
Citation: Alhihi, S.; Almheidat, M.

Estimation of Pianka Overlapping

Coefficient for Two Exponential

Distributions. Mathematics 2023, 11,

4152. https://doi.org/10.3390/

math11194152

Academic Editor: Velizar Pavlov

Received: 29 August 2023

Revised: 24 September 2023

Accepted: 27 September 2023

Published: 2 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Estimation of Pianka Overlapping Coefficient for Two
Exponential Distributions
Suad Alhihi 1,† and Maalee Almheidat 2,*,†

1 Department of Mathematics, Al-Balqa Applied University, Alsalt 19117, Jordan; suad.hihi@bau.edu.jo
2 Department of Mathematics, University of Petra, Amman 11196, Jordan
* Correspondence: malmheidat@uop.edu.jo
† These authors contributed equally to this work.

Abstract: Overlapping coefficients (OVL) are commonly used to estimate the similarity between
populations in terms of their density functions. In this paper, we consider Pianka’s overlap coefficient
for two exponential populations. The methods for statistical inference of Pianka’s coefficient are
presented. The bias and mean square error (MSE) of the maximum likelihood estimator (MLE)
and the Bayes estimator of Pianka’s overlap coefficient are investigated by simulation. Confidence
intervals for Pianka’s overlap measure are constructed.
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1. Introduction

Overlapping coefficients (OVL) are measures of how similar two populations are; this
similarity is a function that assigns a real number between 0 and 1, where a value of zero
indicates that the distributions are completely different and a value of one indicates that
they are identical. There are many overlapping coefficients in the literature, including
measures of overlap that determine the percentage of area that the two distributions have
in common [1]. Gini and Livada [2] first introduced the idea of overlapping in 1943.
Matusita’s coefficient [3] was introduced to calculate the significant distance between two
probability density functions, and has applications in several practical areas, including
reliability analysis and clinical research [4,5]. Matusita developed a discrete version known
as the Freeman–Tukey (FT) measure, which is related to the Hellinger distance [6,7] and
the delta method [8]. The Chi-Squared measure [9] and Hellinger measure [10] play key
roles in information theory, statistics, learning, signal processing, and other theoretical
and applied branches of mathematics [11,12]. Morisita’s coefficient [13] was proposed as
an index of similarity between two communities. Weitzman’s coefficient [14] , primarily
used to compare income distributions, was defined as the region where the curves of two
probability distributions intersect. Kullback and Leibler [15] introduced the Kullback–
Leibler measure, which measures the gain in information between two distributions and
has been widely used in the literature on data mining. Jeffreys [16] introduced and studied
a divergence measure called the Jeffreys distance, which is regarded as a symmetrization of
the Kullback–Leibler measure. For a comprehensive review of various divergence measures,
see [17–19].

The OVL coefficients are used in various fields, such as ecological processes [20],
statistical ecology [21], clinical trials [5], data fusion [22], information processing [23],
applied statistics [24], economics [25], and others.

Inference for OVL measures has been investigated by several researchers under normal,
Weibull, and exponential distributions. In 2005, al-Saidy et al. [26] presented the inference
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of three OVL coefficients for two Weibull distributions with the same shape parameter and
different scale parameters.

Al-Saleh and Samawi [27] used bootstrap and Taylor series approximation to inves-
tigate the interval estimation of three OVL coefficients for two exponential distributions
with different means. Samawi and Al-Saleh [28] studied three OVL coefficients for two
exponential distributions and estimated them using ranked set sampling. Hamza et al. [29]
proposed a new OVL coefficient based on the Kullback–Leibler measure for two expo-
nential distributions. Sibil et al. [30] investigated both interval estimation and hypothesis
testing for the OVL coefficients for one- and two-parameter exponential distributions using
the concept of a generalized pivotal quantity.

Pianka’s overlap coefficient is used to assess the similarity of resource use by two
species [31], they used Pianka’s overlap coefficient as a summary measure and to make
inferences, typically about competition for resources.

Pianka’s overlap is used in mechanisms that favour morphological co-occurrence;
Vieira and Port [32] evaluated the Pianka’s overlap between two species based on three
main niche dimensions: habitat, food, and time. Jacqueline et al. [33] calculated dietary
overlap between foxes and dingoes using Pianka’s index. Sa Oliveira et al. [34] investigated
diet and niche breadth in fish communities, for which they estimated niche breadth using
the liven index and Pianka’s measure.

In this paper, we consider the Pianka’s OVL coefficient (ρ) between two exponential
distributions. We determine both the limiting and exact distributions for the maximum
likelihood estimator (MLE) of ρ. We study the MLE and Bayesian estimators and compare
their efficiency with each other. In addition, we consider interval estimation of ρ using the
asymptotic technique and the transformation technique, and compare the effectiveness of
both techniques.

2. General Setting and Definition of the Pianka Overlap Measure

Let f1(x) and f2(x) be two continuous probability density functions. Pianka’s overlap
measure is defined as follows [31]:

ρ( f1, f2) =

∫ ∞

−∞
f1(x) f2(x)dx√∫ ∞

−∞
f 2
1 (x)dx

√∫ ∞

−∞
f 2
2 (x)dx

. (1)

If a random variable X follows the exponential distribution, then the respective cdf
and pdf of X are provided by

F(x) = 1− e−
x
θ , x > 0; θ > 0 and f (x) =

1
θ

e−
x
θ , x > 0; θ > 0,

and X is denoted by Exp(θ).
Now, let (X1, . . . , Xn) and (Y1, . . . , Ym) be two independent random samples taken

from Exp(θ1) and Exp(θ2), respectively. Then, the Pianka’s overlap coefficient ρ between
the two exponential distributions, as defined in Equation (1), is provided by

ρ = ρ(θ1, θ2) =

∫ ∞

0

1
θ1

e−
x

θ1
1
θ2

e−
x

θ2 dx√∫ ∞

0

1
θ2

1
e−

2x
θ1 dx

√∫ ∞

0

1
θ2

2
e−

2x
θ2 dx

=
2
√

θ1θ2

θ1 + θ2
, θ1 > 0, θ2 > 0. (2)

Let k = θ1
θ2

. Then, the Pianka’s OVL coefficient in (2) can be written as a function of k, as
follows:

ρ = ρ(k) =
2
√

k
k + 1

, k > 0. (3)
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Several properties of ρ(k) are provided in the following lemma.

Lemma 1. For ρ defined in (3):

1. 0 ≤ ρ(k) ≤ 1 for all k > 0
2. ρ(k) = 1 iff k = 1, i.e., θ1 = θ2
3. ρ(k) > 0 , since θ1, θ2 > 0
4. ρ(k) = ρ( 1

k )
5. ρ(k) is monotonically increasing for k < 1 and decreasing for k > 1, with a maximum of ρ(k)

at k = 1.

Proof. It is easy to derive the above results from the formula of the Pianka’s overlap
coefficient formula in (3).

Figure 1 shows the plot of the Pianka’s overlap coefficient between two exponential
distributions as a function of k, where k < 1.

Figure 1. Pianka overlap coefficient as a function of k.

In the following section, we find the maximum likelihood estimator of Pianka’s overlap
coefficient ρ, namely, ρ̂MLE, along with its distribution. In addition, we investigate the
limiting distribution of ρ̂MLE.

3. Maximum Likelihood Estimator of ρ(θ1, θ2)

It is known that the MLEs for θ1 and θ2 based on two samples taken from Exp(θ1)
and Exp(θ2) are provided by θ̂1 = X and θ̂2 = Y, respectively. From the basic prop-

erties of the exponential distribution, we have θ̂1 ∼ Gamma
(

n, θ1
n

)
with Var

(
θ̂1

)
=

θ2
1

n

and θ̂2 ∼ Gamma
(

m, θ2
m

)
, and with Var

(
θ̂2

)
=

θ2
2

m , where Gamma(α, β) stands for the
gamma distribution with shape parameter α and scale parameter β. It follows that the
estimates (θ̂1, θ̂2) represent a complete minimal sufficient statistic for (θ1, θ2). Thus, from
the invariance property of the MLE, the MLE of ρ(θ1, θ2) is

ρ̂MLE = ρ(θ̂1, θ̂2) =
2
√

x y
x + y

. (4)

3.1. Limiting Distribution of ρ̂MLE

The following theorem concludes that the limiting distribution for the MLE of Pianka’s
overlap coefficient for two exponential distributions with different scale parameters is
the normal distribution, using N(µ, σ2) to denote the normal distribution with location
parameter µ and scale parameter σ.
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Theorem 1. Let (X1, . . . , Xn) and (Y1, . . . , Ym) be two independent random samples from Exp(θ1)
and Exp(θ2), respectively, with θ1 6= θ2. Then, the asymptotic distribution for ρ̂MLE is√

nm
n + m

(ρ̂MLE − ρ(θ1, θ2))
d−→ N

(
0,

θ1θ2(θ1 − θ2)
2

(θ1 + θ2)
4

)
, n, m −→ ∞.

Proof. Using the asymptotic property of MLE and the multivariate delta method (δ−method),
we have

√
n
(

θ̂1 − θ1

)
d−→ N

(
0, I−1

1 (θ1)
)

, n −→ ∞.

That is,

√
n
(

θ̂1 − θ1

)
d−→ N

(
0, θ2

1

)
, n −→ ∞ and

√
m
(

θ̂2 − θ2

)
d−→ N

(
0, θ2

2

)
, m −→ ∞,

where I−1
1 (θ) is the Fisher information.

We want to find the asymptotic distribution of ρ̂MLE = ρ(θ̂1, θ̂2), as n, m −→ ∞.

Using the fact that θ̂1
P−→ θ1 and θ̂2

P−→ θ2 and the continuous mapping theorem,
we obtain

ρ̂MLE =
2
√

θ̂1θ̂2

θ̂1 + θ̂2

P−→ 2
√

θ1θ2

θ1 + θ2
= ρ(θ1, θ2).

Now, we are interested in the asymptotic distribution of ρ̂MLE = ρ(θ̂1, θ̂2).
Because ρ̂MLE is a function of θ̂1 and θ̂2, using an alternative form of the multivariate

δ−method [35] we obtain E(ρ̂MLE) ≈ ρ(θ1, θ2) and

Var(ρ̂MLE) ' Var
(

θ̂1

)(∂ρ(θ1, θ2)

θ1

)2

+ Var
(

θ̂2

)(∂ρ(θ1, θ2)

θ2

)2

,

=
θ2

1
n

(
θ2(θ2 − θ1)√
θ1θ2(θ1 + θ2)

2

)
+

θ2
2

m

(
θ1(θ1 − θ2)√
θ1θ2(θ1 + θ2)

2

)
,

=
(n + m)θ1θ2(θ1 − θ2)

2

nm(θ1 + θ2)
4 .

Therefore, the asymptotic distribution of ρ̂MLE is√
nm

n + m
(ρ̂MLE − ρ(θ1, θ2))

d−→ N

(
0,

θ1θ2(θ1 − θ2)
2

(θ1 + θ2)
4

)
.

3.2. The Exact Distribution of ρ̂MLE

To ease the derivation of the distribution of ρ̂MLE, we can rewrite Equation (4) as
follows:

ρ̂MLE =
2

√
nm
(

1
n

√
V
W + 1

m

√
W
V

) , (5)

where V = ∑n
i=1 Xi ∼ Gamma(n, θ1) and W =

m
∑

i=1
Yi ∼ Gamma(m, θ2). Now, we apply the

following steps.

Step 1. Find the pdf of H =
√

V
W by considering the following transformations.

Let H1 =
√

V
W and H2 =

√
W; then, V = H2

1 H2
2 and W = H2

2 . The absolute value of

the Jacobian of this transform is |J| = 4h1h3
2.
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Thus, the joint pdf of H1 and H2 is

fH1,H2(h1, h2) = fV,W(v = h2
1h2

2, w = h2
2)|J| ,

=
(h2

1h2
2)

n−1e−
h2

1h2
2

θ1

Γ(n)θn
1

(h2
2)

m−1e−
h2

2
θ2

Γ(m)θm
2

(4h1h3
2),

=
4h2n−1

1 h2n+2m−1
2 e

−h2
2

(
h2

1
θ1
+ 1

θ2

)
Γ(n)Γ(m)θn

1 θm
2

, h1 > 0, h2 > 0; θ1 > 0, θ2 > 0.

By integrating h2 out, the pdf of H1 is

fH1(h1) =
∫ ∞

0

4h2n−1
1 h2n+2m−1

2 e
−h2

2

(
h2

1
θ1
+ 1

θ2

)
Γ(n)Γ(m)θn

1 θm
2

dh2 = c
h2n−1

1(
θ1 + θ2h2

1
)n+m , h1 > 0; θ1 > 0, θ2 > 0,

Consequently, the pdf of H is

fH(h) =
ch2n−1

(θ1 + θ2h2)
n+m , h > 0, θ1 > 0, θ2 > 0,

where c =
2Γ(n + m)θm

1 θn
2

Γ(n)Γ(m)
.

Step 2. Solve ρ̂MLE for h.

From Equation (5) and the transformation H =
√

V
W , we have

ρ̂MLE = 2√
nm( h

n +
1

mh )
= 2h√

nm
(

h2
n + 1

m

) .

Now, let ρ̂MLE = R, allowing R = 2h√
nm
(

h2
n + 1

m

) to be rewritten as the quadratic

equation
m
√

nmRh2 − 2nmh + m
√

nmR = 0. (6)

The two solutions of Equation (6) are

U1 =
√

nm
mR (1−

√
1− R2), U1 > 0 and U2 =

√
nm

mR (1 +
√

1− R2), U2 > 0.

Step 3. The pdf of R = ρ̂MLE is

fR(r) = fH(u1)

∣∣∣∣∂u1

∂r

∣∣∣∣+ fH(u2)

∣∣∣∣∂u2

∂r

∣∣∣∣
=

c
r
√

1− r2



√

n
m

(
−1 +

√
1− r2

)
r

2nθ1 +
nθ2

(
−1 +

√
1− r2

)2

mr2


−n−m

+


√

n
m

(
1 +
√

1− r2
)

r

2nθ1 +
nθ2

(
1 +
√

1− r2
)2

mr2


−n−m

, 0 < r < 1; θ1 > 0, θ2 > 0.

Figure 2 shows different plots of the density of ρ̂MLE for (n, m) = (30, 50). Based on
the figure, the pdf of ρ̂MLE can be bell-shape, bimodal, or J-shaped.
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Figure 2. The pdf of ρ̂MLE for (θ1, θ2) = (2,10), (5,10), and (8,10).

4. Interval Estimation of ρ(θ1, θ2)

In this section, we find interval estimation of Pianka’s overlap coefficient ρ by con-
sidering both asymptotic and transformation techniques; later, in Section 6, we perform a
Monte Carlo analysis to compare the effectiveness of these two different approaches.

4.1. Asymptotic Technique

A large sample confidence interval for ρ(θ1, θ2) can be easily calculated. From Theorem
(2.1) and the continuous mapping theorem, we have

θ̂1θ̂2

(
θ̂1 − θ̂2

)2

(
θ̂1 + θ̂2

)4
p−→ θ1θ2(θ1 − θ2)

2

(θ1 + θ2)
4 .

Hence, a 100(1− α)% large sample confidence interval for ρ(θ1, θ2) is

ρ̂MLE − Z1− α
2

√√√√√√ (n + m)θ̂1θ̂2

(
θ̂1 − θ̂2

)2

nm
(

θ̂1 + θ̂2

)4 , ρ̂MLE + Z1− α
2

√√√√√√ (n + m)θ̂1θ̂2

(
θ̂1 − θ̂2

)2

nm
(

θ̂1 + θ̂2

)4

,

where Zγ is the γth percentile of the standard normal distribution.

4.2. Transformation Technique

From the assumption in Equation (3), ρ(k) = 2
√

k
k+1 , where the MLE of k is k̂ = θ̂1

θ̂2
.

From Section 3 and the relationship between the gamma distribution and the chi-square

distribution, it is easy to conclude that 2nθ̂1
θ1
∼ χ2

(2n) and 2mθ̂2
θ2
∼ χ2

(2m); thus, θ̂2
θ̂1

θ1
θ2

has an

F-distribution with (2m, 2n) degrees of freedom.
Let L and U be the lower and upper confidence limits, respectively; from the concept

of the confidence interval, we have

1− α = Pr(Fα
2 ,2m,2n <

θ̂2

θ̂1
k < F1− α

2 ,2m,2n). (7)

By solving (7) for k, we obtain the values of L and U as L = θ̂1
θ̂2

Fα
2 ,2m,2n and U = θ̂1

θ̂2
F1− α

2 ,2m,2n..

However, the overlap coefficient ρ(k) is not a monotone function of k. Therefore,
using the transformation technique, we can obtain a 100(1− α)% confidence interval for ρ,
as follows: (

Min

(
2
√

L
L + 1

,
2
√

U
U + 1

)
, Max

(
2
√

L
L + 1

,
2
√

U
U + 1

))
,

where Fγ,r1,r2 is the γth percentile of the F−distribution with (r1, r2) degrees of freedom.
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5. Bayes Estimator of ρ(θ1, θ2)

Let (X1, . . . , Xn) and (Y1, . . . , Ym) be two independent random samples taken from
Exp(θ1) and Exp(θ2), respectively. Let V = ∑ Xi, W = ∑ Yi, θ1 ∼ InvGamma(a, b), and
θ2 ∼ InvGamma(c, d), where InvGamma(., .) is the inverse gamma distribution.

Using the fact that V ∼ Gamma(n, θ1) and W ∼ Gamma(m, θ2), the posterior distribu-
tion of θ = (θ1, θ2) given V, W is

π(θ1, θ2|v, w ) =
fV(v|θ1 )p1(θ1) fW(w|θ2 )p2(θ2)∫ ∞

0

∫ ∞

0
fV(v|θ1 )p1(θ1) fW(w|θ2 )p2(θ2)dvdw

=

vn−1e
− v

θ1
Γ(n)θn

1

θ−a−1
1 bae

− b
θ1

Γ(a)
wm−1e

− w
θ2

Γ(m)θm
2

θ−c−1
2 dce

− d
θ2

Γ(c)∫ ∞

0

∫ ∞

0

vn−1e−
v

θ1

Γ(n)θn
1

θ−a−1
1 bae−

b
θ1

Γ(a)
wm−1e−

w
θ2

Γ(m)θm
2

θ−c−1
2 dce−

d
θ2

Γ(c)
dvdw

∝ θ
−(n+a)−1
1 e−

1
θ1
(v+b)

θ
−(m+c)−1
2 e−

1
θ2
(w+d), θ1 > 0, θ2 > 0; a > 0, b > 0, c > 0, d > 0,

where p1(θ1) and p2(θ2) are prior probability distributions for θ1 and θ2, respectively.
Then,

π(θ|v, w ) = π1(θ1|v )π2(θ2|w ),

where θ1|v ∼ InvGamma(n + a, v + b) and θ2|w ∼ InvGamma(m + c, w + d).
The Bayes estimator ρ̂Bayes is

ρ̂Bayes =
∫∫

ρ(θ1, θ2)π(θ1, θ2|v, w )dθ1dθ2

=

∞∫
0

∞∫
0

2
√

θ1θ2

θ1 + θ2

θ
−(n+a)−1
1 e−

1
θ1
(v+b)

(v + b)n+a

Γ(n + a)
θ
−(m+c)−1
2 e−

1
θ2
(w+d)

(w + d)m+c

Γ(m + c)
dθ1dθ2

=
2(v + b)n+a(w + d)m+c

Γ(n + a)Γ(m + c)

∞∫
0

∞∫
0

θ
−(n+a)− 1

2
1 θ

−(m+c)− 1
2

2 e−
1

θ2
(w+d)e−

1
θ1
(v+b)

θ1 + θ2
dθ1dθ2.

The above estimate does not have a simple closed form; thus, we obtain it numerically.
For the asymptotic distribution of the Bayes estimator ρ̂Bayes, the Bernstein–von Misses
theorem [36] concludes that the Bayesian estimator and the maximum likelihood estimator
are asymptotically equivalent for large sample sizes.

In the next section, we present a simulation study to compare the two approaches for
finding the interval estimator of Pianka’s overlap coefficient, as described earlier in Section 4.
Additionally, we investigate the performance of the maximum likelihood estimator (ρ̂MLE)
and Bayes estimator (ρ̂Bayes) of the Pianka’s overlap coefficient detailed in Sections 3 and 5.

6. Simulation Study

To compare the two approaches of interval estimation of Pianka’s overlap coefficient,
we consider two criteria:

1. The term “valid confidence level” can be applied to an interval estimation process
when, in repeated sampling, the actual coverage of the true but unmeasured statistic
is close to the nominal confidence level;

2. If the expected length of the simulated period is short, a method for estimating
intervals can be described as “valid length-efficient”.

To compare the estimators, we use the bias, mean square error (MSE), and efficiency
for each estimator. In order to use the above criteria, we conducted a simulation study,
as follows:
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1. A random sample of size n is generated from Exp(θ1). This random sample is used to
calculate θ̂1.

2. A random sample of size m is generated from Exp(θ2). This random sample is used
to calculate θ̂2.

3. The lower limit Li, upper limit Ui, and width Wi, are calculated with a nominal
confidence level of 95%.

4. The MLE (ρ̂MLE)i and the Bayes (ρ̂Bayes)i estimators are calculated.
5. Steps 1–4 above are repeated 10,000 times.
6. The average of the lower limits (AL), median of the lower limits (ML), average of

the upper limits (AU), median of the upper limits (MU), average width (AW), and
median width (MW) are calculated for each interval.

7. The percentage of ρ out of the 10,000 samples generated in Step 3 is called the “cover-
age probability” and is denoted by AP.

8. Histogram Plots for ρ̂MLE and ρ̂Bayes are generated.
9. Bias and MSE are calculated for ρ̂MLE and ρ̂Bayes, then efficiency is calculated(

i.e., efficiency (ρ̂MLE.ρ̂Bayes) =
MSE(ρ̂MLE)
MSE(ρ̂Bayes)

)
.

10. Steps 1–9 above are repeated for
(n, m) = (20, 20), (20, 30), (30, 50), (50, 50), (50, 100), (100, 100), and
(θ1, θ2) = (2, 10), (5, 10), (8, 10) for each value of k = 0.2, 0.5, 0.8.

Mathematica was used to simulate each of the interval estimation and point estimation
methods for the Pianka’s overlap measure ρ.

Tables 1–3 show the simulated interval estimators using the asymptotic and trans-
formation techniques based on exponential random samples with a nominal confidence
level of 95%. These results show that the average width (AW) is almost the same as the
median width (MW) and that the transformation method consistently performs better in
terms of the confidence interval width. Moreover, the transformation method appears to be
effective in terms of the coverage probability except for values of k around one and very
small sample sizes.

As the sample size increases, the coverage probability of the two techniques ap-
proaches the nominal value. The coverage probability of the asymptotic technique works
very well, and increases as k approaches one; however, when k < 0.5 and for small sample
sizes the transformation technique performs exceptionally well.

Table 1. Simulation results for the two approaches of interval estimation of Pianka’s OVL coefficient
for k = 0.2, ρ = 0.7454.

(n, m) Technique AL AU AW ML MU MW AP

(20, 20) Asymptotic 0.594 0.894 0.299 0.592 0.890 0.305 0.931

Transformation 0.592 0.884 0.292 0.591 0.891 0.299 0.951

(20, 30) Asymptotic 0.606 0.880 0.275 0.604 0.885 0.279 0.935

Transformation 0.608 0.876 0.269 0.607 0.882 0.274 0.952

(30, 30) Asymptotic 0.622 0.869 0.247 0.620 0.872 0.250 0.937

Transformation 0.621 0.863 0.243 0.619 0.867 0.247 0.941

(30, 50) Asymptotic 0.632 0.854 0.221 0.632 0.857 0.224 0.935

Transformation 0.634 0.853 0.218 0.634 0.856 0.221 0.945

(50, 50) Asymptotic 0.649 0.841 0.192 0.648 0.843 0.194 0.942

Transformation 0.648 0.839 0.191 0.647 0.831 0.193 0.951

(50, 100) Asymptotic 0.651 0.827 0.167 0.651 0.829 0.169 0.946

Transformation 0.662 0.828 0.166 0.662 0.829 0.167 0.951

(100, 100) Asymptotic 0.676 0.813 0.137 0.676 0.814 0.138 0.942

Transformation 0.676 0.812 0.136 0.676 0.813 0.137 0.944
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Table 2. Simulation results for the two approaches of interval estimation of Pianka’s OVL coefficient
for k = 0.5, ρ = 0.9428.

(n, m) Technique AL AU AW ML MU MW AP

(20, 20) Asymptotic 0.841 1.027 0.185 0.845 1.035 0.195 0.879

Transformation 0.812 0.987 0.176 0.815 0.994 0.184 0.957

(20, 30) Asymptotic 0.848 1.011 0.172 0.852 1.028 0.179 0.891

Transformation 0.827 0.988 0.162 0.831 0.995 0.168 0.951

(30, 30) Asymptotic 0.859 1.013 0.154 0.861 1.020 0.161 0.896

Transformation 0.839 0.987 0.149 0.841 0.994 0.155 0.949

(30, 50) Asymptotic 0.867 1.006 0.131 0.869 1.013 0.144 0.913

Transformation 0.853 0.987 0.134 0.856 0.993 0.138 0.952

(50, 50) Asymptotic 0.879 0.999 0.120 0.881 1.004 0.123 0.916

Transformation 0.866 0.984 0.118 0.869 0.989 0.120 0.952

(50, 100) Asymptotic 0.877 0.992 0.105 0.889 0.996 0.107 0.927

Transformation 0.879 0.982 0.102 0.881 0.985 0.104 0.953

(100, 100) Asymptotic 0.898 0.984 0.086 0.899 0.986 0.087 0.932

Transformation 0.891 0.976 0.085 0.892 0.979 0.086 0.947

Table 3. Simulation results fir the two approaches of interval estimation of Pianka’s OVL coefficient
for k = 0.8, ρ = 0.9938.

(n, m) Technique AL AU AW ML MU MW AP

(20, 20) Asymptotic 0.935 1.028 0.093 0.949 1.031 0.084 0.924

Transformation 0.908 0.969 0.087 0.915 0.971 0.078 0.266

(20, 30) Asymptotic 0.943 1.024 0.081 0.955 1.026 0.072 0.914

Transformation 0.911 0.975 0.074 0.928 0.983 0.066 0.290

(30, 30) Asymptotic 0.952 1.011 0.068 0.962 1.022 0.061 0.898

Transformation 0.930 0.982 0.065 0.936 0.989 0.059 0.375

(30, 50) Asymptotic 0.958 1.016 0.058 0.967 1.018 0.053 0.884

Transformation 0.941 0.986 0.054 0.947 0.991 0.049 0.437

(50, 50) Asymptotic 0.965 1.013 0.047 0.971 1.015 0.045 0.873

Transformation 0.950 0.992 0.046 0.954 0.996 0.043 0.582

(50, 100) Asymptotic 0.961 1.001 0.040 0.974 1.011 0.039 0.861

Transformation 0.959 0.994 0.038 0.962 0.997 0.363 0.691

(100, 100) Asymptotic 0.976 1.007 0.031 0.979 1.008 0.031 0.856

Transformation 0.967 0.997 0.031 0.969 0.999 0.030 0.853

Figures 3–5 plot the MLE and Bayes estimators of ρ for k = 0.2, 0.5, 0.8, and
(n, m) = (50, 50).
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Histogram for MLE estimators Histogram for bayes estimators

Figure 3. Histogram of Pianka estimators for (n, m) = (50, 50) and k = 0.2.

Histogram for MLE estimators Histogram for bayes estimators

Figure 4. Histogram of Pianka estimators for (n, m) = (50, 50) and k = 0.5.

Histogram for MLE estimators Histogram for bayes estimators

Figure 5. Histogram of Pianka estimators for (n, m) = (50, 50) and k = 0.8.

Tables 4–6 present the results of the simulation study carried out to compare the MLE
and Bayes estimators for the Pianka’s overlap coefficient. Based on these results, which
only consider the values of k < 1, the absolute values of the bias are in all cases less than
0.05 and decrease as the sample size increases. It appears that the MLE estimator works
well, and the Bayes estimator seems to work quite well at k = 0.5. However, for k > 1 the
calculations are provided in terms of 1

k for the Pianka’s overlap measure. For sample sizes
larger than 30, the bias and MSE are quite close to zero.

The estimates of the bias are plotted in Figure 6 for the MLE and Bayes estimators.
From these results, it can be seen that the bias decreases significantly as the sample size
increases. Figure 6a shows that the actual Pianka’s overlap is underestimated; however, for
very small values of k and small sample sizes the true Pianka’s overlap is overestimated.
Furthermore, the bias increases as k increases for the MLE estimator.
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Table 4. Bias, MSE, and efficiency of the two estimators of Pianka’s OVL coefficient for k = 0.2. Exact
Pianka’s coefficient ρ = 0.7454.

(n, m)
MLE Estimator Bayes Estimator

Efficiency
Bias MSE Bias MSE

(20, 20) 0.0017 0.0061 0.0386 0.0055 1.0752

(20, 30) 0.0038 0.0051 0.0433 0.0052 0.9698

(30, 30) 0.0005 0.0040 0.0274 0.0039 1.0188

(30, 50) 0.0026 0.0032 0.0317 0.0035 0.9261

(50, 50) 0.0004 0.0024 0.0172 0.0024 1.0111

(50, 100) 0.0011 0.0018 0.0201 0.0019 0.9529

(100, 100) 0.0001 0.0012 0.0086 0.0012 1.0145

Table 5. Bias, MSE, and efficiency of the two estimators of Pianka’s OVL coefficient for k = 0.5. Exact
Pianka’s coefficient ρ = 0.9428.

(n, m)
MLE Estimator Bayes Estimator

Efficiency
Bias MSE Bias MSE

(20, 20) 0.0095 0.0025 0.0102 0.0018 1.3915

(20, 30) 0.0093 0.0022 0.0051 0.0014 1.5146

(30, 30) 0.0061 0.0017 0.0069 0.0013 1.2805

(30, 50) 0.0059 0.0014 0.0024 0.0010 1.3485

(50, 50) 0.0033 0.0001 0.0031 0.0009 1.1096

(50, 100) 0.0038 0.0008 0.0012 0.0006 1.2178

(100, 100) 0.0014 0.0005 0.0022 0.0005 1.0559

Table 6. Bias, MSE, and efficiency of the two estimators of Pianka’s OVL coefficient for k = 0.8. Exact
Pianka’s coefficient ρ = 0.9938.

(n, m)
MLE Estimator Bayes Estimator

Efficiency
Bias MSE Bias MSE

(20, 20) 0.0111 0.0007 0.0213 0.0009 0.8145

(20, 30) 0.0103 0.0006 0.0175 0.0006 0.8923

(30, 30) 0.0079 0.0004 0.0146 0.0005 0.7897

(30, 50) 0.0067 0.0003 0.0111 0.0003 0.9122

(50, 50) 0.0049 0.0002 0.0091 0.0002 0.8199

(50, 100) 0.0038 0.0001 0.0064 0.0001 0.9160

(100, 100) 0.0023 0.0001 0.0046 0.0001 0.8554
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(a) (b)

Figure 6. Relationship of bias to k for Pianka’s coefficient: (a) relation of bias to ρ for the MLE
estimator and (b) relation of bias to ρ for the Bayes estimator.

The estimates of MSE are plotted in Figure 7 for the MLE and Bayes estimators. From
these results, it can be seen that the MSE decreases significantly as the sample size increases.
Figure 7a shows that for small k values and small sample sizes, there is a significant increase
in the MSE for the MLE estimator. For the Bayes estimator, Figures 6b and 7b show that
both the bias and the MSE decrease as the value of k increases.

(a) (b)
sample size

Figure 7. Relationship of MSE to k for Pianka’s coefficient: (a) relation of MSE to ρ for the MLE
estimator and (b) relation of bias to ρ for Bayes estimator.

7. Conclusions

We have estimated Pianka’s overlap coefficient for two exponential populations with
different scale parameters using the MLE and Bayes estimators, then compared these
estimators by calculating the bias and MSE in a simulation study. In addition, we have
constructed confidence intervals for the Pianka’s overlap measure using asymptotic and
transformation techniques, then compared them using the “valid confidence level” and
“valid length-efficiency”.

We investigated the accuracy of the Pianka’s overlap coefficient through a Monte
Carlo analysis. In conclusion, it appears that there is no ideal approach. Therefore, a
transformation procedure is recommended when k < 0.5 and the sample size is small.
The asymptotic approach can be used if computers are available. For larger sample sizes
and k < 0.8, the transformation approach is recommended.

Author Contributions: Conceptualization, S.A. and M.A.; Methodology, S.A. and M.A.; Software,
S.A. and M.A.; Validation, S.A. and M.A.; Formal analysis, S.A. and M.A.; Resources, S.A. and M.A.;
Writing—original draft, S.A.; Writing—review & editing, M.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 4152 13 of 14

References
1. Tilton, J.W. The measurement of overlapping. J. Educ. Psychol. 1937, 28, 656–662. [CrossRef]
2. Gini, C.; Livada, G. Nuovi Contribute Alla Teoria Della Transvariazione; Atti della VI Riunione della Società Italiana di Statistica:

Rome, Italy, 1943.
3. Matusita, K. Decision rules based on distance, for problems of fit, two samples and applications. Ann. Inst. Math. Stat. 1955,

19, 181–192. [CrossRef]
4. Anderson, G. Toward an empirical analysis of polarization. J. Econom. 2004, 122, 1–26. [CrossRef]
5. Mizuno, S.; Yamaquchi, T.; Fukushima, A.; Matsuyama, Y.; Ohashi, Y. Overlap coefficient for assessing the similarity of

pharmacokinetic data between ethnically different populations. Clin. Trials 2005, 2, 174–181. [CrossRef]
6. Beran, R. Minimum Hellinger distance estimates for parametric models. Ann. Stat. 1977, 5, 455–463. [CrossRef]
7. Rao, K.J.N.; Tintner, G. On the variate difference method. Aust. J. Stat. 1963, 5, 106–116. [CrossRef]
8. Smith, E.P. Niche breadth, resource availability, and inference. Ecology 1982, 63, 1675–1681. [CrossRef]
9. Pearson, K. On the Criterion that a Given System of Deviations From the Probable in the Case of a Correlated System of Variables

is such that it Can be Reasonably Supposed to have a Risen From Random Sampling. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1991,
50, 157–172. [CrossRef]

10. Hellinger, E. Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen. J. Reine Angew. Math.
1909, 136, 210–271. [CrossRef]

11. Nishiyama, T. A tight lower bound for the Hellinger distance with given means and variances. arXiv 2020, arXiv:2010.13548.
12. Nishiyama, T.; Sason, I. On relations between the relative entropy and χ2-divergence, generalizations and applications. Entropy

2020, 22, 563. [CrossRef]
13. Morisita, M. Measuring of the dispersion and analysis of distribution patterns, Memoires of the Faculty of Science, Series E. Biol.

Kyushu Univ. 1959, 2, 215–235.
14. Weitzman, M.S. Measures of overlap of income distributions of white and Negro families in the United States. In US Bureau of the

Census; U.S. Department of Commerce: Washington, DC, USA, 1970; Volume 22.
15. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951,22, 79–86. [CrossRef]
16. Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1946,

186, 453–461.
17. Abu, A.H.; Hassanat, A.; Lasassmeh, O.; Tarawneh, A.; Alhasanat, M.; Eyal, S.H.; Prasath, V. Effects of distance measure choice

on k-nearest neighbor classifier performance: A review. Big Data 2019, 7, 221–248.
18. Cha, S. Comprehensive survey on distance/similarity measures between probability density functions. City 2007, 1, 1.
19. Taneja, I. On symmetric and nonsymmetric divergence measures and their generalizations. Adv. Imaging Electron Phys. 2005,

138, 177–250.
20. Abele, L.G. The community structure of coral-associated decapod crustaceans in a variable environment. Ecol. Process. Coast. Mar.

Syst. Mar. Sci. 1979, 10, 265–287.
21. Chao, A.; Hwang, W.; Chen, Y.; Kuo, C. Estimating the number of shared species in two communities. Stat. Sin. 2000, 10, 227–246.
22. Moravec, H. Mind Children: The Future of Robot and Human Intelligence; Harvard University Press: Cambridge, MA, USA, 1988.
23. Viola, P.; Wells, W., III. Alignment by maximization of mutual information. Int. J. Comput. Vis. 1997, 24, 137-154. [CrossRef]
24. Inman, H.F.; Bradley, E.L. The overlapping coefficient as a measure of agreement between probability distributions and point

estimation of the overlap of two normal densities. Commun. Stat. Theory Methods 1989, 18, 3851—3874. [CrossRef]
25. Milanovic, B.; Shlomo, Y. Decomposing world income distribution: Does the world have a middle class? Rev. Income Wealth 2002,

48, 155-178. [CrossRef]
26. Al-Saidy, O.; Samawi, H.M.; Al-Saleh, M.F. Inference on overlap coefficients under the Weibul distribution: Equal Shape Parameter.

ESAIM Probab. Stat. 2005, 9, 206–219. [CrossRef]
27. Al-Saleh, M.F.O.; Samawi, H. Interference on Overlapping Coefficients in Two Exponential Populations. J. Mod. Appl. Stat.

Methods 2007, 6, 503–516. [CrossRef]
28. Samawi, H.; Al-Saleh, M.F.O. Inference on Overlapping Coefficients in Two Exponential Populations Using Ranked Set Sample.

Commun. Korean Stat. Soc. 2008, 15, 147–159.
29. Hamza, D.; Papa, N.; Malick, M. Overlap Coefficients Based on Kullback-Leibler Divergence: Exponential Populations Case. Int.

J. Appl. Math. Res. 2017, 6, 135–140.
30. Sibil, J.; Seemon, T.; Thomas, M. Interval Estimation of the Overlapping Coefficient of Two Exponential Distributions. J. Stat.

Theory Appl. 2019, 18 , 26–32.
31. Pianka, E. Niche Overlap and Diffuse Competition. Proc. Natl. Acad. Sci. USA 1974, 71, 2141–2145. [CrossRef]
32. Vieira, E.M.; Port, D. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 2006,

272, 57–63. [CrossRef]
33. Jacqueline, B.C.; Mathew, S.C.; Georgeanna, S.; Mike, L. Dietary overlap and prey selectivity among sympatric carnivores: could

dingoes suppress foxes through competition for prey? J. Mammal. 2011, 92, 590–600.
34. Sa-Oliveira, J.C.; Ronaldo, A.; Victoria, J.I.N. Diet and niche breadth and overlap in fish communities within the area affected by

an Amazonian reservoir (Amapá, Brazil). Ann. Braz. Acad. Sci. 2014, 86, 383–405. [CrossRef] [PubMed]

http://doi.org/10.1037/h0053750
http://dx.doi.org/10.1007/BF02911675
http://dx.doi.org/10.1016/j.jeconom.2003.10.017
http://dx.doi.org/10.1191/1740774505cn077oa
http://dx.doi.org/10.1214/aos/1176343842
http://dx.doi.org/10.1111/j.1467-842X.1963.tb00289.x
http://dx.doi.org/10.2307/1940109
http://dx.doi.org/10.1080/14786440009463897
http://dx.doi.org/10.1515/crll.1909.136.210
http://dx.doi.org/10.3390/e22050563
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1023/A:1007958904918
http://dx.doi.org/10.1080/03610928908830127
http://dx.doi.org/10.1111/1475-4991.00046
http://dx.doi.org/10.1051/ps:2005010
http://dx.doi.org/10.22237/jmasm/1193890440
http://dx.doi.org/10.1073/pnas.71.5.2141
http://dx.doi.org/10.1111/j.1469-7998.2006.00237.x
http://dx.doi.org/10.1590/0001-3765201420130053
http://www.ncbi.nlm.nih.gov/pubmed/24676175


Mathematics 2023, 11, 4152 14 of 14

35. Bodkin, R.G.; Klein, L.R.; Marwah, K. A History of Macroeconometric Model-Building; Edward Elgar Publishing: Cheltenham,
UK, 1991.

36. Doob, J. Application of the theory of martingales. Calc. Des Probab. Ses Appl. 1949, 13, 23–27.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	General Setting and Definition of the Pianka Overlap Measure
	Maximum Likelihood Estimator of (1,2)
	Limiting Distribution of "0362MLE 
	The Exact Distribution of "0362MLE

	Interval Estimation of (1,2)
	Asymptotic Technique
	Transformation Technique

	Bayes Estimator of (1,2)
	Simulation Study
	Conclusions
	References

