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Abstract: As one of the key components of an aeroengine, turbine blisk endures complex coupling
loads under a harsh operational environment so that the reliability of turbine blisk directly influences
the safe operation of aeroengine. It is urgent to precisely perform the reliability estimation of a
complex blisk structure. To address this issue, an enhanced Moving Neural Network Framework
(MNNF) is proposed by integrating compact support region theory, improve sooty tern optimization
algorithm (ISTOA), and Bayesian regularization strategy into artificial neural network. The compact
support region theory is applied to select the efficient samples for modeling from the training samples
set, the ISTOA is to determine the optimal compact support region, and Bayesian regularization
thought is utilized to improve the generalization ability of neural network model. The operational
reliability assessment of aeroengine blisk is performed with the consideration of transient loads to
verify the proposed MNNF method. It is shown that the reliability degree of turbine blisk stain is
0.9984 when the allowable value is 5.2862 × 10−3 m. In line with the comparison of methods, the
developed MNNF approach has 0.99738 in root means square error, 3.1634 × 10−4 m in goodness of
fit, 0.423 s in modeling time, 99.99% in simulation precision, and 0.496 s in simulation time under
10,000 simulations, which are superior to all other methods (i.e., 99.96%, 99.91%, 99.93%, 99.97%,
and 99.97% in simulation precision and 16.27%, 4.82%, 30.07%, 39.87%, and 23.59% in simulation
efficiency, for the response surface method (RSM), Kriging, support vector machine (SVM), back
propagation-artificial neural network (BP-NN), and BP-NN based on particle swarm optimization
(BP-PSO) methods, respectively). It is demonstrated that the MNNF method holds excellent modeling
and simulation performances. The efforts of this study provide promising tools and insights into the
reliability design of complex structures, and enrich and develop reliability theory.

Keywords: enhanced moving neural network; compact support region; turbine blisk; reliability
estimation; complex structures

1. Introduction

Structural systems are usually assembled with multiple components and endure
complex time-varying loads during operation so that failure and accidents are easily
caused. As one structural system, the turbine blisk of aeroengine assembled by turbine
disk and turbine blades is affected by flow field, thermal field, and structural field during
the operation process, which result in strain failure and unacceptable aircraft flight safety.
To ensure the reliable operation of structures, it is necessary to implement the reliability
analysis of turbine blisk.

In the reliability design of engineering structures, numerous methods have emerged.
Qian et al. employed an improved Monte Carlo (MC) simulation to implement the struc-
tural reliability of crane rail beam under stochastic crane movements and irradiation
conditions [1]. Jensen et al. discussed the application of MC simulation in the reliability
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design of structural systems under stochastic excitation [2]. The MC method is developed
based on the Bernoulli law of large numbers to improve the analytical accuracy with the
sample size, which is unacceptable in calculation burden for the reliability evaluation
of complex structures. Importance sampling [3,4], truncated importance sampling [5,6],
linear sampling [7], and directional sampling methods [8,9] are explored to reduce the
computation burden of the MC method. To further improve the efficiency of the reliabil-
ity evaluation for complex structures, the moment methods are explored by numerous
scholars. Ricardo et al. applied the first-order second-moment (FOSM) method to inves-
tigate the reliability analysis of steel elements subjected to fire [10]. Dey et al. adopted
the advanced FOSM to address structural reliability assessment of pedestrian bridges [11].
In addition, various moment methods are explored for the reliability analysis of complex
structures [12–14]. The moment methods are widely utilized in the reliability evaluation of
complex structures due to unique computational advantage, but it is only applicable to the
known limit state function. In this case, surrogate modeling methods provide an effective
way to address the above-mentioned drawbacks, which can be divided into the response
surface method (RSM) [15], the Kriging model [16], support vector machine (SVM) [17], and
neural network [18]. Lehký et al. performed the reliability estimation of complex structures
by using RSM [19]. Fei et al. studied the RSM to derive the probabilistic analysis of casing
radial deformation [20]. Yu et al. developed the adaptive Kriging and weighted sampling
for reliability assessment of engineering structures [21]. Teng et al. presented the weighted
Kriging model to perform the reliability design of turbine blisk [22]. Roy et al. investigated
the application of SVM in structural reliability analysis [23]. Chen et al. explored the SVM
with a similarity selection strategy and genetic algorithm for the reliability evaluation of
nose landing gear shock strut outer fitting stress [24]. Zhang et al. employed the polynomial
chaos expansion approach to evaluate structural reliability [25]. Yang et al. discussed the re-
liability evaluation for stress-constrained continuum structures using the polynomial chaos
expansion method [26]. The neural network methods have received widespread attention
owing to their excellent approximation performance and robustness. Lu et al. introduced a
hybrid artificial neural network model to address the reliability design of turbine blisk [27].
Song et al. studied the improved neural network approach to implement the probabilistic
analysis of flexible mechanisms [28]. Obviously, compared to numerical methods such as
MC methods and moment methods, surrogate methods are a high-efficiency technique
and are widely focused and developed in structural reliability design. Meanwhile, the
neural network method is one promising surrogate method due to excellent approximation
performance and robustness. Although the above-mentioned neural network methods
have outstanding computational advantages for solving unknown limit state functions, the
existing methods face some shortcomings for the operation reliability design of turbine
blisk under multi-physical fields, including (i) the plenty of relevant available information
in complex working environment. So far, the known samples information is underutilized
so that the reliability design of complex structures is ineffective. (ii) Under the influence
of complex factors, invalid samples in acquired samples exist and seriously influence the
modeling accuracy and efficiency of neural network methods. (iii) The generalization
ability and overtraining in neural network modeling is too inadequate for the accuracy of
reliability analysis, which is difficult to satisfy for engineering requirements.

To resolve the above issues, an enhanced Moving Neural Network Framework (MNNF)
is developed in this paper by introducing extremum thought, compact support region
theory, improved sooty tern optimization algorithm (ISTOA), and Bayesian regularization
(BR) into an artificial neural network model. Extremum thought is applied to reasonably
handle the transient process of turbine blisk responses. Compact support region theory is
employed to acquire the important modeling information from sample set. The improved
sooty tern optimization algorithm (ISTOA) is adopted to optimize the compact support
region radius and obtain the optimal modeling samples. The Bayesian regularization is
utilized to find the optimal weights and thresholds of the final artificial neural network
model. Subsequently, the operational reliability analysis of aeroengine turbine blisk strain
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under multi-physical fields is conducted to validate the applicability and effectiveness of
the proposed MNNF method. The modeling and simulation performance advantages of the
MNNF model are demonstrated by comparing it to RSM, Kriging, SVM, back propagation-
artificial neural network (BP-NN), and BP-NN based on particle swarm optimization
(BP-PSO) approaches.

In what follows, Section 2 presents the presented MNNF model for the reliability anal-
ysis of complex structures, involving structural reliability estimation procedures, MNNF
mathematical modeling, and reliability approach with the MNNF. Turbine blisk reliability
evaluation is implemented in Section 3, including deterministic analysis of turbine blisk,
MNNK modeling for turbine blisk strain failure, and reliability analysis for turbine blisk
strain. Section 4 verifies the MNNF method from modeling and simulation performance
perspectives. The main conclusions of this study are summarized in Section 5.

2. Enhanced Moving Neural Network Framework for Reliability Evaluation

In this section, the MNNF approach is developed for the reliability evaluation of
structures, involving structural reliability estimation procedures, MNNF mathematical
modeling, and the reliability approach with the MNNF.

2.1. Structural Reliability Estimation Procedures with MNNF

Due to the weakness of the MC simulation and moment methods in the high computa-
tional burden and unknown limit state functions, the neural network model has become
a commonly adopted mean for structural reliability analyses. To solve the problems of
insufficient utilization of known sample information and inadequate generalization ability
of traditional neural network model, the enhanced MNNF is presented by introducing
the compact support region theory, ISTOA, and Bayesian regularization strategy into the
artificial neural network model. In the developed approach, the compact support region
theory is used to determine effective samples. The ISTOA is adopted to obtain the optimal
radius of compact support region. The Bayesian regularization strategy is employed to
solve the weights and thresholds of the neural network model. The reliability evaluation
process of engineering structures via the proposed MNNF model is shown in Figure 1.
As indicated in Figure 1, the reliability evaluation process of engineering structures with
the MNNF model includes deterministic analysis, effective samples acquirement, MNNF
modeling, and reliability evaluation. The specific steps are described as follows:

Step 1 Determine the study object of engineering structure, i.e., aeroengine turbine
blisk stain failure.

Step 2 Construct the finite element (FE) analysis model, and set the constraints of
deterministic analysis, and implement the deterministic analysis of turbine blisk.

Step 3 Determine the input variables and output responses, and obtain the samples by
Latin hypercube sampling (LHS) approach and conduct deterministic analysis, and divide
the acquired into training and testing samples [29].

Step 4 Select the effective training samples by the initial compact support region for
modeling.

Step 5 Establish the relationship between the input variables and output response by
the neural network based on effective training samples, and solve the model hyperparame-
ters via BR algorithm.

Step 6 Verify the accuracy and efficiency of the established MNNF model. If the
MNNF model prediction accuracy fails to satisfy engineering requirement, the radius of
the compact support region is optimized by the ISTOA, which combines the sooty tern
optimization algorithm and chaotic cross learning strategy. Then, Step 4 is performed until
the engineering requirements are satisfied. If it satisfies engineering requirements, Step 7
will be conducted.

Step 7 Establish the limit state function based on the MNNF model, and calculate the
reliability degree of engineering structures applying MC simulation technology to perform
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a large number of simulations, and validate the simulation performance for reliability
assessment to output the results of reliability estimations.
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Figure 1. Reliability evaluation process of engineering structures using the MNNF model.

2.2. MNNF Mathematical Modeling

In this section, the MNNF model is presented by fusing the compact support region
theory, artificial neural network, ISTOA, and Bayesian regularization strategy. To obtain a
valid modeling information, the compact support region theory is introduced to select the
effective samples (x, y) from the training samples (xtraining, ytraining). The two-dimensional
schematic diagram of selecting the effective samples with the compact support region is
depicted in Figure 2.
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Figure 2. Schematic diagram of effective samples selection with the compact support region.

As displayed in Figure 2, one sample from the training samples is selected as a
computation point o. The ro is the initial radius of compact support region. The samples
within the green area are considered as effective modeling samples.

Based on the selected effective modeling samples (x, y), the relationship between input
variables and output response is established using the neural network model. The network
structure of the MNNF model with the three-layer neural network is presented in Figure 3.

Aerospace 2024, 11, x FOR PEER REVIEW 5 of 19 
 

 

ro

o

 

Figure 2. Schematic diagram of effective samples selection with the compact support region. 

As displayed in Figure 2, one sample from the training samples is selected as a com-

putation point o. The ro is the initial radius of compact support region. The samples within 

the green area are considered as effective modeling samples. 

Based on the selected effective modeling samples (x, y), the relationship between in-

put variables and output response is established using the neural network model. The 

network structure of the MNNF model with the three-layer neural network is presented 

in Figure 3. 

x1j

x2j

x3j

xnj

Input layer Hidden layer Output layer

yj (xj)

 

Figure 3. Network structure of the MNNF model with the three-layer neural network. 

As shown in Figure 3, xj = {xij} (i = 1, 2, …, n) is the jth input variable from effective 

modeling samples (training samples), which when served as the input layer, comprises n 

elements/input parameters {xij} (i = 1, 2, …, n). yj(xj), which denotes the jth output response 

corresponding to the input variables xj = {xij} (i = 1, 2, …, n), which is taken as the output 

layer. The hidden layer output yh is expressed as [30]: 

1 1

hs n

h hidden iu ij u

h i

y f w x 
= =

 
= + 

 
  (1) 

where m indicates the number of effective training samples; sh represents the number of 

hidden layer neurons; wiu is the connection weight between the ith input layer neuron and 

uth hidden layer neuron; θu is the uth threshold of hidden layer neuron; and fhidden repre-

sents the activation functions of the hidden layer for the MNNF model. 

The output layer ymnnf can be denoted by: 

1 1 1 1

o o hs s s n

mnnf output uv h k output uv hidden iu ij u k

v v h i

y f w y f w f w x  
= = = =

    
= + = + +     

    
    (2) 

in which so is the number of output layer neurons; wuv expresses the weight between the 

uth hidden layer neuron and the vth output layer neuron; θk indicates the kth threshold of 

Figure 3. Network structure of the MNNF model with the three-layer neural network.

As shown in Figure 3, xj = {xij} (i = 1, 2, . . ., n) is the jth input variable from effective
modeling samples (training samples), which when served as the input layer, comprises
n elements/input parameters {xij} (i = 1, 2, . . ., n). yj(xj), which denotes the jth output
response corresponding to the input variables xj = {xij} (i = 1, 2, . . ., n), which is taken as the
output layer. The hidden layer output yh is expressed as [30]:

yh = fhidden

(
sh

∑
h=1

n

∑
i=1

wiuxij + θu

)
(1)

where m indicates the number of effective training samples; sh represents the number of
hidden layer neurons; wiu is the connection weight between the ith input layer neuron
and uth hidden layer neuron; θu is the uth threshold of hidden layer neuron; and fhidden
represents the activation functions of the hidden layer for the MNNF model.

The output layer ymnnf can be denoted by:
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ymnn f = foutput

(
so

∑
v=1

wuvyh + θk

)
= foutput

(
so

∑
v=1

wuv fhidden

(
sh

∑
h=1

n

∑
i=1

wiuxij + θu

)
+ θk

)
(2)

in which so is the number of output layer neurons; wuv expresses the weight between the
uth hidden layer neuron and the vth output layer neuron; θk indicates the kth threshold
of output layer; and foutput represents the activation functions of output layer for the
MNNF model.

The training error ED of the MNNF model by the introduced compact support region
is described as [31]:

ED =
1
m

m

∑
j=1

Wc

(
ytrue − ymnn f

)2
(3)

where ytrue is the true value of effective training samples; Wc denotes the moving weighted
for the MNNF model. The cubic spline function is adopted to determine the moving
weighted Wc, i.e.:

Wc(o) = diag(wc(o − x1), wc(o − x2), . . . , wc(o − xm)) (4)

wm
(
o − xj

)
=


2
3 − 4

(
|o−xj|

r0

)2
+ 4
(
|o−xj|

r0

)3
, 0 <

|o−xj|
r0

< 1
2

4
3

(
1 −

(
|o−xj|

r0

))3
, 1

2 <
|o−xj|

r0
< 1

(5)

in which o represents the calculation point; Wc (o) indicates the moving weighted matrix
at calculation point o; and wm(o − xj) and |o − xj| are the moving weighted and distance
between calculation point o and jh efficient training sample, respectively.

To increase the generalization ability and avoid the overfitting of the MNNF model,
Bayesian regularization strategy is adopted to gain the weights and thresholds. The training
performance function is depicted as:

F(x, ξ) = λEw + γ

(
1
m

m

∑
j=1

Wc

(
ytrue − ymnn f

)2
)

(6)

where ξ is the undetermined weights and thresholds ξ = [wiu, θu, wuv, θk]; Ew represents
the squares sum of MNNF weights; and λ and γ denote the regularization coefficients, i.e.:

λ =
φ

2Ew
(7)

γ =
m − φ

2ED
(8)

where φ is the parameters number of effective training samples.
Then, the optimal weights and thresholds ξ* can be described as:

ξ∗ = argmin
ξ

F(x, ξ) (9)

If the established correlation model between the input variable and output response
fails to meet the engineering requirements, the initial compact support region radius is
changed. The two-dimensional schematic diagram of changing the compact support region
radius is shown in Figure 4.
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Where rmin is the minimum radius of the compact support region that the minimum
distance between the calculation points and the efficient training sample; rmax is the maxi-
mum radius of the compact support region, i.e., the maximum distance between calculation
points and efficient training sample; and ropt is the optimal radius of compact support
region.

The intelligent algorithm is introduced to determine the optimal radius of the compact
support region. The sooty tern optimization algorithm is widely used in optimization
problems due to the strong ability of optimization [32]. However, the sooty tern optimiza-
tion algorithm has the drawbacks of uneven initial population distribution and weak local
search ability. Therefore, the chaotic cross learning strategy is integrated into the sooty
tern optimization algorithm, to generate the chaotic sequence to increase the randomness
of the initial population and utilize the poor position towards the superior position for
cross-learning to expedite convergence. By the Tent chaotic mapping in n-dimensional
space, the chaotic sequence c is acquired as:

c =


c11 c21 · · · cn1
c12 c22 · · · cn2
...

...
. . .

...
c1M c2M · · · cnM

 (10)

where M represents population size. The chaotic mapping expression is indicated as:

cp+1,p =

{
2cpq, 0 ≤ cpq < 0.5

2
(
1 − cpq

)
, 0.5 ≤ cpq ≤ 1

(11)

in which p = 1, 2, . . ., M; q = 1, 2, . . ., n. The initial population IX can be described as

IX =


IX11 IX21 · · · IXn1
IX12 IX22 · · · IXn2

...
...

. . .
...

IX1M IX2M · · · IXnM

 (12)

The qth position of the pth initial population is indicated as:

IXpq = IXminq + cpq
(
IXmaxq − IXminq

)
(13)
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where IXmax v and IXmin v are the maximum and minimum value of IXpq. The opposition
initial solution OX can be denoted as:

OXpq = IXmaxq + IXminq − IXpq (14)

To accelerate the convergence and avoid falling into a local optimum of sooty tern
optimization algorithm, all positions are sorted according to the training performance
function, which is divided into superior position and poor position groups. The poor
position learns from the superior position by the cross-learning strategy. The principal
diagram of poor position learning from superior position by cross-learning strategy is
shown in Figure 5.
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strategy.

In Figure 5, the absolute differences are calculated between each individual in the poor
position group and average dimension of the superior position group, and the dimensions
with larger absolute differences are crossed. If the training performance function is small
after crossing, the learning is successful, and otherwise is a failure, i.e.:

OXP,d =

{
OXk

P,d, F
(

OXk
P,d

)
> F(OXP,d)

OXP,d, other
(15)

where OXP,k is the dth individual for poor position group, OXk
P,d indicates the dth position

after kth dimension learning crossover between OXP,k and the superior position group
average dimension.

Then, the relationship between the input variables and output response is determined
using the MNNF model, which provides theoretical support for the reliability analysis of
engineering structures besides turbine blisk.

2.3. Reliability Approach with MNNF

In respect to the MNNF model, the limit state function hmnnf of engineering structures
is established as:

hmnn f = yallow − ymnn f (16)

in which yallow indicates the allowable value of structural reliability estimation.
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The failure probability Pf of structures is indicated by:

Pf =
∫

F fX(x)dx =
∫

Rn IF(x)fX(x)dx = E[IF(x)]

= 1
NAll

NAll
∑

i=1
IF(xi) =

Nf
NAll

(17)

where Nall is the overall sample size; Nf represents the number of failed samples; fX(x) is
the probability density function; and IF(x) is the indicator function of failure domain, which
is described as:

IF(x) =
{

0, hmnn f (x) ≥ 0
1, hmnn f (x) < 0

(18)

where IF(x) = 0 and IF(x) = 1 denote the safe state and failure state, respectively.
The failure probability Pr of structures is expressed as:

Pr = 1 − Pf (19)

3. Reliability Assessment of Turbine Blisk with the MNNF Model

In this Section, the reliability assessment of aeroengine turbine blisk strain is imple-
mented to verify the effectiveness of the developed MNNF model, involving the determin-
istic analysis of turbine blisk strain, the MNNK modeling for turbine blisk strain failure,
and reliability analysis for turbine blisk strain.

3.1. Deterministic Analysis of Turbine Blisk

As an aircraft flight power device, aeroengine holds five work conditions comprising
idle, take-off, climb, cruise, descent, and landing [33]. As a key component of an aeroengine,
turbine blisk is prone to strain failure under long-term operation in extreme condition,
which affects the performance and safety of aircrafts. To ensure the safe operation of
aircrafts, it is urgent to conduct a reliability analysis of turbine blisk strain with the influence
of flow field and structural field to guide the structural design of turbine blisks. In this
study, the blisk with 46 blades assembled in one disk are selected as the object. Due to axial
symmetry, 1/46 simplified blisk is considered to replace the whole blisk, for the analysis
and simulation. With this way, the computational burden may be reduced to save the
computational time and improve the computing efficiency. The fluid structure coupling
solver is employed to calculate the strain of the turbine blisk, i.e., the Fluent and Transient
modules are applied for flow field and structural field analysis, respectively. For the turbine
blisk, the three-dimensional (3D) structural model and structural finite element (FE) with
hexahedral cells and flow field finite volume (FV) model with tetrahedral elements are
presented in Figures 6 and 7.
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Figure 7. FE and FV model of turbine blisk.

As illustrated in Figure 7, the model of turbine blisk includes 139,452 nodes and
76,569 tetrahedron elements. The FV model of Flow field contains 62,984 nodes and
331,246 elements. In this study, Nickel-based superalloy GH4133 is selected as the materials
of the turbine blisk. The material performance parameters are listed in Table 1 [34].

Table 1. Material performance parameters.

Material Type Parameter

Material name Nickel-based superalloy GH4133
Density 8.56 × 103 kg/m3

Elastic modulus 1.61 × 1011 Pa
Poisson ratio 0.3224

In the work condition, inlet pressure pin, outlet pressure pout, angular speed w, inlet
velocity v, and density ρ are considered as the input variables of turbine blisk reliability
analysis, while the blisk strain is regarded as output response. The time domain [0, 215 s] is
simplified as the flight cycle of all stages for the deterministic and reliability analysis [35,36].
It is assumed that inlet pressure and outlet pressure are 2 × 106 Pa and 5.88 × 105 Pa,
respectively [37]. The angular speed and inlet velocity varies in the time domain are
indicated in Figure 8 [38].
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Figure 8. Angular speed and inlet velocity varies in the time domain. Blue stars and green circles
indicate the key points in [0 s, 215 s] for angular speed and inlet velocity, respectively.

As illustrated in Figure 8, the time domain [0, 215 s] is divided into five stages of
start, idle, take off, climb, and cruise. In respect to the above parameters and data, the
deterministic analysis of turbine blisk is implemented. In this analysis, the maximum
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strain of turbine bisk is obtained in the climb stage. The time point 190 s is selected as the
computational point in this study. In the reliability analysis of turbine blisk, the distribution
features of input variables at this time are shown in Table 2.

Table 2. Distribution features of input variables.

Input Variables Mean Standard Deviation

v, m/s 160 3.2
pin, Pa 2,000,000 60,000
pout, Pa 588,000 17,600

ρ, kg/m3 8560 171.2
ω, rad/s 1168 23.36

Through the deterministic analysis of turbine blisk, the distribution of turbine blisk
strain under fluid–structure coupling is displayed in Figure 9.
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3.2. MNNK Modeling for Turbine Blisk Strain Failure

To structure the MNNK model, the LHS approach is adopted to extract 200 samples
based on a deterministic analysis with regard to the distribution features of input variables
in Table 2. Herein, 100 samples are regarded as training samples to establish the MNNF
model, and the remaining 100 samples are considered as testing samples to verify the
established model. The “5-5-1” three-layer neural network is regarded as the network
structure of MNNF modeling.

In light of the 100 training samples, the compact support region is used to select the
efficient training samples. The ISTOA is employed to the optimal compact support region
radius, i.e., the number of efficient training samples is 82 within the optimal compact sup-
port region radius. The Bayesian regularization thought is adopted to solve the weights and
thresholds of the MNNF model. The gained weights and thresholds of MNNF model are:

wiu =


−0.0275 −0.0231 −0.0037 −0.8409 −1.4315

0.1859 −0.0052 0.1278 0.9008 −0.6572
0.0014 −0.0001 0.0004 0.1418 0.2357

−0.9520 0.1330 −1.4135 −0.1667 0.5074
0.0222 −0.0046 0.0365 −0.7270 0.5482


θu =

[
−1.5140 −0.4217 −0.2261 −1.0124 1.6636

]T

wuv =
[
−0.0620 −0.0224 4.2067 0.0001 0.0979

]
θk = 0.8508

(20)
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3.3. Reliability Analysis for Turbine Blisk Strain

Based on the established MNNF model of turbine blisk strain, a 2 × 104 MC simulation
is performed to determine the allowable value. The distribution histogram and simulation
history of turbine blisk strain are illustrated in Figure 10.
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Figure 10. Turbine blisk stain distribution histogram and simulation history.

In Figure 10, the stain distribution of turbine blisk follows the normal distribution with
the mean and standard variance being 4.7038 × 10−3 m and 1.9414 × 10−4 m, respectively.
The allowable value of turbine blisk stain is determined to be 5.2862 × 10−3 m by the 3σ
principle. The limit state function is determined based on the MNNF model, i.e.:

hmnn f = yallow − ymnn f (21)

According to the limit state function, different MC simulation times are performed to
calculate the reliability of turbine blisk stain. The reliability variation curve is presented in
Figure 11.
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As illustrated in Figure 11, the reliability degree of turbine blisk stain gradually
converges to 0.9984 with the increase in MC simulation times.
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4. Enhanced Moving Neural Network Framework Validation

The modeling properties and simulation performances of the MNNF model are ver-
ified by comparing it to the RSM, Kriging, SVM, BP-NN, and BP-PSO approaches. In
addition, the hyperparameters of RSM, Kriging, and SVM are solved using least squares,
gradient descent, and sequence minimum optimization methods. The network structures
of BP-NN, BP-PSO, and MNNF are “5-5-1”. In addition, the particle swarm optimization is
used to solve the hyperparameters in the BP-PSO method. All calculations were performed
in a 64-bit desk computer with Intel(R) Core (TM) i9-12900H 2.50 GHz CPU and 32 GB
RAM (Intel, Santa Clara, CA, USA).

4.1. Modeling Properties

The root means square error (RMSE) and goodness of fit (R-Square, R2) [30] are
adopted as two evaluation indicators of the approximation performance of the MNNF
modeling, i.e.:

RMSE =

√
1

Nt

Nt
∑

l=1

(
ytrue,l − ymnn f ,l(x)

)
R2 = 1 −

Nt
∑

l=1

(
ytrue,l − ymnn f ,l(x)

)2

/
Nt
∑

l=1

(
ytrue,l − ymnn f ,l(x)

)2 (22)

where Nt is the number of testing samples, ytrue,l and ymnnf,l are the true value and approxi-
mate value of lth testing sample.

The RSM, Kriging, SVM, BP-NN, BP-PSO, and MNNF models are established using
the training samples. In total, 100 testing samples are employed to evaluate the modeling
properties of various methods. The modeling accuracy and modeling efficiency of six
methods are shown in Figures 12 and 13.
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As indicated in Figure 12, (i) the R2 of the MNNF model is 0.99738, which is closer to
1, comparing the other five methods; (ii) the RMSE of the MNNF model is 3.1634 × 10−4

m, which is smaller than other methods. Obviously, the modeling accuracy of the MNNF
model is better than these of the RSM, Kriging, SVM, BP-NN, and PSO-BP approaches. As
indicated in Figure 13, the modeling time of the MNNF model is 0.423 s, which is lower
than other methods, and the modeling efficiency of the developed MNNF is improved
by 60.99%, 83.94%, 87.90%, 33.33%, and 15.13% relative to RSM, Kriging, SVM, BP-NN,
and BP-PSO, respectively. The MNNF model holds modeling advantages, resulting from
two aspects: (i) the efficient modeling samples are obtained by the compact support region
theory and the ISTOA to pledge the modeling accuracy and efficiency of MNNF; (ii) the
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generalization ability is improved by the Bayesian regularization strategy for the modeling
accuracy of MNNF.

Figure 13. Modeling efficiency of various methods.

4.2. Simulation Performances

In total, 100, 1000, 5000, and 10,000 MC simulations are implemented based on the limit
state function of turbine blisk strain, respectively. The simulation precision and simulation
efficiency of the six methods are displayed in Figures 14 and 15.
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As presented in Figures 14 and 15, the simulation precision of the MNNF model is
closer to the true reliability of turbine blisk strain, and the simulation efficiency is higher
than other methods. The simulation precision of the RSM, Kriging, SVM, BP-NN, BP-PSO,
and MNNF methods are 99.96%, 99.91%, 99.93%, 99.97%, 99.97%, and 99.99%, respectively,
when the MC simulation times are 10 000. For the simulation efficiency, the computing time
of MNNF is 0.496 s, which saves 16.27%, 4.82%, 30.07%, 39.87%, and 23.59% comparing
to the RSM, Kriging, SVM, BP-NN, and BP-PSO models, respectively. The reason for the
above results is attributed to the effective combination of compact support region theory,
ISTOA, and Bayesian regularization strategy with the artificial neural network model.

Therefore, the proposed MNNF model has outstanding modeling properties and
simulation performances in the reliability evaluation of turbine blisk strain.

5. Conclusions

The aim of this paper is to present the enhanced Moving Neural Network Framework
(MNNF) for the operational reliability estimation of turbine blisk structure under multi-
physical fields, i.e., fluid-structural coupling, by absorbing the compact support region
theory, ISTOA, and Bayesian regularization strategy into an artificial neural network. In the
developed method, compact support region theory is employed to choose the advantageous
modeling samples from training samples. The chaotic cross-learning strategy is introduced
to the sooty tern optimization algorithm for developing the ISTOA and then in optimizing
the compact support region. Bayesian regularization thought is used to determine the
weights and thresholds for enhancing the generalization ability. The reliability assessment
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of aeroengine turbine blisk strain is implemented to verify the effectiveness of the MNNF
model from an engineering perspective. The main conclusions are summarized as follows:

(i) The MNNF method is developed by introducing the compact support region theory,
ISTOA, and Bayesian regularization strategy into the artificial neural network model
for the reliability analysis of turbine blisk strain.

(ii) The reliability degree of turbine blisk strain is 0.9984 when the allowable value is
5.2862 × 10−3 m according to the reliability evaluation of turbine blisk strain with the
proposed MNNF model.

(iii) The modeling properties of the MNNF model are verified by comparing the RSM,
Kriging, SVM, BP-NN, and BP-PSO approaches. The modeling accuracy and efficiency
with the RMSE of 0.99738, R2 of 3.1634 × 10−4 m and modeling time of 0.423 s are
superior to other methods.

(iv) The simulation performances of the MNNF model are demonstrated by different MC
simulation times with multiple methods. The simulation precision of the MNNF
model (99.99%) is higher than these of different approaches (i.e., RSM of 99.96%,
Kriging of 99.91%, SVM of 99.93%, BP-NN of 99.97%, and BP-PSO methods of 99.97%.
Compared with the RSM, Kriging, SVM, BP-NN, and BP-PSO methods, the simulation
efficiency of the proposed MNNF is improved by 16.27%, 4.82%, 30.07%, 39.87%, and
23.59%, respectively.

The efforts of this study provide an effective method for the reliability assessment of
complex structures besides turbine blisk, and enrich and develop mechanical reliability
theory, which provides an insight for structural optimal design.
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Nomenclature

MNNF Moving Neural Network Framework
ISTOA Improve sooty tern Optimization algorithm
MC Monte Carlo
FOSM First-order second-moment
RSM Response surface method
SVM Support vector machine
FE Finite element
BP-NN Back propagation-artificial neural network
BP-PSO BP-NN based on particle swarm optimization
RMSE Root means square error
R2 R-Square
LHS Latin hypercube sampling
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