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Abstract: The current business climate has generated considerable uncertainty and disrupted supply
chain processes. Suppliers have frequently been identified as the primary source of hazards respon-
sible for supply chain disruptions. Using a strategic approach to supplier selection that prioritizes
providers with resilience features, mitigating the risk exposure inherent in supply chains is possi-
ble. This study proposes a comprehensive gray multiple-criteria decision making (MCDM) method
incorporating resilience attributes to supplier selection. To determine criteria weights, the gray PSI
and gray BWM methodologies were used, and to evaluate and prioritize resilient providers, the
gray MCRAT and gray COBRA methodologies were applied. According to the results obtained by
the suggested methodology, the supplier that demonstrated the greatest degree of resilience was
determined to be the provider categorized as SPIR 4. The sequential sequence of the SPIR numbers
is as follows: SPIR 5, SPIR 1, SPIR 3, SPIR 2, and SPIR 6. The data demonstrate that the developed
approach produced accurate results.

Keywords: gray MCRAT; gray PSI; gray BWM; MCDM; resilient supplier selection

MSC: 03B52; 90B50

1. Introduction

Businesses are becoming increasingly conscious of outsourcing suppliers in today’s
highly volatile and fiercely competitive business environment. With the advantages of cost-
effective labor, higher product quality, and service innovation, businesses are more inclined
to outsource portions of their company’s activities in the present cutthroat international
market. However, the rise of international supply alternatives and strategic outsourcing has
exposed supply chains to several disruptive occurrences, such as ecological catastrophes,
man-made assaults, and common breakdowns [1].

Resilience, which is an interdisciplinary notion, refers to the capacity of a system to
adapt as circumstances shift [2]. It is a new term for supply chains and is described as
the capacity of the supply chain to adjust to unforeseen occurrences, react to disturbances,
and continue operating [3]. Garza-Reyes [4] revealed that resilience has an impact on the
sustainability of supply chains.

Suppliers’ resilience is best demonstrated by their capacity to manage risk and out-
perform competition in the case of interruptions [5]. Therefore, the significance of using
resilient suppliers is evident when considering the potential impact that disruptions can
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have on a company’s operations and reputation [6]. By strategically selecting suppliers who
possess resilience traits, the risk exposure within supply chains can be minimized [7]. Fur-
thermore, resilient suppliers help businesses maintain continuity during adverse situations
by ensuring the timely delivery of goods and services.

Despite its advantages, resilient supplier selection encounters several problems. First,
the selection procedure necessitates a thorough evaluation across several aspects, including
affordability, capability, and dependability. Another difficulty is deciding which criteria
should be given greater importance than others. Thirdly, because supply chains are dy-
namic, businesses need to make sure that their suppliers can quickly adjust to changing
circumstances. To overcome these obstacles and make a successful resilient supplier se-
lection, various approaches have been used by companies, one of which is multi-criteria
decision making (MCDM).

Research on the resilient supplier selection issue is scarce. Haldar et al. [8] used the
AHP method to fulfil some criteria, followed by the TOPSIS method to try to find the right
rating of the resilient suppliers in an automobile component manufacturing company. In
a catastrophe scenario, Haldar et al. [9] created a quantitative method using aggregate
fuzzy weight and fuzzy TOPSIS to select important suppliers under uncertainty. Using
weighted goal programming (WGP) and preemptive goal programming, Chen et al. [10]
assessed and investigated resilient suppliers quantitatively for an automotive company.
To assist the assessment and selection of resilient providers in a fuzzy setting using the
VIKOR technique, Sahu et al. [11] modified an effective decision support system. Sen
et al. [12] used a fuzzy MCDM model, including TODIM and PROMETHEE to rank green
and resilient suppliers. Ghamari et al. [13] assessed green, resilient suppliers for a steel
manufacturing company in Iran using the BWM and TOPSIS methods.

It has been found that the uncertainty conditions in resilient supplier selection have
not been adequately addressed by using gray numbers, but empirical studies dealing with
uncertainty with gray methods can assist managers in making better decisions in uncertain
situations. The application of the gray systems theory in this study offers a range of benefits.
It has a robust theoretical framework that addresses the challenges posed by uncertainty
and lack of information in modeling [14]. It yields satisfactory outcomes by using less data
in comparison to alternative statistical methodologies [15]. One of the primary advantages
of gray systems theory in comparison to fuzzy set theory is its ability to account for the
presence of fuzziness inside a particular scenario [16].

This study aimed to develop a novel method that considers uncertain situations by
using gray theory, performance selection index (PSI), BWM, multiple-criteria ranking by
alternative trace (MCRAT), and comprehensive distance-based ranking (COBRA) methods
in resilient supplier selection. The gray PSI and gray BWM approaches were used to
ascertain the weights of the criteria. The gray MCRAT and gray COBRA methods were
used to rank alternatives. To verify and implement the framework proposed by this study,
resilient supplier selection was carried out in the textile sector. Resilient supplier selection
in this sector is currently a major concern for managers due to the presence of uncertainty
and disruptions.

This study makes multiple contributions to the literature. The contributions of this
study to the literature are as follows:

• In resilient supplier selection, very little empirical study has been conducted [17].
This study made an effort to close this gap by performing a case study. In this study,
a sizable manufacturing company in the textile industry is used as an example to
assess and evaluate the supplier’s resilience. Therefore, this study contributes to
the literature.

• The present work introduces a novel gray MCDM technique, referred to as gray
MCRAT. In contrast to competing MCDM approaches, the MCRAT method offers
a more streamlined methodology for assessing alternatives across several criteria,
yielding dependable, universally applicable, and logically sound outcomes. Regret-
tably, the conventional MCRAT model cannot effectively address situations involving
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uncertainty. Consequently, this work endeavors to provide a novel approach, namely
the gray MCRAT technique, to mitigate this limitation.

• A new hybrid gray MCDM method is proposed in this study. These gray MCDM
methods have not been used together in the literature before.

• The gray COBRA method ranks options based on the integration of various types of
distances from multiple reference points. Thanks to this feature, it yields more reliable
results compared to other reference-based MCDM methods (TOPSIS, CODAS, EDAS,
etc.). Therefore, in this study, we tried to obtain more reliable results by using two
different gray MCDM methods (gray MCRAT and gray COBRA).

The remaining sections of the paper are structured as follows. A review of the relevant
research is presented in Section 2. In Section 3, the suggested methodology is explained.
Section 4 presents the results of an application, while Section 5 reports a sensitivity analysis
aimed at validating the results. Section 6 draws some conclusions and Section 7 dicusses
them, summarizing the main implications of this study.

2. Literature Review

Scholars and practitioners have emphasized the importance of selecting suppliers
who can withstand disruptions and uncertainties in the supply chain (e.g., [18]). Various
criteria have been proposed for evaluating supplier resilience, including financial stability,
operational flexibility, geographical location, and collaborative capacity [19]. Researchers
have also explored different methodologies for assessing supplier resilience, ranging from
qualitative assessments and bibliometric analysis [20], to simulation [21] and quantitative
models utilizing mathematical optimization and risk analysis techniques [22]. Moreover,
case studies and empirical research have provided insights into the strategies adopted by
organizations to enhance the resilience of their supplier networks, such as dual sourcing,
inventory buffering, and information-sharing initiatives [23]. Overall, the literature un-
derscores the critical role of resilient supplier selection in mitigating supply chain risks
and ensuring business continuity in the face of unforeseen disruptions [24]. Despite the
acknowledged importance of supplier resilience in mitigating supply chain risks, empir-
ical studies in this domain remain scant. This study addresses this gap by conducting a
comprehensive real-life case study.

Some studies have used a variety of MCDM techniques that might aid businesses in
choosing resilient suppliers despite uncertainties and limited information.

Parkouhi and Ghadikolaei [25] suggested a resilient supplier selection method for
a wood and paper production company that included a fuzzy ANP and gray VIKOR.
They examined alternatives with regard to delivery, adaptability, culture, shared growth,
technological advances, relationships, cost, and hazard criteria.

To choose a resilient supplier for a computer manufacturing company, Pramanik
et al. [26] suggested a fuzzy MCDM framework that combines AHP, QFD, and TOPSIS
with criteria that included quality, turnaround time, dependability, speed of processing,
profit margin, excess stock, location division, re-engineering, response time, adaptability,
fitting, manufacturing consistency, and average time between failures.

COPRAS technique and interval-valued intuitionistic fuzzy (IVIF) numbers were used
by Davoudabadi et al. [27] to present a novel method for resilient supplier selection. They
used cost, quality, dependability, performance, and client satisfaction to assess suppliers
for an automotive company.

Gan et al. [28] used fuzzy BWM to determine criteria weights and GMO-RTOPSIS
to choose the most resilient supplier with criteria that included excess stock, location
division, dependability, stability, cooperation, adaptability (re-route and re-organize), and
restoring ability.

To estimate the resilience of the suppliers, an ensemble technique incorporating logistic
regression, classification and regression tree (CART), and neural network was suggested
by Hosseini and Khaled [29] with AHP. Twelve criteria (cost, quality, delivery time, re-
sponse time, excess inventory, location division, dependability, stability, trustworthiness,
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adaptability (re-route and re-organize), and restoring ability) were identified to assess
the resilience capacities of suppliers and applied to a pipe manufacturer for water and
sewerage in the US.

Parkouhi et al. [30] examined resilient supplier selection for paper and wood compa-
nies in Iran using the gray DEMATEL approach with criteria such as delivery time, capacity,
customization, capability, flexibility, collaboration, and quality.

To address the resilient supplier selection challenge in Logistic 4.0, Hasan et al. [31]
utilized fuzzy TOPSIS. The criteria used in this study to assess resilient alternatives were
current stock level, delivery time, manufacturing capacity, cost, digital resources, tracing
ability, critical nodes, location division, re-engineering, flexibility, automation failures,
information management, control of cyber security risks, reliability, visibility, cooperation,
restoring ability, adaptability, and agility.

For a corporation that manufactures computer hardware components, Sureeyatanapas
et al. [32] used the TOPSIS approach to rank resilient suppliers by response time, excess
stock, safe location, stand-by supplier contracts, stability, restoring ability, adaptability,
production interruption risk, logistics interruption risk, information loss risk, capacity
of production, delivery time, service level, technological ability, company image, quality,
and cost.

Waleekhajornlert and Sureeyatanapas [33] identified important criteria such as re-
sponse time, inventory for safety stock, restoration, innovativeness, and quality for resilient
supplier selection in an electronics manufacturing company and ranked alternatives using
the expanded TOPSIS technique.

A hybrid MCDM model that combines BWM, WASPAS, and TOPSIS was created
by Xiong et al. [34] to find the most resilient green supplier. They used life cycle man-
agement, excess inventory, manufacturing division, dependability, restructuring, trans-
portation, storage, collaboration dedication, sustainable design, sustainable purchasing,
pollutants production, ecologic packaging, and environmental image as the criteria to
assess supplier alternatives.

Leong [35] developed the GRA-BWM-TOPSIS technique to rank resilient suppliers
for a food manufacturing company according to seven criteria: quality, lead time, cost,
flexibility, visibility, response time, and economic stability.

Nazari-Shirkouhi [36] used Z-number data envelopment analysis (Z-DEA) and artifi-
cial neural network (ANN) to present a novel hybrid method for resilient supplier selection
in pharmaceutical businesses by combining conventional and resilient criteria.

Tavakoli et al. [37] used a hybrid technique including the Markov chain, QFD, and
FBWM methods to rank resilient suppliers for an online department store by location
division, restoring ability, adaptability, collaboration, stand-by supplier contracts, excess
stock, response time, risk elimination, social rights, dedication to social responsibility,
safety at work, environmental design, innovativeness, prevention of pollution, energy
conservation, waste disposal, employment of an effective environmental management
system, green competences, economic stability, technological ability, dependability, service
level, quality, delivery time, and cost.

Nayeri et al. [38] examined sustainable and resilient supplier selection for the health
equipment business using the stochastic fuzzy BWM (SFBWM) and the multi-objective
model. The results of the study indicated that agility, cost, carbon footprint, quality,
robustness, and waste disposal are the most significant factors.

Zhao et al. [39] proposed a comprehensive framework for green resilient supplier
selection using rough VIKOR and goal programming. The key criteria for assessing
suppliers, as determined by their findings, were the punctual delivery of goods and the
capacity to handle crises.

Majumdar et al. [40] examined the concept of the trapezoidal fuzzy TOPSIS approach
and its suitability for choosing resilient suppliers in manufacturing sectors during the
COVID-19 pandemic. The study revealed that cost, absorbing capability, and social respon-
sibility are the key factors to consider when selecting resilient suppliers.
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Tirkolaee et al. [41] developed a new two-phase model that involves neutrosophic
fuzzy BWM and WASPAS methods for selecting resilient suppliers in the face of uncertainty.
A comprehensive multi-objective optimization approach is then constructed to allocate
orders, taking into account resilience ratings, facility dependability, and unpredictable
supply and demand.

Agarwal and Nishad [42] provided a fuzzy evaluation based on distance from the
average solution (EDAS) that considers the idea of resilience alongside sustainability to
address the sustainable ranking of resilient suppliers.

Sun et al. [43] presented a novel MCDM model for resilient supplier selection including
probabilistic uncertain linguistic numbers, BWM, and TOPSIS.

Liang et al. [44] utilized fuzzy BWM and an improved wolf pack algorithm to solve
resilient supplier selection problems in the energy sector. It was found that product risk
and financial and service risks are the most important criteria.

Song et al. [45] assessed resilient suppliers for a retailer in China in two stages. During
the first stage, they integrated BWM and evidential reasoning to derive the preference
scores of decision makers. During the second stage, they constructed a multi-objective
mixed-integer linear programming (MILP) model to identify the optimum alternative.

In summary, these studies demonstrate that resilient supplier selection entails a mix
of several techniques and criteria to guarantee supply chain sustainability in the face of
disruptive occurrences.

This study suggests a combined gray MCDM framework that takes into account
resilience characteristics. Three steps may be identified in the development of this study.
The primary assessment criteria, as well as their sub-criteria, were determined in phase one
and incorporated into a single framework. The assessment criteria were determined based
on the literature review of related papers and interviews with the purchasing managers. To
determine the weights of the criteria and sub-criteria in phase two, gray PSI and gray BWM
methods were utilized to integrate judgments from decision makers. Gray MCRAT and
gray COBRA methods were used in the third phase to assess and rank resilient suppliers
according to their performances.

3. Materials and Methods

In this study, a resilient supplier selection was made using a gray hybrid MCDM
model consisting of gray PSI, gray BWM, gray MCRAT, and gray COBRA methods. While
the weights of the criteria were obtained with the first two methods, the suppliers were
ranked with gray MCRAT and gray COBRA methods.

3.1. Gray Numbers

Gray numbers refer to a set of numbers that are continuous and fall inside a range.
They were introduced by Julong [46] as a solution for situations that include knowledge
that is either ambiguous or only partially understood. A gray number is often represented
by a specific collection of integers or a closed range, as defined below.

Definition 1: Presume that ⊗K = [x, y] is a gray number that represents the lowest boundary
as a and the maximum boundary as b, where a and b are real numbers.

Definition 2: Presume that ⊗K1 = [x, y] and ⊗K2 = [z, t] are two gray numbers, where
φ is greater than or equal to 0 and φ belongs to the set of real numbers. The stages are
outlined below:

⊗K1 +⊗K2 = [x + z, y + t] (1)

⊗K1 −⊗K2 = [x − z, y − t] (2)

⊗K1 ×⊗K2 = [min(xz, xt, yz, yt), max(xz, xt, yz, yt)] (3)

⊗K1 ÷⊗K2 = [min(x/z, x/t, y/z, y/t), max(x/z, x/t, y/z, y/t)] (4)
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φ ⊗ K1 = [φx, φz] (5)

Definition 3: The gray possibility degree is described as the degree of likelihood between
two gray numbers, denoted as ⊗K1 and ⊗K2.

P(⊗K1 ≥ ⊗K2) = max
{

1 − max
(

t − x
L(⊗K1) + L(⊗K2)

, 0
)

, 0
}

, (6)

where L(⊗K1) = y − x and L(⊗K2) = t − z denote lengths.

Definition 4: The correlation between ⊗K1 and ⊗K2 can be expressed as below:

I f ⊗ K1 = ⊗K2 then P(⊗K1 ≥ ⊗K2) = 0.5 (7)

I f ⊗ K1 < ⊗K2 then P(⊗K1 ≥ ⊗K2) < 0.5 (8)

I f ⊗ K1 > ⊗K2 then P(⊗K1 ≥ ⊗K2) > 0.5 (9)

3.2. Gray PSI

The steps of the gray PSI method are shown below [47,48].
Step 1: First, the linguistic values (shown in Table 1) assigned by the decision makers

are converted into gray numbers. Table 1 is taken from [49]. These are combined with
Equation (10) to obtain a gray decision matrix (⊗B).

⊗B =
[
⊗bij

]
m×n, ⊗bij =

[
∑1

k=1 bl
ijk

k
,

∑1
k=1 bu

ijk

k

]
(10)

Table 1. Linguistic scale and gray numbers.

Linguistic Scale Gray Numbers

None (N) [0, 2]
Very low (VL) [1, 3]

Low (L) [2, 4]
Moderately low (ML) [3, 5]

Medium (M) [4, 6]
Moderately high (MH) [5, 7]

High (H) [6, 8]
Very high (VH) [7, 9]

Extremely high (EH) [8, 10]

Step 2: This matrix is normalized.

⊗aij =


⊗bij

max(⊗bij)
=

[
bl

ij

max
(

bu
ij

) ,
bu

ij

max
(

bu
ij

)
]

i f ⊗ bij ∈ BNC

min(⊗bij)
⊗bij

=

[
min

(
bl

ij

)
bu

ij
,

min
(

bl
ij

)
bl

ij

]
i f ⊗ bij ∈ NBNC

(11)

In Equation (11), BNC and NBNC indicate benefit and non-benefit criteria, respectively.
Additionally, ⊗aij shows the normalized version of ⊗bij.
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Step 3: The mean value of ⊗aij for each criterion is obtained as:

⊗aij =
∑m

i=1 ⊗aij

m
=

[
∑m

i=1 al
ij

m
,

∑m
i=1 au

ij

m

]
(12)

Step 4: The gray preference value (⊗cj =
[
cl

j, cu
j

]
) is calculated as:

⊗cj =
m

∑
i=1

(
⊗aij −⊗aij

)2
=

min
(

m
∑

i=1

(
al

ij − al
ij

)2
,

m
∑

i=1

(
au

ij − au
ij

)2
)

,

max
(

m
∑

i=1

(
al

ij − al
ij

)2
,

m
∑

i=1

(
au

ij − au
ij

)2
)
 (13)

Step 5: The gray deviation values (⊗dvj) and criteria gray weights (⊗wjPS) are ob-
tained as:

⊗dvj =
[
dvl

j, dvu
j

]
=
∣∣1 −⊗cj

∣∣ = [∣∣∣1 − cu
j

∣∣∣, ∣∣∣1 − cl
j

∣∣∣] (14)

⊗wjPS =
⊗dvj

∑n
j=1 ⊗dvj

=

[
dvl

j

∑n
j=1 dvu

j
,

dvu
j

∑n
j=1 dvl

j

]
(15)

After the criteria weights are determined according to the gray PSI method, the gray
BWM method is used to determine the subjective gray weights.

3.3. Gray BWM

The gray BWM method’s steps are demonstrated below [49].
Step 1: First, decision makers select the best and the worst criteria. Then, they assess

other criteria compared to the best and worst criteria. As a result, the gray vectors, “the
best compared to the others (⊗DB = ⊗dB1, ⊗dB2 , . . . ,⊗dBn)”, and “the others compared
to the worst (⊗DW = ⊗d1W , ⊗d2W , . . . ,⊗dnW)” are produced. The values in Table 1 are
used by decision makers in these comparison processes.

Step 2: The ideal gray values of the criteria (⊗wk1, ⊗wk2 , . . . ,⊗wkn) are determined
for each decision maker (k).

Min ⊗ t

s.t.



∣∣∣ ⊗wB
⊗wkj

−⊗dBj

∣∣∣ ≤ ⊗t∣∣∣ ⊗wkj
⊗wW

−⊗djW

∣∣∣ ≤ ⊗t
n
∑

j=1
W
(
⊗wkj

)
= 1

wkj ≤ wkj
wkj ≥ 0

j = 1, . . . , n

(16)

where ⊗t =
[
t, t
]

demonstrates gray numbers, t shows the lowest number, and t shows
the highest number. wkj is the ideal gray value of the criteria, wkj refers to the lowest value,
and wkj refers to the highest value.

⊗dBj shows how the best criterion performs compared to other criteria while ⊗djW
shows how other criteria perform compared to the worst criterion. As determined using
the following equation, W

(
⊗wkj

)
is the white value of the gray value wj.

W
(
⊗wkj

)
=

(
wkj + wkj

)
2

(17)
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The concept of gray possibility degree (GPD) must be incorporated into the model,
since the optimization in Equation (16) necessitates comparing gray numbers [50]. There-
fore, the optimization can be modeled as follows:

Min ⊗ t

s.t.



GPD
{∣∣∣ ⊗wB

⊗wkj
−⊗dBj

∣∣∣ ≤ ⊗t
}
< 0.5

GPD
{∣∣∣ ⊗wkj

⊗wW
−⊗djW

∣∣∣ ≤ ⊗t
}
< 0.5

n
∑

j=1
W
(
⊗wkj

)
= 1

wkj ≤ wkj
wkj ≥ 0

j = 1, . . . , n

(18)

Equations (19) and (20) are used to determine the GPD value of two gray values (such
as ⊗a and ⊗b).

GPD{⊗a ≤ ⊗b} =
max(0, L(⊗a) + L(⊗b)− max(0, a − b))

L(⊗a) + L(⊗b)
(19)

L(⊗a) = |a − a|, L(⊗b ) =
∣∣∣b − b

∣∣∣ (20)

The GPDs must adhere to the following requirements:
GPD{⊗a ≤ ⊗b} = 0.5 if ⊗a =⊗b,
GPD{⊗a ≤ ⊗b} = 1 if a > b,
GPD{⊗a ≤ ⊗b} = 0 if a < b.
If ⊗a and ⊗ b crossover and GPD{⊗a ≤ ⊗b} < 0.5 then ⊗b < ⊗a,
If ⊗a and ⊗ b crossover and GPD{⊗a ≤ ⊗b} > 0.5 then ⊗a < ⊗b.
Step 3: The consistency is checked using Equations (21)–(23).

CR =
S(⊗t)

CI
(21)

CI2 −
(

1 + 2dBW

)
CI +

(
d

2
BW − dBW

)
= 0 (22)

⊗dBW =
[
dBW , dBW

]
= max

j

{
⊗dBj,⊗djW

}
(23)

The white value of ⊗t is shown as S(⊗t) in Equation (21).
Step 4: Equations (24)–(26) are applied to generate the final gray weights for the criterion.

⊗wjBW =
[
wjBW , wjBW

]
(24)

wjBW =

(
l

∏
k=1

wkj

)1/k

(25)

wjBW =

(
l

∏
k=1

wkj

)1/k

(26)

Gray combined weights (⊗wjCM) are obtained by combining the gray weights of
criteria obtained from the gray BWM method and the gray PSI method using the follow-
ing equation.

⊗wjCM =
⊗wjPS ×⊗wjBW

∑n
j=1 ⊗wjPS ×⊗wjBW

(27)
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3.4. Gray MCRAT

The steps of the developed gray MCRAT method are demonstrated below.
Step 1: First, a gray decision matrix is created.

⊗B =
[
⊗bij

]
m×n (28)

Step 2: The gray decision matrix is normalized by utilizing Equation (29) (for benefit
criteria) and Equation (30) (for non-benefit criteria).

⊗vij =
⊗bij

max
(
⊗bij

) =

 bl
ij

max
(

bu
ij

) ,
bu

ij

max
(

bu
ij

)
 (29)

⊗vij =
min

(
⊗bij

)
⊗bij

=

min
(

bl
ij

)
bu

ij
,

min
(

bl
ij

)
bl

ij

 (30)

Step 3: Normalized gray values are multiplied with the gray combined weights.

⊗gij = ⊗wjCM ×⊗vij =
[
wl

jCM × f l
ij, wu

jCM × f u
ij

]
(31)

Step 4: The gray optimal alternative is identified.

⊗qj = max
(
⊗gij

∣∣1 ≤ j ≤ n
)

(32)

⊗Q = {⊗q1,⊗q2, . . . ⊗ qn} (33)

Step 5: Gray optimal alternatives are decomposed.

⊗Q = ⊗Qmax ∪ ⊗Qmin (34)

⊗Q = {⊗q1,⊗q2, . . . ⊗ qk} ∪ {⊗q1,⊗q2, . . . ⊗ qh}; k + h = j (35)

Step 6: Alternatives are decomposed.

⊗C = ⊗Cmax ∪ ⊗Cmin (36)

⊗C = {⊗c1,⊗c2, . . . ⊗ ck} ∪ {⊗c1,⊗c2, . . . ⊗ ch}; k + h = j (37)

Step 7: The gray magnitude of the components is calculated.

⊗Qk =
[
ql

k, qu
k

]
=

[√(
ql

1
)2

+
(
ql

2
)2

+ . . . +
(
ql

k
)2,
√(

qu
1
)2

+
(
qu

2
)2

+ . . . +
(
qu

k
)2
]

(38)

⊗Qh =
[
ql

h, qu
h

]
=

[√(
ql

1
)2

+
(
ql

2
)2

+ . . . +
(
ql

h
)2,
√(

qu
1
)2

+
(
qu

2
)2

+ . . . +
(
qu

h
)2
]

(39)

The same process is used for each alternative.

⊗Ck =
[
cl

k, cu
k

]
=

[√(
cl

1
)2

+
(
cl

2
)2

+ . . . +
(
cl

k
)2,
√(

cu
1
)2

+
(
cu

2
)2

+ . . . +
(
cu

k
)2
]

(40)

⊗Ch =
[
cl

h, cu
h

]
=

[√(
cl

1
)2

+
(
cl

2
)2

+ . . . +
(
cl

h
)2,
√(

cu
1
)2

+
(
cu

2
)2

+ . . . +
(
cu

h
)2
]

(41)
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Step 8: The ⊗D and ⊗F gray matrices are generated. The former indicates the gray
values composed of optimal alternative components, and the latter shows the gray values
composed of each alternative.

⊗D =

[
⊗Qk 0

0 ⊗Qh

]
(42)

⊗F =

[
⊗Ck 0

0 ⊗Ch

]
(43)

Step 9: The ⊗D and ⊗F gray matrices are multiplied to acquire the ⊗Zi matrix
indicated in Equation (44).

⊗Zi = ⊗D ×⊗F =

[
⊗z11;i 0

0 ⊗z22;i

]
(44)

Step 10: The gray trace of the matrix ⊗Zi is acquired as follows.

tr(⊗Zi) = ⊗z11;i +⊗z22;i =
[
zl

11,i + zl
22,i, zu

11,i + zu
22,i

]
(45)

In Equation (45), tr(⊗Zi) =
[

Zl
i , Zu

i

]
shows the gray trace of the Zi matrix, and this

value is transformed into crisp tr(Zi) using Zi =
(

Zl
i + Zu

i

)
× 0.5. The one with the highest

tr(Zi) value is the best option.

3.5. Gray COBRA

The steps of the gray COBRA technique are listed below [48].
Step 1: A gray decision matrix (⊗B) is created.

⊗B =
[
⊗bij

]
m×n (46)

Step 2: The weighted gray matrix (⊗T) is developed by multiplying the gray decision
matrix values with the weights (⊗wj).

⊗T =
[
⊗tij

]
m×n, (47)

⊗tij =
[
tij, tij

]
= ⊗wjCM ×⊗bij, (48)

Step 3: The reference solutions (PIS, NIS, and AS) are acquired.

PIS =
[
⊗pisj

]
1×n,⊗pisj =

[
pis

j
, pisj

]
=


[

max
i

tij, max
i

tij

]
, f or j ∈ JB[

min
i

tij, min
i

tij

]
, f or j ∈ JC

(49)

NIS =
[
⊗nisj

]
1×n,⊗nisj =

[
nisj, nisj

]
=


[

min
i

tij, min
i

tij

]
, f or j ∈ JB[

max
i

tij, max
i

tij

]
, f or j ∈ JC

(50)

AS =
[
⊗asj

]
1×n,⊗asj =

[
asj, asj

]
=

{[
mean

i
tij, mean

i
tij

]
, f or j ∈ JB, JC (51)

where JB denotes benefit criteria and JC denotes non-benefit criteria sets.
Step 4: For each alternative, the gray distances from PIS, NIS, and AS are found.

⊗d(S)i = ⊗dE(S)i +⊗σ ×⊗dE(S)i ×⊗dT(S)i (52)
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⊗σ = max
i

⊗ dE(S)i − min
i

⊗ dE(S)i (53)

where the correction coefficient is ⊗σ, S stands for any solution (PIS, NIS, or AS), ⊗dE(S)i
shows the Euclidian distance, and ⊗dT(S)i shows the taxicab distance.

⊗dE(PIS)i =

√√√√max

(
0,

n

∑
j=1

(
pis

i
− tij

)2
)

,

√√√√max

(
0,

n

∑
j=1

(
pisi − tij

)2
) (54)

⊗dT(PIS)i =
[∣∣∣pis

i
− tij

∣∣∣, ∣∣∣pisi − tij

∣∣∣] (55)

⊗dE(NIS)i =

√√√√max

(
0,

n

∑
j=1

(
tij − nisi

)2
)

,

√√√√max

(
0,

n

∑
j=1

(
tij − nisi

)2
) (56)

⊗dT(NIS)i =
[∣∣∣tij − nisi

∣∣∣, ∣∣tij − nisi
∣∣] (57)

⊗dE(AS)+i =

√√√√max

(
0,

n

∑
j=1

τ+
(

tij − asi

)2
)

,

√√√√max

(
0,

n

∑
j=1

τ+
(
tij − asi

)2
) (58)

⊗dT(AS)+i =
[
τ+,

∣∣∣tij − asi

∣∣∣, τ+
∣∣tij − asi

∣∣] where

τ+ =

{
1 i f ⊗ asj < ⊗tij
0 i f ⊗ asj > ⊗tij

(59)

⊗dE(AS)− =

√√√√max

(
0,

n

∑
j=1

τ−(asi − tij
)2
)

,

√√√√max

(
0,

n

∑
j=1

τ−
(

asi − tij

)2
) (60)

⊗dT(AS)−i =
[
τ−,

∣∣asi − tij
∣∣, τ−

∣∣∣asi − tij

∣∣∣] where

τ− =

{
1 i f ⊗ asj > ⊗tij
0 i f ⊗ asj < ⊗tij

(61)

Step 5: The gray comprehensive distances are determined using Equation (62).

⊗dCi =
⊗d(PIS)i −⊗d(NIS)i −⊗d(AS)+i +⊗d(AS)−i

4
(62)

Step 6: The options are ranked using Equations (19) and (20).

4. Application

The application of this method was carried out in a medium-sized Turkish textile
company. This company has more than 1000 employees and sends its products abroad.
The products manufactured by this company include men’s shirts and men’s trousers. The
highest authority managers of the company and the managers who know the suppliers best
participated in the research. Therefore, six managers of this company were interviewed.
The features of the six managers participating in the study are presented in Table 2.

Table 2. Managers’ features.

Managers Duty Graduation Experience (Years)

Mngr1 CEO Business 25
Mngr2 CFO Business 22
Mngr3 Operation Manager Industrial Engineering 10
Mngr4 Assistant Operation Manager Industrial Engineering 2
Mngr5 Purchasing Manager Industrial Engineering 14
Mngr6 Logistics Manager Industrial Engineering 10
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Firstly, a literature review was conducted and the criteria that would be appropriate for
the study were determined. Then, these criteria were listed and presented to the managers.
The managers determined which criteria to be used in the study by majority vote. Managers
identified three main criteria and twelve sub-criteria. The main criteria and sub-criteria are
presented in Table 3. Then, these managers were asked to identify suppliers. Managers
identified six suppliers. All of these suppliers produce fabric, but the SPIR 2 and SPIR 4
suppliers also subcontract production. While the number of employees at the SPIR 1 and
SPIR 4 suppliers is approximately 400, the number of employees at the other suppliers is
approximately 300.

Table 3. Main criteria and sub-criteria.

Main Criteria Sub-Criteria Sources

Operational criteria (OC)

Cost [10,11,25,27,29,31–33,35–37]
Delivery time (DT) [10,13,25,26,29–33,35–37]

Quality (Q) [10,11,13,25–27,29,30,32,33,35–37]
Technological abilities (TA) [13,25,32,33,36,37]

Resilience criteria (RESC)

Risk awareness as an aid to increase resilience
capacity (RAA) [36,37]

Restorative capacity (REC) [28,29,31–33,37]
Strategic stock for crises holding capacity (STS) [11,12,32,33]

Capacity to invest in bumpers (CAPI) [11,12]
Flexibility of supplier (FLES) [25,30,31,35]

Relationship criteria (RELSC)
Reputation (REP) [13,33]

Financial stability (FS) [13,35,37]
Communication and transparency (COT) [30,31]

Only two of the determined sub-criteria (cost and DT) are defined as non-beneficial,
while the other criteria are defined as beneficial. First, the managers (Mngrs) evaluated the
suppliers’ performance in the criteria with the linguistic data in Table 1. These linguistic
data were then converted into gray numbers. Then, using Equation (10), the numbers given
by the management were combined, and the gray decision matrix was created. Table 4
shows the gray decision matrix.

Table 4. Gray decision matrix.

Suppliers ↓ Criteria → Cost DT Q TA RAA REC

SPIR 1 [4, 6] [4.1667, 6.1667] [3.5, 5.5] [6, 8] [6, 8] [5.8333, 7.8333]

SPIR 2 [4, 6] [4, 6] [3.8333, 5.8333] [6, 8] [5.8333, 7.8333] [5, 7]

SPIR 3 [4, 6] [3.6667,5.6667] [3.6667, 5.6667] [6.3333, 8.3333] [6.1667, 8.1667] [4.3333, 6.3333]

SPIR 4 [5.6667, 7.6667] [2.1667, 4.1667] [5.3333, 7.3333] [6.5, 8.5] [6.5, 8.5] [6, 8]

SPIR 5 [5.5, 7.5] [2.5, 4.5] [5.1667, 7.1667] [6.5, 8.5] [6.1667, 8.1667] [5.3333, 7.3333]

SPIR 6 [4.6667, 6.6667] [4.1667, 6.1667] [4, 6] [5.8333, 7.8333] [5.3333, 7.3333] [4.1667, 6.1667]

Suppliers ↓ Criteria → STS CAPI FLES REP FS COT

SPIR 1 [5, 7] [4.5, 6.5] [5.3333, 7.3333] [5.5, 7.5] [5.6667, 7.6667] [6.3333, 8.3333]

SPIR 2 [4.1667, 6.1667] [4.3333, 6.3333] [5.6667, 7.6667] [4.3333, 6.3333] [5.5, 7.5] [6, 8]

SPIR 3 [4.6667, 6.6667] [4.6667, 6.6667] [6, 8] [4.1667, 6.1667] [5.6667, 7.6667] [6, 8]

SPIR 4 [5.5, 7.5] [4.8333, 6.8333] [6.3333, 8.3333] [6.3333, 8.3333] [6.6667, 8.6667] [6.5, 8.5]

SPIR 5 [5.1667, 7.1667] [5.1667, 7.1667] [5.3333, 7.3333] [5.6667, 7.6667] [6.3333, 8.3333] [6.5, 8.5]

SPIR 6 [5, 7] [4.8333, 6.8333] [5.6667, 7.6667] [4.5, 6.5] [5.6667, 7.6667] [5.8333, 7.8333]
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By applying the equations of the gray PSI method to the gray decision matrix, the gray
weights of the criteria were obtained according to the gray PSI method. Table 5 presents
the results of the gray PSI method.

Table 5. The results of gray PSI.

Results ↓ Criteria → Cost DT Q TA RAA REC

⊗dvj [0.9027, 0.9766] [0.7848, 0.9728] [0.9414, 0.9414] [0.9943, 0.9943] [0.9892, 0.9892] [0.9551, 0.9551]

⊗wjPS [0.0770, 0.0853] [0.0670, 0.0849] [0.0803, 0.0822] [0.0849, 0.0868] [0.0844, 0.0864] [0.0815, 0.0834]

Results ↓ Criteria → Cost DT Q TA RAA REC

⊗dvj [0.9815, 0.9815] [0.9917, 0.9917] [0.9891, 0.9891] [0.9450, 0.9450] [0.9854, 0.9854] [0.9943, 0.9943]

⊗wjPS [0.0838, 0.0857] [0.0846, 0.0866] [0.0844, 0.0864] [0.0807, 0.0825] [0.0841, 0.0860] [0.0849, 0.0868]

Managers identified the best and worst criteria for the gray BWM method. They
then determined the gray vectors (⊗DB and ⊗DW) using the linguistic values in Table 1.
Afterward, using Equations (16)–(20), the gray weights of the criteria were found according
to the gray BWM method. Then, the gray weights found for each manager were combined
with Equations (25) and (26). Table 6 shows the criteria weights according to the gray
BWM method.

Table 6. The results of gray BWM.

Criteria ↓ Mngrs→ Mngr1 Mngr2 Mngr3 Mngr4 Mngr5 Mngr6 Combined
Weights ⊗wjBW

OC [0.550, 0.685] [0.640, 0.735] [0.083, 0.125] [0.154, 0.185] [0.083, 0.125] [0.100, 0.167] [0.268, 0.337] -

RESC [0.204, 0.250] [0.194, 0.260] [0.563, 0.694] [0.704, 0.769] [0.688, 0.760] [0.542, 0.683] [0.482, 0.570] -

RELSC [0.111, 0.200] [0.071, 0.100] [0.222, 0.313] [0.077, 0.111] [0.156, 0.188] [0.217, 0.292] [0.142, 0.200] -

Cost [0.385, 0.633] [0.197, 0.273] [0.469, 0.594] [0.160, 0.203] [0.197, 0.280] [0.324, 0.513] [0.288, 0.416] [0.077, 0.140]

DT [0.139, 0.231] [0.045, 0.062] [0.158, 0.188] [0.522, 0.624] [0.062, 0.086] [0.211, 0.294] [0.190, 0.247] [0.051, 0.083]

Q [0.167, 0.308] [0.545, 0.610] [0.198, 0.281] [0.160, 0.203] [0.495, 0.610] [0.211, 0.294] [0.296, 0.384] [0.079, 0.130]

TA [0.061, 0.077] [0.131, 0.136] [0.050, 0.062] [0.056, 0.072] [0.131, 0.140] [0.066, 0.088] [0.083, 0.096] [0.022, 0.032]

RAA [0.472, 0.563] [0.036, 0.052] [0.145, 0.167] [0.250, 0.440] [0.250, 0.421] [0.174, 0.214] [0.221, 0.309] [0.107, 0.176]

REC [0.145, 0.181] [0.165, 0.214] [0.145, 0.167] [0.179, 0.250] [0.171, 0.219] [0.174, 0.214] [0.163, 0.207] [0.079, 0.118]

STS [0.121, 0.139] [0.428, 0.510] [0.145, 0.167] [0.069, 0.125] [0.171, 0.219] [0.054, 0.071] [0.165, 0.205] [0.079, 0.117]

CAPI [0.067, 0.097] [0.165, 0.214] [0.079, 0.133] [0.125, 0.134] [0.066, 0.094] [0.174, 0.214] [0.112, 0.148] [0.054, 0.084]

FLES [0.104, 0.111] [0.107, 0.110] [0.367, 0.487] [0.179, 0.250] [0.171, 0.219] [0.286, 0.424] [0.202, 0.267] [0.097, 0.152]

REP [0.121, 0.138] [0.563, 0.694] [0.083, 0.125] [0.171, 0.200] [0.067, 0.091] [0.146, 0.179] [0.192, 0.238] [0.027, 0.048]

FS [0.763, 0.807] [0.222, 0.313] [0.130, 0.143] [0.633, 0.729] [0.761, 0.807] [0.738, 0.792] [0.541, 0.598] [0.077, 0.120]

COT [0.071, 0.100] [0.083, 0.125] [0.732, 0.787] [0.100, 0.167] [0.127, 0.148] [0.063, 0.083] [0.196, 0.235] [0.028, 0.047]

The gray weights of the criteria obtained by the gray PSI method and the gray weights
of the criteria found by the gray BWM method were combined with Equation (26). Table 7
presents the gray weights of the criteria according to the gray PSI (⊗wjPS) and gray BWM
(⊗wjBW) methods and the combined gray weights (⊗wjCM).

After finding the combined gray weights, the gray MCRAT method was used to
evaluate the performance of the suppliers. By applying Equations (29) and (30) to the gray
decision matrix in Table 4, the gray normalized decision matrix was obtained. Table 8
presents the gray normalized decision matrix.
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Table 7. Combined gray Weights of criteria.

Weights ↓ Criteria → Cost DT Q TA RAA REC

⊗wjPS [0.0770, 0.0853] [0.0670, 0.0849] [0.0803, 0.0822] [0.0849, 0.0868] [0.0844, 0.0864] [0.0815, 0.0834]

⊗wjBW [0.0770, 0.1400] [0.0510, 0.0830] [0.079, 0.130] [0.022, 0.032] [0.107, 0.176] [0.079, 0.118]

⊗wjCM [0.0564, 0.1884] [0.0320, 0.1115] [0.0602, 0.1664] [0.0179, 0.044] [0.0847, 0.2386] [0.0602, 0.1554]

Weights ↓ Criteria → STS CAPI FLES REP FS COT

⊗wjPS [0.0838, 0.0857] [0.0846, 0.0866] [0.0844, 0.0864] [0.0807, 0.0825] [0.0841, 0.086] [0.0849, 0.0868]

⊗wjBW [0.079, 0.117] [0.054, 0.084] [0.097, 0.152] [0.027, 0.048] [0.077, 0.120] [0.028, 0.047]

⊗wjCM [0.063, 0.157] [0.0433, 0.1146] [0.0771, 0.2057] [0.0207, 0.0612] [0.0611, 0.1617] [0.0226, 0.0644]

Table 8. Gray normalized decision matrix.

Suppliers ↓ Criteria → Cost DT Q TA RAA REC

SPIR 1 [0.6667, 1] [0.3514, 0.52] [0.4773, 0.75] [0.7059, 0.9412] [0.7059, 0.9412] [0.7292, 0.9792]

SPIR 2 [0.6667, 1] [0.3611, 0.5417] [0.5227, 0.7955] [0.7059, 0.9412] [0.6863, 0.9216] [0.625, 0.875]

SPIR 3 [0.6667, 1] [0.3824, 0.5909] [0.5, 0.7727] [0.7451, 0.9804] [0.7255, 0.9608] [0.5417, 0.7917]

SPIR 4 [0.5217, 0.7059] [0.52, 1] [0.7273, 1] [0.7647, 1] [0.7647, 1] [0.75, 1]

SPIR 5 [0.5333, 0.7273] [0.4815, 0.8667] [0.7046, 0.9773] [0.7647, 1] [0.7255, 0.9608] [0.6667, 0.9167]

SPIR 6 [0.6, 0.8571] [0.3514, 0.52] [0.5455, 0.8182] [0.6863, 0.9216] [0.6274, 0.8627] [0.5208, 0.7708]

Suppliers ↓ Criteria → STS CAPI FLES REP FS COT

SPIR 1 [0.6667, 0.9333] [0.6279, 0.907] [0.6400, 0.8800] [0.6600, 0.9000] [0.6538, 0.8846] [0.7451,
0.9804]

SPIR 2 [0.5556, 0.8222] [0.6046, 0.8837] [0.6800, 0.9200] [0.5200, 0.7600] [0.6346, 0.8654] [0.7059, 0.9412]

SPIR 3 [0.6222, 0.8889] [0.6512, 0.9302] [0.7200, 0.9600] [0.5000, 0.7400] [0.6538, 0.8846] [0.7059, 0.9412]

SPIR 4 [0.7333, 1] [0.6744, 0.9535] [0.7600, 1] [0.7600, 1] [0.7692, 1] [0.7647, 1]

SPIR 5 [0.6889, 0.9556] [0.7209, 1] [0.6400, 0.8800] [0.6800, 0.9200] [0.7308, 0.9615] [0.7647, 1]

SPIR 6 [0.6667, 0.9333] [0.6744, 0.9535] [0.6800, 0.9200] [0.5400, 0.7800] [0.6538, 0.8846] [0.6863, 0.9216]

Then, the weighted, normalized gray matrix was achieved using Equation (31). Using
Equations (32)–(37), gray optimal alternatives, decomposed gray optimal alternatives, and
decomposed alternatives were obtained, respectively. The gray magnitude components
were calculated using Equations (38) and (39). Table 9 demonstrates these values.

Table 9. The gray magnitude components.

⊗Qk [0.1328, 0.4742]

⊗Qh [0.0411, 0.2189]

After obtaining gray magnitude components, first, the values for each alternative were
found using Equations (40) and (41). Then, ⊗D and ⊗F gray matrices were created, and
the gray trace of the matrix was calculated using Equations (44) and (45). The gray trace
matrix was converted to a crisp trace matrix. Table 10 shows these results and the rankings
of the suppliers.

According to the results of the gray MCRAT method, the most resilient supplier was
determined as the supplier coded as SPIR 4. This supplier is followed by SPIR 5, SPIR 1,
SPIR 3, SPIR 2 and SPIR 6, in that order.



Mathematics 2024, 12, 1444 15 of 22

Table 10. The results of gray MCRAT.

Suppliers ↓ Results → ⊗Ck ⊗Ch ⊗z11;i ⊗z22;i tr(⊗Zi) tr(Zi) Rankings

SPIR 1 [0.1161, 0.4282] [0.0392, 0.1971] [0.0154, 0.2031] [0.0016, 0.0431] [0.0170, 0.2462] 0.1316 3

SPIR 2 [0.1117, 0.4174] [0.0393, 0.1978] [0.0148, 0.1979] [0.0016, 0.0433] [0.0164, 0.2412] 0.1288 5

SPIR 3 [0.1153, 0.4267] [0.0395, 0.1996] [0.0153, 0.2023] [0.0016, 0.0437] [0.0169, 0.2460] 0.1315 4

SPIR 4 [0.1324, 0.4729] [0.0338, 0.1736] [0.0176, 0.2242] [0.0014, 0.038] [0.0190, 0.2622] 0.1406 1

SPIR 5 [0.1231, 0.4484] [0.0338, 0.1676] [0.0163, 0.2126] [0.0014, 0.0367] [0.0177, 0.2493] 0.1335 2

SPIR 6 [0.1111, 0.4151] [0.0356, 0.1716] [0.0148, 0.1968] [0.0015, 0.0376] [0.0163, 0.2344] 0.1254 6

After obtaining the results of the gray MCRAT method, the gray COBRA method
was started. First, the weighted gray values were obtained using Equation (48). Then, the
reference solutions were obtained using Equations (49)–(51). Then, gray distance values
were obtained by applying Equations (54)–(61). The values are shown in Table 11.

Table 11. The gray distances.

Suppliers ↓ Results → ⊗dE(PIS)i ⊗dT(PIS)i ⊗dE(NIS)i ⊗dT(NIS)i

SPIR 1 [0, 3.1088] [8.4111, 9.5717] [0, 2.9565] [6.1089, 6.5393]

SPIR 2 [0, 3.1338] [8.0775, 9.6971] [0, 2.8809] [6.2257, 6.2355]

SPIR 3 [0, 3.1028] [8.2052, 9.6453] [0, 2.9518] [6.2064, 6.2779]

SPIR 4 [0, 3.0558] [9.5202, 9.1648] [0, 3.2536] [5.8575, 7.2300]

SPIR 5 [0, 3.1196] [9.0005, 9.3598] [0, 3.0684] [5.9412, 7.0107]

SPIR 6 [0, 3.1868] [8.2078, 9.6556] [0, 2.8341] [6.1979, 6.3287]

Suppliers ↓ Results → ⊗dE(AS)+i ⊗dT(AS)+i ⊗dE(AS)−i ⊗dT(AS)−i
SPIR 1 [0, 1.4374] [2.7028, 3.0267] [0, 2.5207] [5.6557, 6.1949]

SPIR 2 [0, 0.5588] [0.4791, 0.5588] [0, 2.8151] [7.7901, 8.5441]

SPIR 3 [0, 1.9654] [3.2493, 3.4222] [0, 2.1287] [5.0544, 5.7221]

SPIR 4 [0, 3.1150] [7.9531, 9.4371] [0, 0.5377] [0.3544, 0.5377]

SPIR 5 [0, 2.7120] [6.9815, 7.8131] [0, 1.2899] [1.4588, 1.7043]

SPIR 6 [0, 1.5099] [2.7933, 2.9396] [0, 2.4552] [5.5396, 6.1883]

The gray comprehensive distances were calculated using Equations (52), (53), and (62).
The suppliers were ranked using Equations (19) and (20). Table 12 indicates the results of
the gray COBRA method.

Table 12. The results of gray COBRA.

Suppliers ↓ Results → ⊗d(PIS)i ⊗d(NIS)i ⊗d(AS)+
i ⊗d(AS)−i ⊗dCi Rankings

SPIR 1 [−90.9295, 97.9360] [−54.7926, 57.7491] [−2.4310, 14.9893] [−43.9587, 10.9174] [−51.9066, 41.5192] 4

SPIR 2 [−92.8612, 99.9756] [−50.9114, 53.7923] [−0.1745, 1.5314] [−67.7098, 15.7486] [−53.9737, 41.7025] 3

SPIR 3 [−91.4517, 98.4746] [−52.5186, 55.4704] [−3.7583, 22.9166] [−34.2900, 8.6786] [−51.0322, 40.8575] 5

SPIR 4 [−88.8968, 95.7632] [−66.6666, 69.9202] [−16.4260, 94.6837] [−0.8140, 0.6932] [−63.5787, 44.8872] 1

SPIR 5 [−89.2255, 96.1698] [−60.9649, 64.0333] [−11.8400, 68.7156] [−6.1885, 2.4720] [−57.0407, 42.8617] 2

SPIR 6 [−94.0262, 101.2434] [−50.8315, 53.6655] [−2.4802, 15.3359] [−42.7711, 10.6250] [−51.4497, 41.2950] 6

According to the results of gray COBRA, the most resilient supplier was determined
to be the supplier coded as SPIR 4. This supplier is followed by SPIR 5, SPIR 2, SPIR 1, SPIR
3 and SPIR 6, in that order. According to Table 12, there are minor differences between the
results of the gray COBRA method and the developed gray MCRAT method. Therefore, the
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results of the two methods are combined with the Borda count method. In the Borda count
method, the lowest ranked option is given “0” points, while the highest ranked option is
given “n − 1” points. This is intended to rank each method used. These points are then
added up. The option with the highest total score is placed in first place, while the option
with the second highest total score is placed in the second place, and so on [51]. Table 13
presents the results of the Borda count method and the final rankings of suppliers.

Table 13. The results of Borda count Method.

Suppliers ↓ Results → Gray MCRAT Borda Count
Number

Gray
COBRA

Borda Count
Number

Borda Count
Total

Number

Final
Rankings

SPIR 1 3 3 4 2 5 3

SPIR 2 5 1 3 3 4 4

SPIR 3 4 2 5 1 3 5

SPIR 4 1 5 1 5 10 1

SPIR 5 2 4 2 4 8 2

SPIR 6 6 0 6 0 0 6

According to the final rankings obtained using the Borda count method, the most
resilient supplier was determined to be SPIR 4, followed by SPIR 5, SPIR 1, SPIR 2, SPIR 3,
and SPIR 6, in that order. To check whether the developed the gray MCRAT method obtains
accurate results, the gray MCRAT method was compared with other gray MCDM methods
(gray ARAS, gray COPRAS, gray MOORA, gray COBRA, gray CODAS, gray EDAS, and
gray TOPSIS). Table 14 presents the results of the developed gray MCRAT method and
other gray MCDM methods.

Table 14. The Results of Gray MCDM Methods.

Suppliers ↓ Results → Gray
MCRAT

Gray
ARAS

Gray
COPRAS

Gray
MOORA

Gray
COBRA

Gray
CODAS

Gray
EDAS

Gray
TOPSIS

SPIR 1 3 3 3 3 4 3 3 4

SPIR 2 5 5 5 5 3 4 4 3

SPIR 3 4 4 4 4 5 5 5 5

SPIR 4 1 1 1 1 1 1 1 1

SPIR 5 2 2 2 2 2 2 2 2

SPIR 6 6 6 6 6 6 6 6 6

The gray MCRAT method, which was developed using the results of the gray MCDM
methods, and the gray COPRAS, gray ARAS, and gray MOORA methods yielded the same
rankings. Although there are minor differences between the gray MCRAT method and
gray TOPSIS and gray COBRA methods, the Spearman correlation coefficient between the
gray MCRAT method and these two methods was determined to be 0.829. On the other
hand, although there are very small differences between the gray MCRAT method and the
gray CODAS and gray EDAS methods, the Spearman correlation coefficient between the
gray MCRAT method and these two methods was determined to be 0.943. Based on these
results, it can be stated that the developed gray MCRAT method acquired accurate results.

5. Sensitivity Analysis and Validation

In this section, it is determined whether or not the gray MCRAT method developed
in this study is sensitive to changes in the weights of the sub-criteria. In this study, a
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sensitivity analysis was performed by changing the weights of the sub-criteria. The weights
of the three sub-criteria with the highest weights (cost, RAA, and FLES) were reduced,
resulting in a total of thirty-six scenarios. The following equation [52] was used in the
sensitivity analysis.

Wnγ = (1 − Wnδ)
Wγ

(1 − Wn)
(63)

In Equation (63), Wnγ denotes the weight of the sub-criterion at a new value and Wγ

is the sub-criterion’s original value. Additionally, Wn represents the original weight of the
sub-criterion with a reduced value and Wnδ denotes the reduced sub-criterion weight [52].
Firstly, thirty-six scenarios were formed. However, when no major changes were observed
in these scenarios, four extra scenarios were added. In the first three scenarios, the weights
of two sub-criteria were taken as zero. In S37, the weights of the cost and RAA sub-criteria
were taken as zero, while rankings of zero were applied to cost and FLES in S38 and to
RAA and FLES in S39. In the last scenario, the weights of all three sub-criteria were taken
as zero. Thus, sensitivity analysis was performed with a total of forty scenarios. Figure 1
shows the results of the sensitivity analysis.
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Figure 1. The results of the sensitivity analysis.

According to Figure 1, SPIR 1 decreased from third place to fourth place between S9
and S12, while SPIR 3 moved from fourth place to third place between S7 and S12. In S37
and S40, SPIR 2 decreased from fifth place to sixth place, while SPIR 6 increased from sixth
place to fifth place in S37 and from sixth place to fourth place in S40. While the position of
SPIR 3 did not change in S37, it dropped by one place from fourth place to fifth place in
S40. As can be seen, except for the ranks of the SPIR 4 and SPIR 5 suppliers, the ranks of
the other suppliers changed with the changes in the weights of the sub-criteria. This shows
that the results of the gray MCRAT method will change depending on the changes that
may occur in the weights of the sub-criteria.

The managers participating in the study were shown the results of the proposed model
and asked to evaluate the consistency of this result. The managers gave a score between
one (very inconsistent) and ten (very consistent). Mngr1, Mngr3, Mngr5, and Mngr6 gave
it nine points, Mngr2 gave it eight points, and Mngr4 gave it ten points. The average of the
total scores obtained was nine. This result shows that the proposed method is consistent
and valid.
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6. Conclusions

The ability of suppliers to effectively handle risk and outperform competitors dur-
ing periods of disruption is a key indicator of their resilience. Hence, the need to use
resilient suppliers becomes apparent when contemplating the possible ramifications that
interruptions might have on a company’s operational efficiency and image. However,
insufficient attention has been given to addressing the uncertainty associated with the
selection of resilient suppliers. Therefore, empirical research using gray methodologies
has the potential to aid managers in making more informed choices when faced with
uncertain circumstances. This study proposes a comprehensive gray MCDM paradigm
that incorporates resilience attributes. To ascertain the relative importance of the criteria
and sub-criteria in the second phase, the gray PSI and gray BWM methodologies were
used. Gray MCRAT and gray COBRA methodologies evaluated and prioritized resilient
providers based on their respective performances. The implementation of gray MCDM
was conducted at a medium-sized Turkish textile firm. The aforementioned corporation
has a workforce exceeding 1000 individuals and engages in the exportation of its goods.
The firm’s product line includes men’s shirts and pants.

Based on the findings deriving from the gray MCRAT approach, the provider exhibit-
ing the highest level of resilience was identified as the supplier classified with SPIR 4. It
is followed by SPIR 5, SPIR 1, SPIR 3, SPIR 2, and SPIR 6, in that order. The findings of
gray COBRA demonstrated that the provider exhibiting the highest level of resilience was
the supplier coded as SPIR 4. It is sequentially followed by SPIR 5, SPIR 2, SPIR 1, SPIR 3,
and SPIR 6. As can be seen, there are slight disparities in the outcomes obtained from gray
COBRA and gray MCRAT. Therefore, the outcomes of the two techniques were aggregated
using the Borda count technique. With the Borda count approach, the provider with the
highest resilience level was SPIR 4. Subsequently, SPIR 5, SPIR 1, SPIR 2, SPIR 3, and SPIR 6
were ranked in descending order of resilience.

Finally, to assess the accuracy of the gray MCRAT technique, a comparative analysis
was conducted with other gray MCDM methods. The findings of the gray MCRAT approach
yielded consistent ranks with the gray COPRAS, gray ARAS, and gray MOORA methods.
While there are some variations among the gray MCRAT technique, gray TOPSIS method,
and gray COBRA method, the Spearman correlation coefficient between the gray MCRAT
method and the latter two methods was determined to be 0.829. However, it should be
noted that despite minor variations, the gray MCRAT approach has a Spearman correlation
value of 0.943 when compared to gray CODAS and gray EDAS methods. The findings
show that the gray MCRAT technique, which was established, yielded precise outcomes.

In this study, a test was carried out to establish whether or not the results of the
developed gray MCRAT method change depending on a change in the weights of the
criteria, using forty scenarios. According to the results of the sensitivity analysis, the
developed gray MCRAT method is sensitive to changes in the weights of the criteria. The
managers participating in the study were shown the result of the proposed model and
asked to evaluate its consistency. According to the results of this analysis, the proposed
model is consistent and valid.

In this study, unlike many studies in the literature, the weights of both subjective and
objective criteria were included in the calculations. Additionally, the gray MCRAT method
was developed in this study. It offers a more streamlined methodology for assessing
alternatives across several criteria than competing gray MCDM methods. This results
in dependable, universally applicable, and logically sound outcomes. The gray COBRA
method was also used in this study. The gray COBRA method is unparalleled in its ability to
rank options based on the integration of various types of distances from multiple reference
points. This feature sets it apart from other reference-based MCDM methods, including
TOPSIS, CODAS, and EDAS, and ensures it delivers more reliable results. Based on the
above, it can be said that this study has reached stronger and more rigorous results.

Despite the constraints imposed by interaction limitations, the gray number approach
is still limited in determining a fraction of the available solution range, particularly when
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dealing with undesirable parameter values. Therefore, one may use the suggested technique
using fuzzy numbers, rough set theory, and neutrosophic numbers. The weightings and
ratings of criteria by decision makers are subjective and contingent upon their expertise
and understanding of the company, its procedures, and other relevant factors. Hence, the
subjective inclinations of decision makers towards certain traits may have influenced the
outcomes. Subsequent investigations may expand upon the suggested model by developing
a multi-stage framework that takes into account the sub-criteria of each criterion that
contributes to resilience. The resilience criteria may be integrated with other environmental
criteria to tackle the sustainability concerns related to suppliers. The suggested MCDM
framework for the resilient supplier selection may also be used in several sectors, including
environmental issues, entertainment, energy, infrastructure, and others.

7. Discussion and Implications

This study focused on the management of supply chain disruptions, which is an
important challenge facing today’s business world. In particular, the recent increase in
uncertainties and disruptions in supply chain processes are challenging businesses more
and more. The fact that these disruptions are often caused by suppliers is one of the most
important obstacles that businesses face when managing their supply chains. Supply chain
disruptions can lead to operational efficiency losses, customer dissatisfaction, and even
financial losses. Therefore, the supplier selection process, which is critical for businesses,
should be handled with great care.

The findings of the study show that resilience characteristics play a critical role in
supplier selection. The developed gray MCDM model emerged as an effective tool to
objectively evaluate supplier selection and prioritize resilience attributes. This method
can enhance enterprises’ ability to manage supply chain risks and strengthen their opera-
tional resilience.

In this study, the gray BWM method was used to find the subjective weights of the
criteria. Gray BWM obtains the weights of the criteria by making fewer comparisons
compared to the gray AHP method. Additionally, the gray PSI method was used to obtain
the objective weights of the criteria. The gray PSI method has simpler computing steps
compared to the gray CRITIC and gray entropy methods.

In this study, the gray MCRAT method was developed. In contrast to competing gray
MCDM approaches, the gray MCRAT method offers a more streamlined methodology to
assess alternatives across several criteria, resulting in dependable, universally applicable,
and logically sound outcomes.

The gray COBRA method was also used in this study. The gray COBRA method is
distinguished by its capacity to rank options based on the integration of various types of
distances from multiple reference points. This feature allows it to achieve more reliable
results than other reference-based MCDM methods, including TOPSIS, CODAS, and EDAS,
among others.

In short, in this study, we endeavored to obtain more reliable results by utilizing two
distinct gray MCDM methods (gray MCRAT and gray COBRA).

It can be argued that by applying the proposed method, businesses can manage their
supply chain processes more effectively and be better prepared for potential disruptions.
However, for this approach to be successful, enterprises should pay more attention to re-
silience characteristics in supplier selection and adopt advanced decision-making methods.

The results of this study emphasize that businesses should consider resilience charac-
teristics in supplier selection to improve their supply chain management strategies. The
use of the gray MCDM method provides important guidance to businesses for this purpose.
Considering resilience characteristics in supplier selection can enhance the competitive
advantage of businesses and strengthen their long-term sustainability.

Furthermore, this study calls on academics and researchers to develop new and
innovative research methods in the field of supply chain management. Further research
and methodologies are needed to overcome the current challenges in dealing with supply
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chain disruptions. Advances in this area can help businesses build stronger and more
resilient supply chain systems and support global economic stability.
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48. Karaköy, Ç.; Ulutaş, A.; Karabasevic, D.; Üre, S.; Bayrakçıl, A.O. The Evaluation of Economic Freedom Indexes of Eu Countries

with a Grey Hybrid MCDM Model. Rom. J. Econ. Forecast. 2023, 26, 129–144.
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