechanisms are closed,
multi-rigid-body mechanisms can be divided into open-chain mechanisms (including
single-chain mechanisms and tree-chain mechanisms) and closed-chain mechanisms (also
called parallel mechanisms) [39]. The inherent motion constraints of the closed chain com-
plicate dynamics research [40,41], considering that joint friction strengthens the coupling
degree of the closed-chain dynamic model and increases the difficulty of such research [42].
Ryu [43] adopted the Coulomb friction model for the joint friction modeling of a parallel
6-degree-of-freedom (DOF) manipulator. Shang [44] used the Coulomb friction model,
viscous friction model, and Stribeck friction model for the joint friction modeling of a
2-DOF planar parallel robot. However, these studies oversimplify or estimate the friction
model, which will lead to the loss of the accuracy of the friction model and the lag of the
friction compensation control [1–3]. Joint friction models with calculated constraint forces
have more complete expressions [3]. The motion components of complex multi-rigid-body
mechanisms are numerous, and each joint has dynamic coupling, so the calculation of
joint constraint forces is difficult [11]. Shiau [45] derived the joint constraint forces of
a parallel mechanism based on the Newton–Euler method and constructed a Coulomb
friction model. Yuan [46] derived the joint constraint forces of a 3-PRS parallel robot and



Aerospace 2024, 11, 368 3 of 32

constructed a LuGre friction model. References [1,2] used the single direction recursive
construction method to calculate the joint constraint forces of a space robot and constructed
a Coulomb friction model, a Stribeck friction model, and a LuGre friction model. However,
these methods have not obtained the analytical expression of the joint constraint forces.
Haug [47] derived the exact analytical expressions of the joint constraint forces of revolute,
cylindrical, and translational joints in reference point coordinates with Euler parameters.
Verulkar [48] recently completely calculated the joint normal force using the fully implicit
multi-body dynamic formulation and studied the Brown–McPhee friction model. Zhao [3]
recently proposed an advanced closed-chain dynamic modeling method considering joint
friction after expanding the Udwadia–Kalaba equation. However, Zhao’s method has the
problem for requiring a large number of intermediate variables to be solved.

In this paper, a novel modeling approach based on explicit dynamic modeling the-
ory (created and developed in [22,23,49–52]) for multi-rigid-body mechanisms with joint
friction is presented. Based on the explicit dynamic modeling theory we have proposed,
the constraint force equations required for joint friction modeling are established and
improved, and two joint friction models are developed. According to the derived joint
friction model, complete dynamic models of tree-chain mechanisms and closed-chain mech-
anisms considering joint friction are established and solved. The remainder of this paper
is organized as follows: In Section 2, we briefly introduce the explicit canonical dynamic
modeling theory that we have proposed, which is an ideal dynamic modeling method for
multi-rigid-body mechanisms without considering joint friction. In Section 3, using the
explicit dynamic modeling theory, we derive and improve the constraint force required
for joint friction modeling of multi-rigid-body mechanisms and establish two joint friction
models considering the Coulomb–viscous effect and Stribeck effect, in which the Stribeck
effect of the joint is experimentally analyzed. In Section 4, we analyze the establishment
and solution of the complete dynamic model of tree-chain mechanisms and closed-chain
mechanisms considering joint friction. In Section 5, we illustrate and analyze the proposed
modeling method by taking a five-axis tree-chain mechanism and a three-loop closed-chain
mechanism as examples. The results are discussed in Section 6, and the conclusions are
provided in Section 7.

2. Explicit Canonical Dynamic Modeling Theory

This section mainly gives a brief introduction to the explicit canonical dynamic mod-
eling theory that has been proposed and provides a theoretical basis for the following
dynamic modeling considering joint friction. Because dynamics are an extension of kinemat-
ics [53], in this section, we first introduce kinematic modeling based on the axis-invariant
and then introduce the ideal dynamic modeling of tree-chain mechanisms and closed-
chain mechanisms.

2.1. Kinematic Modeling

The topological structure analysis and the establishment of a reference coordinate
system are the basis for the kinematic modeling of multi-rigid-body mechanisms [18].

From the perspective of the topological structure, multi-rigid-body mechanisms are
composed of links and joints (also known as kinematic pairs) [18]. Therefore, the topological
graphs of multi-rigid-body mechanisms are usually composed of nodes representing the
links (except the root node) and arcs representing the joints [18]. For the convenience of the
analysis, the root node of the topology of multi-rigid-body mechanisms is usually numbered
as 0, and the remaining nodes representing the links are numbered from 1 to n according
to the actual corresponding position of the links in multi-rigid-body mechanisms. The
joint types of the topological graphs of multi-rigid-body mechanisms include two types of
single-degree-of-freedom kinematic pairs, namely, the revolute pair and the prismatic pair,
denoted by R and P, respectively. To obtain the spanning tree mechanism corresponding
to the closed-chain mechanism, some joints of the closed-chain mechanism need to be
cut [18]. We take the spanning tree mechanism and its topological analysis, corresponding
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to the closed-chain mechanism shown in Figure 1, as an example, where lkl represents the
kinematic pair composed of the parent Link (l) and the child link (l). In addition, unless
otherwise specified, the rest of the symbols used in this article are shown in Table 1. All the
vectors and matrices used in the formulae in this paper are shown in bold italics.
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Table 1. Symbol descriptions.

Type Symbol Description Symbol Description

Topology uL Closed subtree of link u i ll Kinematic chain from i to l
Structure lnl Axis-invariant l

0 rl Vector from Ol to Ol

Kinematic

ϕl
l Angular position along lnl

lϕl Vector form of ϕl
l

rl
l Linear position along lnl

lrl Vector form of rl
l

i
.
ϕl

Absolute angular velocity
vector of joint l

i
..
ϕl

Absolute angular
acceleration vector of joint l

i .
rl

Absolute translational
velocity vector of joint l

i ..
rl

Absolute translational
acceleration vector of joint l

lQl Rotation matrix from l to l 1 3D identity matrix

Dynamic

mk Mass of link k kIJkI Inertia tensor of link k

M[u][∗]
R

Inertial force matrix of
revolute joint u h[u]

R
Bias force vector of revolute
joint u

M[u][∗]
P

Inertial force matrix of
prismatic joint u h[u]

P
Bias force vector of prismatic
joint u

uLτu
Resultant torque on axis unu
except gravity

uLfu
Resultant force on axis unu
except gravity

dτu Driving torque on axis unu
dfu Driving force on axis unu

Mathematical
operation

□̂ Exponent operator □T Transpose operator
.
□ Derivative operator

..
□ Second derivative operator

□̃ Cross-product operator □|□ Projection operator

To improve the calibration accuracy of the structural parameters of multi-body mecha-
nisms and better control multi-body mechanisms, we propose a natural reference system
establishment method based on the axis-invariant [51]. A schematic and the natural ref-
erence system of the 6-DOF manipulator built in our laboratory are shown in Figure 2.
The natural inertial reference frame (Oixiyizi) is first established with the ground as the
reference, and the base natural reference frame (Obxbybzb) and joint natural reference frame
(Ol xlylzl) are subsequently established according to the principle that the initial axis di-
rections of the base natural reference system and each joint natural reference system are
consistent with the axis direction of the inertial natural reference system. The axis-invariant
(lnl) is defined as the motion axis vector direction of joint l. The reason this is called the
axis-invariant is that it has a radial reference direction with zero rotation, and it can be
used to describe the rotation transformation matrix without establishing a non-root-linked
framework, which can greatly simplify the workload.
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The axis-invariants (lnl) of the revolute joint and the prismatic joint are shown in
Figure 3. As shown in Figure 3, with lnl as the reference axis, the rotational vector (lϕl) of
the rotating joint and the translational vector (lrl) of the prismatic joint can be expressed as
follows [22]:

lϕl =
lnl · ϕl

l (1)

lrl =
lnl · rl

l +
l
0 rl (2)
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The rotation transformation matrix (lQl) based on the axis-invariant can be expressed
as follows [22]:

lQl = 1 + lñl · sin
(

ϕl
l

)
+ l ñ̂2

l ·
[
1 − cos

(
ϕl

l

)]
(3)

According to the transitivity of kinematic chains in multibody systems, the iterative
kinematic equations of multi-joint series based on the axis-invariant can be expressed as
follows [22]:

iQl =

i ll

∏
k

kQk (4)
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iϕl =

i ll

∑
k

iQk ·
kϕk =

i ll

∑
k

i|kϕk (5)

irl =

i ll

∑
k

iQk ·
krk =

i ll

∑
k

i|krk (6)

where the left superscript “i |” of the vector represents the projection of the vector under
the inertial reference frame (Oixiyizi).

By taking the first derivative and second derivative of Equations (5) and (6), the itera-
tive velocity and iterative acceleration of multi-joint kinematic chain (ill) can be expressed
as follows [22]:

i .
ϕl =

i ll

∑
k

(
i|k .

ϕk

)
(7)

i ..
ϕl =

i ll

∑
k

(
i

.
ϕ̃k ·

i|k .
ϕk +

i|k ..
ϕk

)
(8)

i .
rl =

i ll

∑
k

(
i

.
ϕ̃k ·

i|krk +
i|k .

rk

)
(9)

i ..
rl =

i ll

∑
k

(
i

..
ϕ̃k ·

i|krk +
i

.
ϕ̃

2̂

k ·
i|krk + 2 · i

.
ϕ̃k ·

i|k .
rk +

i|k ..
rk

)
(10)

2.2. Ideal Dynamic Modeling of Tree-Chain Mechanisms without Considering Joint Friction

The explicit iterative dynamic modeling method based on the Lagrangian equation is
widely used because it simplifies the operation of the model and is very beneficial to the
design of the control system [19–21]. The Lagrangian multi-rigid-body dynamic equation
based on the axis-invariant is expressed as follows [22,23]:

d
dt

(
∂E i

iL

∂
.
ϕ

u
u

)
− ∂E i

iL
∂ϕu

u
= i|unT

u · uLτu, i f uku ∈ R

d
dt

(
∂E i

iL

∂
.
ru

u

)
− ∂E i

iL
∂ru

u
= i|unT

u · uLfu, i f uku ∈ P
(11)

where

E i
iL =

iL

∑
k

(
1
2

i .
ϕ

T
k · i|kIJkI ·

i .
ϕk +

1
2

mk · i .
rT

kI · i .
rkI + mk · irT

kI ·
igkI

)
The explicit expression of partial derivative equations can eliminate the partial deriva-

tive operations in the Lagrangian equation. The iterative partial derivative equations based
on the axis-invariant are expressed as follows [22,23]:

∂irnS

∂ϕk
k

=
∂i .

rnS

∂
.
ϕ

k
k

=
∂i ..

rnS

∂
..
ϕ

k
k

= i|kñk · i|krnS (12)

∂irnS

∂rk
k

=
∂i .

rnS

∂
.
rk

k

=
∂i ..

rnS

∂
..
rk

k

= i|knk (13)

∂i
.
ϕn

∂
.
ϕ

k
k

=
∂i

..
ϕn

∂
..
ϕ

k
k

= i|knk (14)

∂i
.
ϕn

∂
.
rk

k

=
∂i

..
ϕn

∂
..
rk

k

= 03 (15)
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The ideal dynamic equation of the m-DOF tree-chain mechanisms without joint friction
can be expressed as follows:

M(q) · ..
q + h(q,

.
q) = τd (16)

where M(q) is an m × m symmetric inertia matrix,
..
q is an m × 1 joint generalized accel-

eration vector, h(q,
.
q) is an m × 1 bias force vector, and τd is an m × 1 joint-generalized

driving-force vector.
Substituting Equations (1)–(10) and (12) into Equation (11), removing redundant items,

and referring to Equation (16), the explicit canonical dynamic expression of joint u of the
tree-chain multi-rigid-body mechanisms based on the axis-invariant can be obtained as
follows [22,23]:{

i|unT
u · M[u][∗]

R · ..
q + i|unT

u · h[u]
R = i|unT

u · uLτu, i f uku ∈ R
i|unT

u · M[u][∗]
P · ..

q + i|unT
u · h[u]

P = i|unT
u · uLfu, i f uku ∈ P

(17)

where M[u][∗]
R and M[u][∗]

P are 3 × 3 inertia matrices for revolute and prismatic pairs, re-

spectively, and h[u]
R and h[u]

P are 3D bias force vectors for revolute and prismatic pairs,
respectively,

..
q = i|l ..

ql =

 i|lnl ·
..
ϕ

l
l , i f lkl ∈ R

i|lnl ·
..
rl

l , i f lkl ∈ P
(18)

M[u][∗]
R =

i lu
∑
l




uL
∑
j

(
i|jIJjI − mj · i|u r̃jI · i|l r̃jI

)
, i f lkl ∈ R

uL
∑
j

(
mj · i|u r̃jI

)
, i f lkl ∈ P



+
uL
∑
k




kL
∑
j

(
i|jIJjI − mj · i|u r̃jI · i|k r̃jI

)
, i f kkk ∈ R

kL
∑
j

(
mj · i|u r̃jI

)
, i f kkk ∈ P


(19)

M[u][∗]
P =

i lu
∑
l




−
uL
∑
j

(
mj · i|l r̃jI

)
, i f lkl ∈ R

uL
∑
j

(
mj
)
· 1, i f lkl ∈ P



+
uL
∑
k




−
kL
∑
j

(
mj · i|k r̃jI

)
, i f kkk ∈ R

kL
∑
j

(
mj
)
· 1, i f kkk ∈ P


(20)

h[u]
R =

i lu
∑
l

((
uL
∑
k

(
i|kIJkI − mk · i|u r̃kI · i|l r̃kI

))
· i

.
ϕ̃l · i|l .

ϕl

)
+

uL
∑
k

((
kL
∑
j

(
i|jIJjI − mj · i|u r̃jI · i|k r̃jI

))
· i

.
ϕ̃k · i|k .

ϕk

)

+
uL
∑
k

(
mk · i|u r̃kI ·

i lkI
∑
l

(
i

.
ϕ̃

2̂

l · i|lrl + 2 · i
.
ϕ̃l · i|l .

rl

))
+

uL
∑
k

(
i

.
ϕ̃k · i|kIJkI · i

.
ϕk

)
−

uL
∑
k

(
mk · i|u r̃kI · igkI

)
(21)
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h[u]
P = −

i lu
∑
l

(
uL
∑
k

(
mk · i|l r̃kI

)
· i

.
ϕ̃l · i|l .

ϕl

)
−

uL
∑
k

(
kL
∑
j

(
mj · i|k r̃jI

)
· i

.
ϕ̃k · i|k .

ϕk

)

+
uL
∑
k

(
mk ·

i lkI
∑
l

(
i

.
ϕ̃

2̂

l · i|lrl + 2 · i
.
ϕ̃l · i|l .

rl

))
−

uL
∑
k

(
mk · igkI

)
(22)

2.3. Ideal Dynamic Modeling of Closed-Chain Mechanisms without Considering Joint Friction

The ideal dynamic equation of closed-chain mechanisms corresponding to the m-DOF
spanning tree without joint friction can be expressed as follows:

M(q) · ..
q + h(q,

.
q) = τd + τc (23)

where τc is the m × 1 joint-generalized external force vector, which mimics the effect of the
constraint force at closed-loop joints that are cut on other joints.

To improve the modeling efficiency of closed-chain dynamics, we have proposed an
explicit canonical dynamic modeling method for closed chains [52]. The diagram of the
spanning tree chain corresponding to the single-loop closed chain shown in Figure 4 is
taken as an example. c′SlcS and cSlc′S denote the constraint and reaction forces at cut joints,
respectively. NT denotes the closed-loop joints that are cut.
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The kinematic constraint equation of the closed-chain mechanisms in Figure 4, based
on the axis-invariant, can be expressed as follows [52]:

i lc

∑
u

({
−i|u r̃cS · i|unu ·

.
ϕ

u
u, i f uku ∈ R

1 · i|unu ·
.
ru

u, i f uku ∈ P

)
−

i lc′

∑
u′

({
−i|u′

r̃c′S · i|u′
nu′ ·

.
ϕ

u′

u′ , i f u′
ku′ ∈ R

1 · i|u′
nu′ ·

.
ru′

u′ , i f u′
ku′ ∈ P

)
= 0 (24)

The explicit canonical dynamic model of the closed-chain mechanisms in Figure 4,
based on the axis-invariant, can be expressed as follows [52]:

I :

{
i|unT

u · M[u][∗]
R · ..

q + i|unT
u · h[u]

R + i|unT
u · i|NTl[u]R = i|unT

u · uLτu, i f uku ∈ R
i|unT

u · M[u][∗]
P · ..

q + i|unT
u · h[u]

P + i|unT
u · i|NTl[u]P = i|unT

u · uLfu, i f uku ∈ P

II :

{
i|u′

nT
u′ · M[u′ ][∗]

R · ..
q + i|u′

nT
u′ · h[u′ ]

R + i|u′
nT

u′ · i|NTl[u
′ ]

R = i|u′
nT

u′ · uLτu′ , i f u′
ku′ ∈ R

i|u′
nT

u′ · M[u′ ][∗]
P · ..

q + i|u′
nT

u′ · h[u′ ]
P + i|u′

nT
u′ · i|NTl[u

′ ]
P = i|u′

nT
u′ · uLfu′ , i f u′

ku′ ∈ P

(25)
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where: {
i|NTl[u]R = i|u r̃T

cS · cSlc′S, i f uku ∈ R
i|NTl[u]P = −1 · cSlc′S, i f uku ∈ P{
i|NTl[u

′ ]
R = −i|u′

r̃T
c′S · cSlc′S, i f u′

ku′ ∈ R
i|NTl[u

′ ]
P = 1 · cSlc′S, i f u′

ku′ ∈ P

(26)

3. Joint Friction Modeling of Multi-Rigid-Body Mechanisms
3.1. Solution of the Joint Constraint Force

The two arbitrary orthogonal constraint axes that are orthogonal to the motion axis
(u) of the kinematic pair (uku) are denoted as u

.
and u

..
. If the constraint axis vectors

corresponding to the two arbitrary orthogonal constraint axes (u
.

and u
..
) are denoted as unu

.

and unu
..
, respectively, then the following expressions can be obtained:

i|uñT
u · i|unu

.
= i|unu

..
(27)

i|unT
u · i|unu

.
= i|unT

u · i|unu
..
= 0 (28)

For the constraint axis (u
.
) without power loss, if the magnitude of the constraint torque

of the revolute joint on the constraint axis (u
.
) and the magnitude of the constraint force of

the prismatic joint on the constraint axis (u
.
) are denoted as τr

u
.

and f p
u
.

then the following

expressions can be obtained: τr
u
.
= i|unT

u
.
· uLτu, i f uku

.
∈ R

f p
u
.
= i|unT

u
.
· uLfu, i f uku

.
∈ P

(29)

If the constraint torque vector of the revolute joint and the constraint force vector of

the prismatic joint corresponding to the constraint axis (u
.
) are denoted as uτ

[u
.
]

r and uf
[u

.
]

p ,

respectively, then the following expressions can be obtained:
i|uτ

[u
.
]

r = i|unu
.
· τr

u
.
, i f uku

.
∈ R

i|uf
[u

.
]

p = i|unu
.
· f p

u
.
, i f uku

.
∈ P

(30)

Similarly, for the constraint axis (u
..
) without power loss, if the magnitude of the

constraint torque of the revolute joint on the constraint axis (u
..
) and the magnitude of

the constraint force of the prismatic joint on constraint axis (u
..
) are denoted as τr

u
..

and f p
u
..

,

respectively, then the following expressions can be obtained: τr
u
..
= i|unT

u
..
· uLτu, i f uku

..
∈ R

f p
u
..
= i|unT

u
..
· uLfu, i f uku

..
∈ P

(31)

If the constraint torque vector of the revolute joint and the constraint force vector of

the prismatic joint corresponding to the constraint axis (u
..
) are denoted as uτ

[u
..
]

r and uf
[u
..
]

p ,

respectively, then the following expressions can be obtained:
i|uτ

[u
..
]

r = i|unu
..
· τr

u
..
, i f uku

..
∈ R

i|uf
[u
..
]

p = i|unu
..
· f p

u
..

, i f uku
..
∈ P

(32)
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According to Equations (28), (30), and (32), we can obtain the following expressions: i|unT
u · i|uτ

[u
.
]

r = i|unT
u · i|uτ

[u
..
]

r = 0, i f uku ∈ R
i|unT

u · i|uf
[u

.
]

p = i|unT
u · i|uf

[u
..
]

p = 0, i f uku ∈ P
(33)

Equation (33) shows that there is a natural orthogonal complementary relationship
between the axis vector of the motion axis and the constraint force or torque of the constraint
axis. Therefore, for joint u of multi-rigid-body mechanisms, if the constraint torque vector
of the revolute joint and the constraint force vector of the prismatic joint are denoted as uτr

u
and ufp

u, respectively, then the following expressions can be obtained:i|uτr
u = i|uτ

[u
.
]

r + i|uτ
[u
..
]

r , i f uku ∈ R
i|ufp

u = i|uf
[u

.
]

p + i|uf
[u
..
]

p , i f uku ∈ P
(34)

According to Equations (30) and (32), Equation (34) can be expressed as follows:
i|uτr

u = i|unu
.
· τr

u
.
+ i|unu

..
· τr

u
..
, i f uku ∈ R

i|ufp
u = i|unu

.
· f p

u
.
+ i|unu

..
· f p

u
..

, i f uku ∈ P
(35)

For joint u in multi-rigid-body mechanisms, if the magnitude of the constraint torque
vector (uτr

u) of the revolute joint and the magnitude of the constraint force vector (ufp
u) of

the prismatic joint are denoted as τr
u and f p

u , respectively, then the following expressions
can be obtained: 

τr
u =

√
τr̂2

u
.
+ τr̂2

u
..

, i f uku ∈ R

f p
u =

√
f p̂2
u
.

+ f p̂2
u
..

, i f uku ∈ P
(36)

3.2. Improvement of the Joint Constraint Force Solution Method

In this section, a 3D force screw is proposed to improve the solution method of the
joint constraint force proposed in the previous section. To better explain and use the 3D
force screw, the 3D motion screw is first analyzed.

3.2.1. 3D Motion Screw

The translation and rotation of a multi-axis system (also known as a multi-body
system) in the same axis direction are called screw motion. The screw motion vector, only
considered in the three-dimensional vector space, is called the 3D screw motion vector.

In contrast to the traditional Cartesian coordinate system, which consists of three
orthogonal and copoint axes, the natural coordinate system has only one parameterized
3D reference axis. Taking the 3D motion screw in Figure 5 as an example, vector uruS
is given, and the first-order motion screw axis can be determined by vector uruS and
the axis-invariant (i|unu). The first-order motion screw axis is orthogonal to the axis-
invariant (i|unu) and vector (uruS). Therefore, the first-order motion screw axis corresponds
to i|unu × uruS = i|uñu · uruS. Similarly, the second-order motion screw axis, the third-order
motion screw axis, and the fourth-order motion screw axis, with the first-order motion
screw axis rotated counterclockwise at 90◦, 180◦, and 270◦ correspond to i|u ñ̂2

u · uruS,
i|u ñ̂3

u · uruS = −i|uñu · uruS, and i|u ñ̂4
u · uruS = −i|u ñ̂2

u · uruS, respectively. The direction
of the fourth-order motion screw axis is exactly the opposite to that of the second-order
motion screw axis, so the fourth-order motion screw axis also corresponds to −i|u ñ̂2

u · uruS.
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Figure 5. 3D motion screw.

3.2.2. 3D Force Screw

Taking the 3D force screw in Figure 6 as an example, uLFu is the joint-equivalent
generalized resultant force acting on the closed subtree (uL). As shown in Figure 6, when
the axis-invariant (i|unu) is used as the reference axis, the fourth-order force screw axis is
the constraint axis of joint u. Therefore, if the generalized constraint force vector of joint u
on the constraint axis, that is, the projection force of uLFu on the constraint axis, is denoted
by uFc

u, then the following expressions can be obtained:

i|uFc
u = −i|u ñ̂2

u · uLFu (37)
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According to Equation (37), for different joint types, we can obtain the following
equations: {

i|uτr
u = −i|u ñ̂2

u · uLτu, i f uku ∈ R
i|ufp

u = −i|u ñ̂2
u · uLfu, i f uku ∈ P

(38)

where the expressions of uLτu and uLfu for the tree-chain system and the closed-chain
system are shown in Equation (17) and Equation (25), respectively.

According to Equation (36), the magnitude (τr
u) of the constraint torque vector of the

revolute joint and the magnitude ( f p
u ) of the constraint force vector of the prismatic joint in

Equation (36) can be re-expressed as follows:τr
u =

∣∣∣ i|uτr
u

∣∣∣ , i f uku ∈ R

f p
u =

∣∣∣ i|ufp
u

∣∣∣ , i f uku ∈ P
(39)
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According to the force backward iteration formulas [22], for uLτu and uLfu of joint u,
only the driving force and friction force on the current joint can be regarded as the external
force, while the driving force and friction force on the other joints of the closed subtree (uL)
can be regarded as the internal force. Therefore, when solving for the constraint force of
joint u, the driving force and friction force on the other joints of the closed subtree (uL) do
not need to be analyzed.

In contrast to the method based on the traditional Cartesian coordinate system, in
which two constraint axes need to be established, only one constraint axis needs to be es-
tablished in the proposed improved constraint force solution method. Hence, the efficiency
of the modeling and solving for joint constraints can be significantly improved. In addition,
compared with the 6D spatial operator algebra method, which describes rotation and
translation together, the proposed 3D screw method considers only rotation or translation,
which reduces the matrix dimensions.

3.3. Friction Model
3.3.1. Coulomb–Viscous Friction Model

The schematics of the Coulomb friction and viscous friction for the revolute joint and
prismatic joint are shown in Figure 7. The magnitude of the Coulomb friction torque and
the magnitude of the Coulomb friction force of joint u are denoted as τc

u and f c
u, respectively,

and the magnitude of the viscous friction torque and the magnitude of the viscous friction
force of joint u are denoted as τv

u and f v
u , respectively.

Aerospace 2024, 11, x FOR PEER REVIEW 13 of 38 
 

 

According to Equation (37), for different joint types, we can obtain the following 
equations: 

2| |

| |

^

^2

 ,

 ,

i

u

u r u u
u u u

u p u u
u u

i u
u

i i u
u

if

if

ìï -ïïíï -ïïî

= ⋅ Î

= ⋅ Î





τ n

f

τ

fn

L

L

k R

k P
 (38)

where the expressions of u
uτ

L  and u
uf

L  for the tree-chain system and the closed-chain 
system are shown in Equation (17) and Equation (25), respectively. 

According to Equation (36), the magnitude ( r
ut ) of the constraint torque vector of the 

revolute joint and the magnitude ( p
uf ) of the constraint force vector of the prismatic joint 

in Equation (36) can be re-expressed as follows: 

|

|

,

,

r u r u
u u u

p u p u
u u

i
u

i if

iff

tï =

ï

Î

= Î

ìïï
íïïî

τ

f

k R

k P
 (39)

According to the force backward iteration formulas [22], for u
uτ

L  and u
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The Coulomb friction model corresponding to joint u is expressed as follows: τc
u = ck[u] · τn

u · sgn
(

.
ϕ

u
u

)
, i f uku ∈ R

f c
u = ck[u] · f n

u · sgn
( .

ru
u

)
, i f uku ∈ P

(40)

where ck[u] is the Coulomb friction coefficient, τn
u is the equivalent total normal torque of

the revolute joint, and f n
u is the equivalent total normal force of the prismatic joint.

The viscous friction model corresponding to joint u is expressed as follows:{
τv

u = vk[u] ·
.
ϕ

u
u, i f uku ∈ R

f v
u = vk[u] · .

ru
u, i f uku ∈ P

(41)

where vk[u] is the viscous friction coefficient.
The magnitude of the joint friction torque and the magnitude of the joint friction force

of joint u are denoted as τ
f

u and f f
u , respectively. According to Equations (40) and (41),
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the Coulomb–viscous joint friction model of joint u of the multi-rigid-body mechanism is
expressed as follows: τ

f
u = ck[u] · τn

u · sgn
(

.
ϕ

u
u

)
+ vk[u] ·

.
ϕ

u
u, i f uku ∈ R

f f
u = ck[u] · f n

u · sgn
( .

ru
u

)
+ vk[u] · .

ru
u, i f uku ∈ P

(42)

According to Equation (42), calculating the joint friction depends on the acquisition of
the equivalent total normal torque (τn

u ) and the equivalent total normal force ( f n
u ).

3.3.2. Analysis of τn
u and f n

u

The geometric model of the revolute joint and the prismatic joint is shown in Figure 8,
where Rn is the friction arm, Rp is the pin radius, Rb is the bending reaction arm, τr

u is
the magnitude of the constraint torque of the constraint axis of the revolute joint, f r

u is
the magnitude of the constraint force of the constraint axis of the revolute joint, f m

u is
the magnitude of the constraint force of the motion axis of the revolute joint, f p

u is the
magnitude of the constraint force of the constraint axis of the prismatic joint, τ

p
u is the

magnitude of the constraint torque of the constraint axis of the prismatic joint, and τm
u is

the magnitude of the constraint torque of the motion axis of the prismatic joint.
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According to Equation (39), the analysis of τr
u of the revolute joint and f p

u of the
prismatic joint has been completed. Next, f r

u and f m
u of the revolute joint and τ

p
u and τm

u of
the prismatic joint will be analyzed. The analysis reveals that the keys to solving f r

u and
f m
u of the revolute joint and τ

p
u and τm

u of the prismatic joint are obtaining the constraint
resultant force of the revolute joint and the constraint resultant torque of the prismatic
joint, respectively. According to the explicit canonical dynamic modeling theory [22,23],
the calculation of the resultant force and resultant torque of each node in the topological
structure of the mechanism follows the principle of force reverse iteration. The resultant
force and resultant torque of the current node (u) can be obtained by summing the initial
input parameters of node u and the iteration results of the descendant node (u). Then,
traversing over all the nodes along the backward direction of the closed subtree (uL) can
complete the iterative operation of the resultant force and resultant torque of all the nodes.
The calculation model of the resultant force and the resultant torque of the different joint
types of the multi-rigid-body mechanisms is the same. Therefore, the constraint resultant
force (uLfu) of the revolute joint and the constraint resultant torque (uLτu) of the prismatic
joint can also be iteratively and explicitly calculated using Equations (18)–(22).
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According to the 3D force screw, and combined with Figure 6, the constraint force
vector (i|ufr

u) of the revolute joint on the constraint axis and the constraint torque vector
(i|uτ

p
u ) of the prismatic joint on the constraint axis can be expressed as follows:{

i|ufr
u = −i|u ñ̂2

u · uLfu, i f uku ∈ R
i|uτ

p
u = −i|u ñ̂2

u · uLτu, i f uku ∈ P
(43)

According to Equation (43), the magnitude ( f r
u) of the constraint force vector of the

revolute joint on the constraint axis and the magnitude (τp
u ) of the constraint torque vector

of the prismatic joint on the constraint axis can be expressed as follows: f r
u =

∣∣∣ i|ufr
u

∣∣∣ , i f uku ∈ R

τ
p
u =

∣∣∣ i|uτ
p
u

∣∣∣ , i f uku ∈ P
(44)

Similarly, according to the 3D force screw, and combined with Figure 6, the constraint
force vector (i|ufm

u ) of the revolute joint on the motion axis and the constraint torque vector
(i|uτm

u ) of the prismatic joint on the motion axis can be expressed as follows:{
i|ufm

u = i|unu · i|unT
u · uLfu, i f uku ∈ R

i|uτm
u = i|unu · i|unT

u · uLτu, i f uku ∈ P
(45)

According to Equation (45), the magnitude ( f m
u ) of the constraint force vector of the

revolute joint on the motion axis and the magnitude (τm
u ) of the constraint torque vector of

the prismatic joint on the motion axis can be expressed as follows: f m
u =

∣∣∣ i|ufm
u

∣∣∣ , i f uku ∈ R

τm
u =

∣∣∣ i|uτm
u

∣∣∣ , i f uku ∈ P
(46)

Thus far, the analysis and solutions of all the constraint forces and constraint torques
of the revolute joint and the prismatic joint have been completed. The equivalent total
normal torque (τn

u ) of the revolute joint and the equivalent total normal force ( f n
u ) of the

prismatic joint can be expressed as follows:{
τn

u = (τr
u/Rb + f r

u) · Rp + f m
u · Rn, i f uku ∈ R

f n
u = τ

p
u /Rb + f p

u + τm
u /Rn, i f uku ∈ P

(47)

where the expressions of each item can be found in Equations (39), (44), and (46).

3.3.3. Stribeck Friction Model

The nonlinear phenomenon of multi-rigid-body mechanism joints at low speeds is
obvious, and the Coulomb–viscous linear joint friction model cannot describe this nonlinear
phenomenon well. To better understand the variation in the joint friction of a multi-rigid-
body mechanism at low speeds, a constant-speed tracking method was adopted in this
paper to conduct experimental research on joint 4 of a 6-DOF manipulator established in
our laboratory. The physical diagram of the 6-DOF manipulator is shown in Figure 9. The
natural reference frame and axis-invariant of the manipulator are shown in Figure 2.

When testing the friction torque of any joint (u), the remaining joints are locked so that
joint u rotates at a certain angle and constant speed, and the input torque (ux) corresponding
to joint u at this time is recorded. Then, joint u reverses the same angle, and the input
torque (uy) corresponding to joint u at this time is recorded. Because the inertia force of
joint u is zero when it rotates at a constant speed and because the centrifugal force and
Coriolis force of joint u are also zero when other joints are locked, the uniform rotation of



Aerospace 2024, 11, 368 15 of 32

joint u only needs to overcome the influence of the frictional torque (Ff ) and gravitational
torque (τg). Therefore, the torque of joint u at position ϕ can be expressed as follows:

ux = τg(ϕ) + Ff (
.
ϕ) (48)

uy = τg(ϕ) + Ff (−
.
ϕ) (49)
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At the same round-trip position (ϕ), the gravity torque is the same, and the difference
in the joint friction torque of the 6-DOF manipulator in the forward and reverse motions is
very small, as follows:

Ff (−
.
ϕ) = −Ff (

.
ϕ) (50)

Therefore, according to Equations (48)–(50), we can obtain the following expression:

Ff (
.
ϕ) =

1
2
(ux − uy) (51)

The variations in the friction torque of joint 4 of the 6-DOF manipulator with respect
to the speed are shown in Figure 10. According to Figure 10, it is observed that when the
manipulator moves at a low speed at the beginning, the friction decreases with increasing
motion speed; that is, it shows the Stribeck effect. Based on the proposed explicit normal
force expression in Equation (47), a variety of friction models that can describe the Stribeck
effect can be established, such as the Stribeck model [29], LuGre model [31], and the
more advanced Brown–McPhee model [35]. Among them, the Stribeck friction model is
a traditional friction model, which is not only simple but also common in engineering.
This paper intends to use the Stribeck friction model proposed by Bo and Pavelescu [29]
to describe the Stribeck effect. Schematics of the Coulomb–viscous friction model and the
Stribeck friction model are shown in Figure 11.

According to Figure 11 and the experimental analysis, the Stribeck friction model
can better describe the variation in the friction force during low-speed joint motion. The
Stribeck joint friction model [29] of joint u of the multi-rigid-body mechanism is expressed
as follows:

τ
f

u = [ck[u] · τn
u +

(
sk[u] · τn

u − ck[u] · τn
u

)
· e−(

.
ϕ

u
u/

.
ϕ

s
u)

2

] · sgn
(

.
ϕ

u
u

)
+ vk[u] ·

.
ϕ

u
u, i f uku ∈ R

f f
u = [ck[u] · f n

u +
(

sk[u] · f n
u − ck[u] · f n

u

)
· e−(

.
ru

u/
.
rs

u)
2

] · sgn
( .

ru
u

)
+ vk[u] · .

ru
u, i f uku ∈ P

(52)

where sk[u] is the static friction coefficient,
.
ϕ

s
u is the Stribeck velocity of the revolute joint,

.
rs

u is the Stribeck velocity of the prismatic joint, and the expressions τn
u and f n

u can be found
in Equation (47).
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Figure 10. The variation in the friction torque of joint 4 with respect to the braking speed.
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4. Modeling and Solving of the Complete Dynamics of Multi-Rigid-Body Mechanisms

In this section, the complete dynamic modeling of tree-chain multi-rigid-body mecha-
nisms and closed-chain multi-rigid-body mechanisms considering joint friction is analyzed
in turn.

4.1. Complete Dynamic Modeling of Tree-Chain Mechanisms Considering Joint Friction

The complete dynamic equation of tree-chain mechanisms with m-DOF considering
joint friction can be expressed as follows:

M(q) · ..
q + h(q,

.
q) = τd − τf (53)

where τf is an m × 1 joint-generalized friction force vector.
According to Equations (17) and (53), the canonical expression of the complete dynam-

ics of joint u of tree-chain mechanisms can be obtained as follows:{
i|unT

u · M[u][∗]
R · ..

q + i|unT
u · h[u]

R + τ
f

u = i|unT
u · dτu, i f uku ∈ R

i|unT
u · M[u][∗]

P · ..
q + i|unT

u · h[u]
P + f f

u = i|unT
u · dfu, i f uku ∈ P

(54)

where the expressions of each item can be found in Equations (18)–(22), (38), (42), (47),
and (52).

4.2. Complete Dynamic Modeling of Closed-Chain Mechanisms Considering Joint Friction

The complete dynamic equation of closed-chain mechanisms corresponding to the
spanning tree with m-DOF considering joint friction can be expressed as follows:

M(q) · ..
q + h(q,

.
q) = τd + τc − τf (55)



Aerospace 2024, 11, 368 17 of 32

According to Equations (27) and (55), the canonical expression of the complete dynam-
ics of the closed-chain mechanisms in Figure 4 can be obtained as follows:

I :

{
i|unT

u · M[u][∗]
R · ..

q + i|unT
u · h[u]

R + i|unT
u · i|NTl[u]R + τ

f
u = i|unT

u · dτu, i f uku ∈ R
i|unT

u · M[u][∗]
P · ..

q + i|unT
u · h[u]

P + i|unT
u · i|NTl[u]P + f f

u = i|unT
u · dfu, i f uku ∈ P

II :

{
i|u′

nT
u′ · M[u′ ][∗]

R · ..
q + i|u′

nT
u′ · h[u′ ]

R + i|u′
nT

u′ · i|NTl[u
′ ]

R + τ
f

u′ =
i|u′

nT
u′ · dτu′ , i f u′

ku′ ∈ R
i|u′

nT
u′ · M[u′ ][∗]

P · ..
q + i|u′

nT
u′ · h[u′ ]

P + i|u′
nT

u′ · i|NTl[u
′ ]

P + f f
u′ =

i|u′
nT

u′ · dfu′ , i f u′
ku′ ∈ P

(56)

where the expressions of each item can be found in Equations (18)–(22), (26), (38), (42), (47),
and (52).

According to Equations (53)–(56), when solving for friction, closed-chain mechanisms
first need to be implemented to solve for the joint-generalized external force and are differ-
ent from tree-chain mechanisms. The constraint torque of the closed-chain mechanisms
considered in this paper is zero at the missing joints, which is the same as that in Zhao’s
method [3]. The implementation process of the proposed algorithm for solving the complete
dynamic model of multi-rigid-body mechanisms is shown in Algorithm 1.

Algorithm 1: Dynamic algorithm of multi-rigid-body mechanism considering joint friction.

1: Initialization
2: analyze topological structure of mechanism and establish natural reference systems
3: repeat
4: compute inertia matrices and bias force vectors following Equations (19)–(22)
5: if (single chain or tree chain)
6: compute joint constraint forces and torques following Equations (39), (44), and (46)
7: compute joint normal forces and torques following Equation (47)
8: establish friction model following Equation (42) or Equation (52)
9: compute joint-generalized driving forces following Equation (54)
10: else (closed chain)
11: compute passive joint velocities following Equation (24)
12: compute joint-generalized external forces following Equations (25) and (26)
13: compute joint constraint forces and torques following Equations (39), (44), and (46)
14: compute joint normal forces and torques following Equation (47)
15: establish friction model following Equation (42) or Equation (52)
16: compute active joint-generalized driving forces following Equation (56)
17: until mechanism stops

5. Case Study
5.1. Five-Axis Tree-Chain Mechanism

The five-axis tree-chain mechanism in Figure 12 is taken as an example. The five active
joints of the mechanism correspond to the five degrees of freedom of the mechanism. In
the following discussion, a complete dynamic modeling approach and an analysis of the
five-axis tree-chain mechanism are provided using the proposed method.
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(1) All the joints in the five-axis tree-chain mechanism are revolute joints. The constraint
torque vector equations of the mechanism can be obtained according to Equation (36)
as follows: 

i ñ̂2
1 · M[1][•]

R · ..
q + i ñ̂2

1 · h[1]
R = −iτr

1
i|1ñ̂2

2 · M[2][•]
R · ..

q + i|1ñ̂2
2 · h[2]

R = −i|1τr
2

i|2ñ̂2
3 · M[3][•]

R · ..
q + i|2ñ̂2

3 · h[3]
R = −i|2τr

3
i|1ñ̂2

4 · M[4][•]
R · ..

q + i|1ñ̂2
4 · h[4]

R = −i|1τr
4

i|4ñ̂2
5 · M[5][•]

R · ..
q + i|4ñ̂2

5 · h[5]
R = −i|4τr

5

(57)

(2) The constraint force vector equations of the mechanism can be obtained according to
Equations (43) and (45) as follows:

i ñ̂2
1 · M[1][•]

P · ..
q + i ñ̂2

1 · h[1]
P = −ifr

1
i|1ñ̂2

2 · M[2][•]
P · ..

q + i|1ñ̂2
2 · h[2]

P = −i|1fr
2

i|2ñ̂2
3 · M[3][•]

P · ..
q + i|2ñ̂2

3 · h[3]
P = −i|2fr

3
i|1ñ̂2

4 · M[4][•]
P · ..

q + i|1ñ̂2
4 · h[4]

P = −i|1fr
4

i|4ñ̂2
5 · M[5][•]

P · ..
q + i|4ñ̂2

5 · h[5]
P = −i|4fr

5

(58)



in1 · inT
1 · M[1][•]

P · ..
q + in1 · inT

1 · h[1]
P = ifm

1
i|1n2 · i|1nT

2 · M[2][•]
P · ..

q + i|1n2 · i|1nT
2 · h[2]

P = i|1fm
2

i|2n3 · i|2nT
3 · M[3][•]

P · ..
q + i|2n3 · i|2nT

3 · h[3]
P = i|2fm

3
i|1n4 · i|1nT

4 · M[4][•]
P · ..

q + i|1n4 · i|1nT
4 · h[4]

P = i|1fm
4

i|4n5 · i|4nT
5 · M[5][•]

P · ..
q + i|4n5 · i|4nT

5 · h[5]
P = i|4fm

5

(59)

(3) According to the constraint force and constraint torque calculated using the above
equations, the friction models of the five active joints can be obtained. Then, the gen-
eralized driving forces of the five active joints can be obtained according to Equation
(54) as follows:

inT
1 · M[1][•]

R · ..
q + inT

1 · h[1]
R + τ

f
1 = inT

1 · dτ1
i|1nT

2 · M[2][•]
R · ..

q + i|1nT
2 · h[2]

R + τ
f

2 = i|1nT
2 · dτ2

i|2nT
3 · M[3][•]

R · ..
q + i|2nT

3 · h[3]
R + τ

f
3 = i|2nT

3 · dτ3
i|1nT

4 · M[4][•]
R · ..

q + i|1nT
4 · h[4]

R + τ
f

4 = i|1nT
4 · dτ4

i|4nT
5 · M[5][•]

R · ..
q + i|4nT

5 · h[5]
R + τ

f
5 = i|4nT

5 · dτ5

(60)

where matrices M[•][•]
R and vectors h[•]

R in Equations (57) and (60) are defined in Equations
(A1)–(A10) in Appendix A.

A computer program is developed according to the proposed dynamic algorithm to
simulate the five-axis tree-chain mechanism. The fourth-order Runge–Kutta (RK4) method
is used when the joint acceleration is integrated to solve the joint velocity and joint position.
The initial parameters used during the simulation are shown in Table 2. The simulation
results for joints 1, 2, and 4 of the mechanism are taken as examples for the analysis.
The simulated constraint resultant torque and the simulated constraint resultant force of
the three joints are shown in Figures 13 and 14, respectively. To verify the simulation
results, the dynamic modeling and solving of the five-axis tree-chain mechanism were
carried out using ADAMS software. The constraint torque and constraint force of the
three joints solved using ADAMS software are also shown in Figures 13 and 14. It can be
seen from Figures 13 and 14 that the values calculated using the proposed method are in
good agreement with the values calculated using ADAMS software, which verifies the
correctness of the constraint force solution method proposed in this paper. The influence of
the joint friction on the dynamics of the mechanism is depicted in Figure 15. In this figure,
the values of the driving torque of the three joints of the mechanism without considering
friction, considering the Coulomb–viscous friction model, and considering the Stribeck
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friction model are provided. Observations of Figure 15 indicate that the influence of the
joint friction cannot be ignored and should be considered, and the Stribeck friction model
can be used to better reflect the nonlinear characteristics of the joint at low speeds.

Table 2. Initial parameters.

Parameter Symbol Value

Axis-invariant in1, 1n2, 2n3, 1n4, 4n5 [0 0 1]T

Initial linear position
1
0r2; 2

0r3; [−0.4 0 0]T; [0.6 1.0392 0]T;
1
0r4; 4

0r5 [−0.2 0 0]T; [0.6 −1.0392 0]T

Central position of
link mass

1r1I ;
2r2I ; [−0.2 0 0]T; [0.3 0.5196 0]T;

3r3I ;
4r4I ; [0.3 −0.5196 0]T; [0.3 −0.5196 0]T;

5r5I [0.3 0.5196 0]T

Link mass
m1 1 kg
m2, m3 3 kg
m4, m5 2 kg

Link MOI

1IJ1I diag(0.002, 0.01, 0.01) kg·m2

2IJ2I ,
3IJ3I diag(0.008, 0.06, 0.06) kg·m2

4IJ4I ,
5IJ5I diag(0.005, 0.04, 0.04) kg·m2

Gravitational acceleration g [0 0 −9.8]T m/s2

Driving angular acceleration
..
ϕ

i
1,

..
ϕ

1
2,

..
ϕ

2
3,

..
ϕ

1
4,

..
ϕ

4
5

0.2 rad/s2

Coulomb friction coefficient ck[1], ck[2], ck[3], ck[4], ck[5] 0.005

Viscous friction coefficient vk[1], vk[2], vk[3], vk[4], vk[5] 0.01

Static friction coefficient sk[1], sk[2], sk[3], sk[4], sk[5] 0.05

Stribeck velocity
.
ϕ

s
1,

.
ϕ

s
2,

.
ϕ

s
3,

.
ϕ

s
4,

.
ϕ

s
5 0.03
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5.2. Three-Loop Closed-Chain Mechanism

Closed-chain mechanisms have been widely studied in recent years because of their
high rigidity, high accuracy, and localized workspace. Figure 16 shows a planar closed-chain
mechanism with three closed loops, which has been applied and studied in robotic legs and
carpet-scraping devices. As shown in Figure 16, the three-loop closed-chain mechanism
has 10 joints and 7 links, of which Joint 1′′ is active, and the other joints are passive, and the
friction of the passive joints is ignored. To obtain the spanning tree corresponding to the
three-loop closed-chain mechanism, three closed-loop joints need to be cut.
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Figure 16. Three-loop closed-chain mechanism and corresponding topological analysis.

As shown in Figure 16, the selected joints of the original system will produce three
subsystems after three cuts, and only Subsystem III is determined because Subsystem
III has four motion equations and four unknowns. These four unknowns are the four
components of the two constraint forces generated by the 2nd- and 3rd-cutting closed-loop
joints. Subsystem II is uncertain because it has two motion equations and four unknowns.
These four unknowns are the four components of the two constraint forces generated by
the 1st- and 2nd-cutting closed-loop joints. Subsystem I is also uncertain because it has
one motion equation and three unknowns. These three unknowns are two components of
one constraint force generated by the 1st-cutting closed-loop joint and one driving torque.
Therefore, when solving for the generalized driving torque of Subsystem I, it is necessary
to first solve Subsystem II based on the determined Subsystem III to make it a determined
system and to then solve Subsystem I. The following is a complete dynamic modeling and
analysis of the mechanism using the proposed method.

(1) The three-loop closed-chain mechanism contains three independent loops. Thus, we
can obtain three kinematic constraint equations. The kinematic constraint equations
of the mechanism can be obtained according to Equation (24) as follows:

i|1′ r̃2′IS · in1′ ·
.
ϕ

i
1′ +

i|2′ r̃2′IS · i|1′n2′ ·
.
ϕ

1′

2′ − i|1′′ r̃1′′ S · in1′′ ·
.
ϕ

i
1′′ = 0 ;

i|1r̃4S · in1 ·
.
ϕ

i
1 +

i|4r̃4S · i|1n4 ·
.
ϕ

1
4 − i|1′ r̃2′IIS · in1′ ·

.
ϕ

i
1′

−i|2′ r̃2′IIS · i|1′n2′ ·
.
ϕ

1′

2′ = 0 ;
i|1r̃4S · in1 ·

.
ϕ

i
1 +

i|4r̃4S · i|1n4 ·
.
ϕ

1
4 − i|1r̃3S · in1 ·

.
ϕ

i
1

−i|2r̃3S · i|1n2 ·
.
ϕ

1
2 − i|3r̃3S · i|2n3 ·

.
ϕ

2
3 = 0

(61)

(2) The dynamic equations of Subsystem III can be obtained according to Equation (56)
as follows:
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
inT

1 · M[1][•]
R · ..

q + inT
1 · h[1]

R + inT
1 · i|NTl[1]R = inT

1 · dτ1
i|1nT

2 · M[2][•]
R · ..

q + i|1nT
2 · h[2]

R + i|1nT
2 · i|NTl[2]R = i|1nT

2 · dτ2
i|2nT

3 · M[3][•]
R · ..

q + i|2nT
3 · h[3]

R + i|2nT
3 · i|NTl[3]R = i|2nT

3 · dτ3
i|1nT

4 · M[4][•]
R · ..

q + i|1nT
4 · h[4]

R + i|1nT
4 · i|NTl[4]R = i|1nT

4 · dτ4

(62)

(3) The constraint force generated by the 2nd-cutting closed-loop joint can be calculated
according to Equation (62). Therefore, Subsystem II becomes determinate. The dy-
namic equations of Subsystem II can be obtained according to Equation (56) as follows:{

inT
1′ · M[1′ ][•]

R · ..
q + inT

1′ · h[1′ ]
R + inT

1′ ·
i|NTl[1

′ ]
R = inT

1′ ·
dτ1′

i|1′nT
2′ · M[2′ ][•]

R · ..
q + i|1′nT

2′ · h[2′ ]
R + i|1′nT

2′ ·
i|NTl[2

′ ]
R = i|1′nT

2′ ·
dτ2′

(63)

(4) According to Equation (63), the constraint force generated by the 1st-cutting closed-
loop joint can be calculated so that Subsystem I becomes determinate. The constraint
torque vector equations and the constraint force vector equations of the active joint
(1′′) can be obtained according to Equation (38) as follows:

i ñ̂2
1′′ · M[1′′ ][•]

R · ..
q + i ñ̂2

1′′ · h[1′′ ]
R + i ñ̂2

1′′ · i|NTl[1
′′ ]

R = −iτr
1′′

i ñ̂2
1′′ · M[1′′ ][•]

P · ..
q + i ñ̂2

1′′ · h[1′′ ]
P + i ñ̂2

1′′ · i|NTl[1
′′ ]

P = −ifr
1′′

in1′′ ·
inT

1′′ · M[1′′ ][•]
P · ..

q + in1′′ ·
inT

1′′ · h[1′′ ]
P + in1′′ ·

inT
1′′ ·

i|NTl[1
′′ ]

P = ifm
1′′

(64)

(5) According to the constraint force and constraint torque calculated using the above
equations, the friction model of the active joint (1′′) can be obtained. Then, the driving
torque of the active joint (1′′) can be obtained according to Equation (56) as follows:

inT
1′′ · M[1′′ ][•]

R · ..
q + inT

1′′ · h[1′′ ]
R + inT

1′′ ·
i|NTl[1

′′ ]
R + τ

f
1′′ =

inT
1′ ·

dτ1′′ (65)

where matrices M[•][•]
R , vectors h[•]

R , and vectors i|NTl[•]R in Equations (62)–(65) are
defined in Equations (A11)–(A31) in Appendix A.

According to the proposed dynamic algorithm, a computer program is developed to
simulate the three-loop closed-chain mechanism. The initial parameters used during the
simulation are shown in Table 3. The simulated rotation angles of the six passive joints
are shown in Figure 17. The simulated constraint forces of the three closed-loop joints are
shown in Figure 18. The simulated constraint force of the active joint is shown in Figure 19.
To verify the simulation results of the proposed method, the dynamic modeling and solving
of the three-loop closed-chain mechanism ware carried out using ADAMS software. The
results of the rotation angles of the passive joints, the constraint forces of the closed-loop
joints, and the constraint force of the active joint calculated using ADAMS software are also
shown in Figure 17, Figure 18, and Figure 19, respectively, which are in good agreement
with the values obtained using the method in this paper.

Table 3. Initial parameters.

Parameter Symbol Value

Axis-invariant
in1, 1n2, 2n3,
1n4, in1′ ,

1′n2′ ,
in1′′

[0 0 1]T

Initial linear position

1
0r2; 2

0r3 [0.0737 −0.0676 0]T; [−0.0451 −0.0217 0]T;
3
0r3S; 1

0r4; [−0.0375 0.0249 0]T; [0.0368 −0.0338 0]T;
4
0r4S; 1′

0 r2′ ; [−0.0457 −0.0306 0]T; [−0.0079 −0.0544 0]T;
2′
0 r2′IIS; 2′

0 r2′IS; [0.049 −0.01 0]T; [−0.049 0.01 0]T;
1′′
0 r1′′ S

[−0.0069 −0.0445 0]T;

Central position of
the link mass

1r1I ;
2r2I ; [0.0369 −0.0338 0]T; [−0.0451 −0.0217 0]T;

3r3I ;
4r4I ; [−0.0187 0.0124 0]T; [−0.0229 −0.0153 0]T;

1′ r1′ I ;
2′ r2′ I ; [−0.0039 −0.0272 0]T; [0 0 0]T;

1′′ r1′′ I
[−0.0034 −0.0222 0]T
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Table 3. Cont.

Parameter Symbol Value

Link mass
m1, m2, m2′ 2 kg
m3, m1′′ 1 kg
m4, m1′ 1.2 kg

Link MOI

1IJ1I ,
2IJ2I ,

2′ IJ2′ I diag(0.005, 0.04, 0.04) kg·m2

3IJ3I ,
1′′ IJ1′′ I diag(0.002, 0.01, 0.01) kg·m2

4IJ4I ,
1′ IJ1′ I diag(0.003, 0.02, 0.02) kg·m2

Gravitational acceleration g [0 −9.8 0]T m/s2

Driving angular velocity
.
ϕ

i
1′′

0.1 rad/s

Coulomb friction coefficient ck[1
′′ ] 0.05

Viscous friction coefficient vk[1
′′ ] 0.01

Static friction coefficient sk[1
′′ ] 0.2

Stribeck velocity
.
ϕ

s
1′′ 0.1
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Figure 17. Rotation angles of six passive joints.
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6. Discussion

The advantages of the dynamic modeling method of multi-rigid-body mechanisms
considering joint friction, as proposed in this paper, are as follows:

(1) Modeling complexity analysis
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The proposed joint constraint force calculation method has the advantage of high
modeling efficiency. A comparison between the proposed method and several existing joint
constraint force calculation methods is provided as follows:
1⃝ Compared with the traditional Lagrangian calculation method, the proposed method

can not only avoid the analysis of the system energy but also avoid the modeling of a
large number of intermediate variables and complex partial derivative operations;

2⃝ Compared with the traditional Newton–Euler calculation method, the proposed
method can avoid complex force analysis for each joint of the mechanism and a
large number of intermediate variable calculations, can explicitly calculate the joint
constraint force, and requires fewer constraint force equations;

3⃝ Compared with the single-direction recursive construction method [1,2], the proposed
method can explicitly express constraint forces, has fewer dimensions in matrix oper-
ations, and does not require complex virtual power and force derivation and analysis.

(2) Comparison with Zhao’s closed-chain dynamic method
The proposed closed-chain friction modeling method can not only derive the friction

dynamic model of the active joints in an analytical form based on the obtained explicit
normal force equations but also has the advantage of a relatively simple modeling process.

To obtain the analytical form of the friction model of the active joints of closed-chain
mechanisms, Zhao [3] recently proposed an advanced closed-chain dynamic modeling
method considering joint friction after extending the Udwadia–Kalaba equation. A com-
parison between the closed-chain modeling method considering joint friction proposed in
this paper and Zhao’s method is provided as follows:
1⃝ For modeling the kinematic constraint equation, two methods can be conducted to

determine the explicit expression of the kinematic constraint equations, but Zhao’s
method requires complex derivative operations and trigonometric function operations
to derive many intermediate variables;

2⃝ For modeling the constraint force equation, both methods provide explicit expressions.
However, when Zhao’s method is used to solve the constraint force vectors of different
closed-chain mechanisms, complex derivative operations are necessary to deduce
multiple intermediate variables. In addition, for Zhao’s method, two constraint axes
need to be established when solving for the constraint force;

3⃝ For modeling the inertia matrix and bias force vector, both methods provide explicit
expressions, but Zhao’s method uses the traditional Lagrangian method to derive
them, which requires complex derivation and partial derivation operations of many
intermediate variables.

(3) Fully explicit dynamic Modeling
The fully explicit expression of the dynamic modeling of multi-rigid-body mecha-

nisms considering joint friction is realized. The proposed model realizes the fully explicit
expression of the bias force vector (including the Coriolis force vector, centrifugal force
vector, and gravity vector), inertia matrix, and generalized friction force vector required
for multi-rigid-body dynamic modeling. The independent and explicit expression of the
dynamic terms is very beneficial to the motion analysis of the mechanisms. Moreover,
compared with other common explicit dynamic modeling methods, the proposed model
only needs to determine and replace the relevant parameters to achieve the modeling
and solution of the complete dynamics of multi-rigid-body mechanisms considering joint
friction, which reduces the difficulty of the engineering implementation.

7. Conclusions

A novel dynamic modeling method for multi-rigid-body mechanisms considering
joint friction is proposed in this paper. Based on explicit dynamic modeling theory, the
solution of the constraint force required by the key to joint friction modeling is derived and
improved. Then, a complete dynamic model of tree chains and closed chains considering
joint friction is established. Finally, the proposed method is simulated and analyzed
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by taking a five-axis tree-chain mechanism and a three-loop closed-chain mechanism as
examples. By comparison with the methods of Zhao and others, the proposed method is
further analyzed. The main findings of this paper are as follows:

(1) The proposed explicit iterative constraint-force-solving method provides new insights
for joint constraint force modeling. The proposed method has the advantages of
low computational complexity, high modeling efficiency, and a relatively simple
modeling process;

(2) Like Zhao’s closed-chain dynamic method considering joint friction, the proposed
method is also based on the derived joint constraint force to obtain the analytical form
of the active joint friction model of closed-chain mechanisms, and the derived joint
friction and constraint force are also decoupled. However, compared with that of
Zhao’s method, the modeling process of the constraint force of the proposed method
is simpler;

(3) The proposed multi-rigid-body dynamic model considering joint friction only requires
determining and replacing relevant parameters to achieve dynamic modeling and
solution, reducing the difficulty of the engineering implementation.

In addition, the proposed model can be expanded after studying recent research
hotspots, including joint clearance [54] and link flexibility [55], and a more complete unified
model can be established to meet the needs of various future studies.
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Appendix A

The matrix (M[•][•]
R ) elements in Equations (57) and (60) are as follows:

MR
[1][1] =

(
i|1IJ1I − m1 · i|1 r̃̂2

1I +
i|2IJ2I − m2 · i|1 r̃̂2

2I +
i|3IJ3I

−m3 · i|1 r̃̂2
3I +

i|4IJ4I − m4 · i|1 r̃̂2
4I +

i|5IJ5I − m5 · i|1 r̃̂2
5I

)
MR

[1][2] = i|2IJ2I − m2 · i|1r̃2I · i|2r̃2I +
i|3IJ3I − m3 · i|1r̃3I · i|2r̃3I

MR
[1][3] = i|3IJ3I − m3 · i|1r̃3I · i|3r̃3I

MR
[1][4] = i|4IJ4I − m4 · i|1r̃4I · i|4r̃4I +

i|5IJ5I − m5 · i|1r̃5I · i|4r̃5I
MR

[1][5] = i|5IJ5I − m5 · i|1r̃5I · i|5r̃5I ;

(A1)

MR
[2][1] = i|2IJ2I − m2 · i|2r̃2I · i|1r̃2I +

i|3IJ3I − m3 · i|2r̃3I · i|1r̃3I
MR

[2][2] = i|2IJ2I − m2 · i|2 r̃̂2
2I +

i|3IJ3I − m3 · i|2 r̃̂2
3I

MR
[2][3] = i|3IJ3I − m3 · i|2r̃3I · i|3r̃3I

MR
[2][4] = 0

MR
[2][5] = 0 ;

(A2)

MR
[3][1] = i|3IJ3I − m3 · i|3r̃3I · i|1r̃3I

MR
[3][2] = i|3IJ3I − m3 · i|3r̃3I · i|2r̃3I

MR
[3][3] = i|3IJ3I − m3 · i|3 r̃̂2

3I
MR

[3][4] = 0
MR

[3][5] = 0 ;

(A3)
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MR
[4][1] = i|4IJ4I − m4 · i|4r̃4I · i|1r̃4I +

i|5IJ5I − m5 · i|4r̃5I · i|1r̃5I
MR

[4][2] = 0
MR

[4][3] = 0
MR

[4][4] = i|4IJ4I − m4 · i|4 r̃̂2
4I +

i|5IJ5I − m5 · i|4 r̃̂2
5I

MR
[4][5] = i|5IJ5I − m5 · i|4r̃5I · i|5r̃5I ;

(A4)

MR
[5][1] = i|5IJ5I − m5 · i|5r̃5I · i|1r̃5I

MR
[5][2] = 0

MR
[5][3] = 0

MR
[5][4] = i|5IJ5I − m5 · i|5r̃5I · i|4r̃5I

MR
[5][5] = i|5IJ5I − m5 · i|5 r̃̂2

5I ;

(A5)

The vector (h[•]
R ) elements in Equations (57) and (60) are as follows:

h[1]
R = m1 · i|1r̃1I · i

.
ϕ̃

2̂

1 · i|1r1I

+m2 · i|1r̃2I ·
(

i
.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r2I

)
+m3 · i|1r̃3I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r3 +
i

.
ϕ̃

2̂

3 · i|3r3I

)
+m4 · i|1r̃4I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r4I

)
+m5 · i|1r̃5I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r5 +
i

.
ϕ̃

2̂

5 · i|5r5I

)
+

 i
.
ϕ̃1 · i|1IJ1I · i

.
ϕ1 +

i
.
ϕ̃2 · i|2IJ2I · i

.
ϕ2 +

i
.
ϕ̃3 · i|3IJ3I · i

.
ϕ3

+i
.
ϕ̃4 · i|4IJ4I · i

.
ϕ4 +

i
.
ϕ̃5 · i|5IJ5I · i

.
ϕ5


−
(

m1 · i|1r̃1I · ig1 + m2 · i|1r̃2I · ig2 + m3 · i|1r̃3I · ig3
+m4 · i|1r̃4I · ig4 + m5 · i|1r̃5I · ig5

)
+
(

i|2IJ2I − m2 · i|1r̃2I · i|2r̃2I +
i|3IJ3I − m3 · i|1r̃3I · i|2r̃3I

)
· i

.
ϕ̃1 · i|1 .

ϕ2

+
(

i|3IJ3I − m3 · i|1r̃3I · i|3r̃3I

)
· i

.
ϕ̃2 · i|2 .

ϕ3

+
(

i|4IJ4I − m4 · i|1r̃4I · i|4r̃4I +
i|5IJ5I − m5 · i|1r̃5I · i|4r̃5I

)
· i

.
ϕ̃1 · i|1 .

ϕ4

+
(

i|5IJ5I − m5 · i|1r̃5I · i|5r̃5I

)
· i

.
ϕ̃4 · i|4 .

ϕ5 ;

(A6)

h[2]
R = m2 · i|2r̃2I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r2I

)
+m3 · i|2r̃3I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r3 +
i

.
ϕ̃

2̂

3 · i|3r3I

)
+

(
i

.
ϕ̃2 · i|2IJ2I · i

.
ϕ2 +

i
.
ϕ̃3 · i|3IJ3I · i

.
ϕ3

)
−
(

m2 · i|2r̃2I · ig2 + m3 · i|2r̃3I · ig3

)
+
(

i|2IJ2I − m2 · i|2 r̃̂2
2I +

i|3IJ3I − m3 · i|2 r̃̂2
3I

)
· i

.
ϕ̃1 · i|1 .

ϕ2

+
(

i|3IJ3I − m3 · i|2r̃3I · i|3r̃3I

)
· i

.
ϕ̃2 · i|2 .

ϕ3 ;

(A7)

h[3]
R = m3 · i|3r̃3I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r3 +
i

.
ϕ̃

2̂

3 · i|3r3I

)
+

(
i

.
ϕ̃3 · i|3IJ3I · i

.
ϕ3

)
−
(

m3 · i|3r̃3I · ig3

)
+
(

i|3IJ3I − m3 · i|3r̃3I · i|2r̃3I

)
· i

.
ϕ̃1 · i|1 .

ϕ2

+
(

i|3IJ3I − m3 · i|3 r̃̂2
3I

)
· i

.
ϕ̃2 · i|2 .

ϕ3 ;

(A8)
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h[4]
R = m4 · i|4r̃4I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r4I

)
+m5 · i|4r̃5I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r5 +
i

.
ϕ̃

2̂

5 · i|5r5I

)
+(i

.
ϕ̃4 · i|4IJ4I · i

.
ϕ4 +

i
.
ϕ̃5 · i|5IJ5I · i

.
ϕ5)

−(m4 · i|4r̃4I · ig4 + m5 · i|4r̃5I · ig5)

+
(

i|4IJ4I − m4 · i|4 r̃̂2
4I +

i|5IJ5I − m5 · i|4 r̃̂2
5I

)
· i

.
ϕ̃1 · i|1 .

ϕ4

+
(

i|5IJ5I − m5 · i|4r̃5I · i|5r̃5I

)
· i

.
ϕ̃4 · i|4 .

ϕ5 ;

(A9)

h[5]
R = m5 · i|5r̃5I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r5 +
i

.
ϕ̃

2̂

5 · i|5r5I

)
+(i

.
ϕ̃5 · i|5IJ5I · i

.
ϕ5)

−(m5 · i|5r̃5I · ig5)

+
(

i|5IJ5I − m5 · i|5r̃5I · i|4r̃5I

)
· i

.
ϕ̃1 · i|1 .

ϕ4

+
(

i|5IJ5I − m5 · i|5 r̃̂2
5I

)
· i

.
ϕ̃4 · i|4 .

ϕ5 ;

(A10)

The matrix (M[•][•]
R ) elements in Equations (62)–(65) are as follows:

MR
[1][1] =

(
i|1IJ1I − m1 · i|1 r̃̂2

1I +
i|2IJ2I − m2 · i|1 r̃̂2

2I +
i|3IJ3I

−m3 · i|1 r̃̂2
3I +

i|4IJ4I − m4 · i|1 r̃̂2
4I

)
MR

[1][2] = i|2IJ2I − m2 · i|1r̃2I · i|2r̃2I +
i|3IJ3I − m3 · i|1r̃3I · i|2r̃3I

MR
[1][3] = i|3IJ3I − m3 · i|1r̃3I · i|3r̃3I

MR
[1][4] = i|4IJ4I − m4 · i|1r̃4I · i|4r̃4I ;

(A11)

MR
[2][1] = i|2IJ2I − m2 · i|2r̃2I · i|1r̃2I +

i|3IJ3I − m3 · i|2r̃3I · i|1r̃3I
MR

[2][2] = i|2IJ2I − m2 · i|2 r̃̂2
2I +

i|3IJ3I − m3 · i|2 r̃̂2
3I

MR
[2][3] = i|3IJ3I − m3 · i|2r̃3I · i|3r̃3I

MR
[2][4] = 0 ;

(A12)

MR
[3][1] = i|3IJ3I − m3 · i|3r̃3I · i|1r̃3I

MR
[3][2] = i|3IJ3I − m3 · i|3r̃3I · i|2r̃3I

MR
[3][3] = i|3IJ3I − m3 · i|3 r̃̂2

3I
MR

[3][4] = 0 ;

(A13)

MR
[4][1] = i|4IJ4I − m4 · i|4r̃4I · i|1r̃4I

MR
[4][2] = 0

MR
[4][3] = 0

MR
[4][4] = i|4IJ4I − m4 · i|4 r̃̂2

4I ;

(A14)

MR
[1′ ][1′ ] = i|1′ IJ1′ I − m 1′ · i| 1′ r̃̂2

1′ I +
i|2′ IJ2′ I − m 2′ · i| 1′ r̃̂2

2′ I
MR

[1′ ][2′ ] = i|2′ IJ2′ I − m 2′ · i| 1′ r̃2′ I · i|2′ r̃2′ I ;
(A15)

MR
[2′ ][1′ ] = i|2′ IJ2′ I − m 2′ · i|2′ r̃2′ I · i|1′ r̃2′ I

MR
[2′ ][2′ ] = i|2′ IJ2′ I − m 2′ · i|2′ r̃̂2

2′ I ;
(A16)

MR
[1′′ ][1′′ ] = i|1′′ IJ1′′ I − m 1′′ · i| 1′′ r̃̂2

1′′ I (A17)
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The vector (h[•]
R ) elements in Equations (62)–(65) are as follows:

h[1]
R = m1 · i|1r̃1I · i

.
ϕ̃

2̂

1 · i|1r1I

+m2 · i|1r̃2I ·
(

i
.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r2I

)
+m3 · i|1r̃3I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r3 +
i

.
ϕ̃

2̂

3 · i|3r3I

)
+m4 · i|1r̃4I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r4I

)
+

 i
.
ϕ̃1 · i|1IJ1I · i

.
ϕ1 +

i
.
ϕ̃2 · i|2IJ2I · i

.
ϕ2 +

i
.
ϕ̃3 · i|3IJ3I · i

.
ϕ3

+i
.
ϕ̃4 · i|4IJ4I · i

.
ϕ4


−
(

m1 · i|1r̃1I · ig1 + m2 · i|1r̃2I · ig2 + m3 · i|1r̃3I · ig3
+m4 · i|1r̃4I · ig4

)
+
(

i|2IJ2I − m2 · i|1r̃2I · i|2r̃2I +
i|3IJ3I − m3 · i|1r̃3I · i|2r̃3I

)
· i

.
ϕ̃1 · i|1 .

ϕ2

+
(

i|3IJ3I − m3 · i|1r̃3I · i|3r̃3I

)
· i

.
ϕ̃2 · i|2 .

ϕ3

+
(

i|4IJ4I − m4 · i|1r̃4I · i|4r̃4I

)
· i

.
ϕ̃1 · i|1 .

ϕ4;

(A18)

h[2]
R = m2 · i|2r̃2I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r2I

)
+m3 · i|2r̃3I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r3 +
i

.
ϕ̃

2̂

3 · i|3r3I

)
+

(
i

.
ϕ̃2 · i|2IJ2I · i

.
ϕ2 +

i
.
ϕ̃3 · i|3IJ3I · i

.
ϕ3

)
−
(

m2 · i|2r̃2I · ig2 + m3 · i|2r̃3I · ig3

)
+
(

i|2IJ2I − m2 · i|2 r̃̂2
2I +

i|3IJ3I − m3 · i|2 r̃̂2
3I

)
· i

.
ϕ̃1 · i|1 .

ϕ2

+
(

i|3IJ3I − m3 · i|2r̃3I · i|3r̃3I

)
· i

.
ϕ̃2 · i|2 .

ϕ3;

(A19)

h[3]
R = m3 · i|3r̃3I ·

(
i

.
ϕ̃

2̂

1 · i|1r2 +
i

.
ϕ̃

2̂

2 · i|2r3 +
i

.
ϕ̃

2̂

3 · i|3r3I

)
+

(
i

.
ϕ̃3 · i|3IJ3I · i

.
ϕ3

)
−
(

m3 · i|3r̃3I · ig3

)
+
(

i|3IJ3I − m3 · i|3r̃3I · i|2r̃3I

)
· i

.
ϕ̃1 · i|1 .

ϕ2

+
(

i|3IJ3I − m3 · i|3 r̃̂2
3I

)
· i

.
ϕ̃2 · i|2 .

ϕ3;

(A20)

h[4]
R = m4 · i|4r̃4I ·

(
i

.
ϕ̃

2̂

1 · i|1r4 +
i

.
ϕ̃

2̂

4 · i|4r4I

)
+i

.
ϕ̃4 · i|4IJ4I · i

.
ϕ4

−m4 · i|4r̃4I · ig4

+
(

i|4IJ4I − m4 · i|4 r̃̂2
4I

)
· i

.
ϕ̃1 · i|1 .

ϕ4 ;

(A21)

h[1′ ]
R = m1′ · i|1′ r̃1′ I · i

.
ϕ̃

2̂

1′ · i|1′r1′ I

+m2′ · i|1′ r̃2′ I ·
(

i
.
ϕ̃

2̂

1′ · i|1′r2′ +
i

.
ϕ̃

2̂

2′ · i|2′r2′ I

)
+

(
i

.
ϕ̃1′ · i|1′ IJ1′ I · i

.
ϕ1′ +

i
.
ϕ̃2′ · i|2′ IJ2′ I · i

.
ϕ2′

)
−
(

m1′ · i|1′ r̃1′ I · ig1′ + m2′ · i|1′ r̃2′ I · ig2′

)
+
(

i|2′ IJ2′ I − m2′ · i| 1′ r̃2′ I · i|2′ r̃2′ I

)
· i

.
ϕ̃1′ · i|1′ .

ϕ2′ ;

(A22)
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h[2′ ]
R = m2′ · i|2′ r̃2′ I ·

(
i

.
ϕ̃

2̂

1′ · i|1′r2′ +
i

.
ϕ̃

2̂

2′ · i|2′r2′ I

)
+i

.
ϕ̃2′ · i|2′ IJ2′ I · i

.
ϕ2′

−m2′ · i|2′ r̃2′ I · ig2′

+
(

i|2′ IJ2′ I − m 2′ · i|2′ r̃̂2
2′ I

)
· i

.
ϕ̃1′ · i|1′ .

ϕ2′ ;

(A23)

h[1′′ ]
R = m1′′ · i|1′′ r̃1′′ I · i

.
ϕ̃

2̂

1′′ · i|1′′ r1′′ I

+i
.
ϕ̃1′′ · i|1′′ IJ1′′ I ·

i
.
ϕ1′′

−m1′′ · i|1′′ r̃1′′ I · ig1′′

(A24)

The vector (i|NTl[•]R ) elements in Equations (62)–(65) are as follows:

i|NTl[1]R = i|1r̃T
4S · 4Sl2′IIS −

i|1r̃T
4S · 3Sl4S +

i|1r̃T
3S · 3Sl4S (A25)

i|NTl[2]R = i|2r̃T
3S · 3Sl4S (A26)

i|NTl[3]R = i|3r̃T
3S · 3Sl4S (A27)

i|NTl[4]R = i|4r̃T
4S · 4Sl2′IIS −

i|4r̃T
4S · 3Sl4S (A28)

i|NTl[1
′ ]

R = −
(

i|1′ r̃T
2′IIS ·

4Sl2′IIS +
i|1′ r̃T

2′IS ·
1′′ Sl2′IS

)
(A29)

i|NTl[2
′ ]

R = −
(

i|2′ r̃T
2′IIS ·

4Sl2′IIS +
i|2′ r̃T

2′IS ·
1′′ Sl2′IS

)
(A30)

i|NTl[1
′′ ]

R = i|1′′ r̃T
1′′ S ·

1′′ Sl2′IS (A31)
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