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Abstract: We deal with the following singular perturbation Kirchhoff equation:−
(

ϵ2a+ ϵb
∫
R3 |∇u|2dy

)
∆u + Q(y)u = |u|p−1u, u ∈ H1(R3), where constants a, b, ϵ > 0 and 1 < p < 5. In this paper, we
prove the uniqueness of the concentrated solutions under some suitable assumptions on asymptotic
behaviors of Q(y) and its first derivatives by using a type of Pohozaev identity for a small enough ϵ.
To some extent, our result exhibits a new phenomenon for a kind of Q(x) which allows for different
orders in different directions.
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1. Introduction

In 1746, D’Alembert first formulated the wave equation in his treatise and proved
its functional relationships in 1750. The study of elastic string vibrations pioneered the
discipline of partial differential equations. In 1883, Kirchhoff [1] extended the classical
D’Alembert wave equation to the free vibration of elastic strings by considering a physical
model for the change in string length due to transverse vibrations.

ρ
∂2u
∂t2 −

(
P0

h
+

E
2L

∫ L

0
|∂

2u
∂y2 |dy

)
∂2u
∂y2 = 0, (1)

where L is the length of the string, h is the cross-sectional area, E is the Young’s modulus
of the material, ρ is the mass density, and P0 is the initial tension. With further research,
scholars have found that Kirchhoff-type equations have a wealth of applications [2–4] and
have become a typical class of issues in partial differential equations.

In this paper, we are concerned with the following nonlocal Kirchhoff problem

−
(

ϵ2a + ϵb
∫
R3

|∇u|2dy
)

∆u + Q(y)u = |u|p−1u, u ∈ H1(R3), (2)

where ϵ > 0 is a small parameter, and constants a, b > 0 and 1 < p < 5.
In recent decades, there has been considerable interest in the existence and uniqueness

of solutions for (2) under suitable conditions on the function Q(y). In particular, when
ϵ = 1 and Q(y) is a constant, the existence and non-degeneracy of ground state solutions
were implied in [5,6]. Using the non-degeneracy of ground states, in [5], Li et al. added the
existence and uniqueness of single-peak solutions to (2) and Luo, Peng, Wang and Xiang [7]
obtained the existence of multi-peak positive solutions of (2) by combining the variational
method and the Lyapunov–Schmidt reduction for small ϵ. For more works concerning the
uniqueness of concentrated solutions, one can refer to [8–12].

Now, we state the conditions of Q(y) in [5] as follows:
(Q1 ) Q(y) is a bounded C1 function with inf

y∈R3
Q(y) > 0.
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(Q2) There exist y0 ∈ R3 and r0 > 0 such that Q(y0) < Q(y) for 0 < |y − y0| < r0.
(Q3) There exist m > 1 and ρ > 0 such thatQ(y) = Q(y0) + ∑3

j=1 cj|yj − y0
j |

m + O(|y − y0|m+1), y ∈ Bρ(y0),
∂Q(y)

∂yj
= mcj|yj − y0

j |
m−2(yj − y0

j ) + O(|y − y0|m), y ∈ Bρ(y0),

where ρ > 0 is a small constant and cj ̸= 0 for j = 1, 2, 3.

Theorem 1 (c.f. [5]). Suppose that Q(y) satisfies (Q1), (Q2) and (Q3). Let u(i)
ϵ , i = 1, 2 be two

positive solutions of (2) concentrating at the same point y0. Then, u(1)
ϵ = u(2)

ϵ for a sufficiently
small ϵ.

Here, we want to mention that the authors in [5] used the assumption that Q(y) has
the same order in different directions at y0. However, to our knowledge, whether there is
similar uniqueness when Q(y) has different increasing rates in different directions is still
unknown. In this paper, we give an answer on this aspect and we consider a class of Q(y)
as follows:
(Q̄3) Q(y0) < Q(y) for any y ∈ R3 \ {y0} and Q(y) satisfiesQ(y) = Q(y0) + ∑3

j=1 cj|yj − y0
j |

mj + O(|y − y0|m+1), y ∈ Bρ(y0),
∂Q(y)

∂yj
= mcj|yj − y0

j |
mj−2(yj − y0

j ) + O(|y − y0|m), y ∈ Bρ(y0),

where ρ > 0 is a small constant, mj > 1, m = max{m1, m2, m3} and cj ̸= 0 for j = 1, 2, 3.

Theorem 2. Suppose that Q(y) satisfies (Q1) and (Q̄3). Then, (2) has only one positive single-peak
solution if ϵ is small enough.

2. Some Basic Estimates

Let Uy0(y) be the unique positive solution of the following problem:−
(
a + b

∫
R3 |∇u|2dy

)
∆u + Q(y0)u = |u|p−1u, in R3,

u(0) = max
y∈R3

u(y), u(y) ∈ H1(R3).

It follows from [5] that Uy0(y) is a radially symmetric decreasing function satisfying

|DαUy0(y)| ≤ Ce−δ|y|, with |α| ≤ 1 and some C, δ > 0.

First we denote

∥u∥ϵ = (u(y), u(y))
1
2
ϵ =

( ∫
R3
(ϵ2a|∇u|2 + Q(y)u2(y))

) 1
2 ,

and for x ∈ R3, we let

Eϵ,x =
{

u ∈ H1(R3) : (u(y), Uy0(
y − x

ϵ
))ϵ = 0, (u(y),

∂Uy0(
y−x

ϵ )

∂yj
)ϵ = 0, j = 1, 2, 3

}
.

By using the standard Lyapunov–Schmidt reduction as that in Theorem 1.3 in [5], the
following basic structure of the concentrated solutions can be obtained.

Proposition 1. Suppose that Q(y) satisfies (Q1) and (Q̄3). Then, there exists ϵ0 such that for all
ϵ ∈ (0, ϵ0), problem (2) has a solution uϵ of the form

uϵ(y) = Uy0(
y − yϵ

ϵ
) + ωϵ(y), (3)
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with yϵ, ωϵ ∈ Eϵ,yϵ satisfying

|yϵ − y0| = o(1), ∥ωϵ∥ϵ = o(ϵ
3
2 ). (4)

Now, we consider

Lϵ(ωϵ) =−
(
ϵ2a + ϵb

∫
R3

|∇Uy0(
y − yϵ

ϵ
)|2

)
∆ωϵ + 2ϵb

( ∫
R3

∇Uy0(
y − yϵ

ϵ
)∇ωϵ

)
∆Uy0(

y − yϵ

ϵ
)

+ Q(y)ωϵ − pUp−1
y0 (

y − yϵ

ϵ
)ωϵ.

We can rewrite Lϵ(ωϵ) as

Lϵ(ωϵ) = Rϵ(ωϵ) + Nϵ(ωϵ), (5)

where Rϵ(ωϵ) = (Q(y0)− Q(y))Uy0(
y−yϵ

ϵ ), and

Nϵ(ωϵ) ={2ϵb
( ∫

R3
∇Uy0(

y − yϵ

ϵ
)∇ωϵ

)
∆Uy0(

y − yϵ

ϵ
)

+ ϵb
∫
R3

(
2∇Uy0(

y − yϵ

ϵ
)∇ωϵ + |∇ωϵ|2

)
∆(Uy0(

y − yϵ

ϵ
) + ωϵ)}

+ {
(
Uy0(

y − yϵ

ϵ
) + ωϵ

)p − Up
y0(

y − yϵ

ϵ
)− pUp−1

y0 (
y − yϵ

ϵ
)ωϵ}

=:N2
ϵ (ωϵ) + N1

ϵ (ωϵ).

Lemma 1 (c.f. [5]). There exist ϵ1 > 0, ρ1 > 0 and γ > 0 sufficiently small such that for any
ϵ ∈ (0, ϵ1), ρ ∈ (0, ρ1),

|
∫
R3

Lϵ(ωϵ)ωϵ| ≥ γ∥ωϵ∥2
ϵ

holds uniformly with respect to yϵ ∈ Bρ(y0).

Proposition 2. It holds

∥ωϵ∥ϵ = O(ϵ
3
2+min{m1,m2,m3}) + O(ϵ

3
2 max

j=1,2,3
|yϵ,j − y0

j |
mj).

Proof. First, using the condition (Q̄3) and the Hölder inequality, for a small constant d, we
have ∣∣ ∫

Bd(yϵ)
Rϵ(ωϵ)ωϵ

∣∣ = ∣∣ ∫
Bd(yϵ)

(Q(y0)− Q(y))Uy0(
y − yϵ

ϵ
)ωϵ

∣∣
≤ C

3

∑
j=1

∫
Bd(yϵ)

|yj − y0
j |

mj Uy0(
y − yϵ

ϵ
)|ωϵ|

≤ Cϵ
3
2

3

∑
j=1

(ϵmj + |yϵ,j − y0
j |

mj)||ωϵ||ϵ,

(6)

where yj, yϵ,j, y0
j denote the jth components of y, yϵ, y0.

Moreover, by the exponential decay of Uy0(
y−yϵ

ϵ ), we can obtain that for any σ > 0,

∣∣ ∫
R3\Bd(yϵ)

Rϵ(ωϵ)ωϵ

∣∣ ≤ Cϵσ||ωϵ||ϵ. (7)

Thus, (6) and (7) give that∣∣ ∫
R3

Rϵ(ωϵ)ωϵ

∣∣ = O(ϵ
3
2+min{m1,m2,m3})||ωϵ||ϵ + O(ϵ

3
2 max

j=1,2,3
|yϵ,j − y0

j |
mj)||ωϵ||ϵ. (8)



Mathematics 2024, 12, 1462 4 of 7

On the other hand, it can be directly calculated that∣∣ ∫
R3

N1
ϵ (ωϵ)ωϵ

∣∣ ≤ C
∫
R3

|ωϵ(y)|min{p+1,3} = o(1)||ωϵ||2ϵ, (9)

∣∣ ∫
Bd(yϵ)

N2
ϵ (ωϵ)ωϵ

∣∣ = ∣∣− 3ϵb
∫
R3

∇Uy0(
y − yϵ

ϵ
)∇ωϵ(y)

∫
R3

|∇ωϵ|2 − ϵb
( ∫

R3
|∇ωϵ|2

)4∣∣
= o(1)||ωϵ||2ϵ.

(10)

So, from (5), (8)–(10) and Lemma 1, the result follows.

Proposition 3. Suppose that uϵ(y) is a positive solution of (2). Then, for any R >> 1, there exist
η > 0 and C > 0 such that

|uϵ(y)|+ |∇uϵ(y)| ≤ Ce−η
|y−yϵ |

ϵ , x ∈ R3\BRϵ(yϵ). (11)

Proof. Using the comparison principle of He and Xiang [13], we can obtain (11), which
also can be found in [5].

Let u(y) be a positive solution of (2). Then, by multiplying ∂yj u on both sides of (2)
and then integrating by parts, we have for each j = 1, 2, 3∫

R3

∂Q
∂yj

u2(y)dy = 0. (12)

Proposition 4. Let uϵ(y) be the solution of (2) with the form (3) and (4). Assume that (Q1) and
(Q̄3) hold. Then,

∥ωϵ∥ϵ = O(ϵ
3
2+min{m1,m2,m3}) and |yϵ − y0| = o(ϵ).

Proof. First, (11) and (12) tell us that for a small d > 0, there exists some σ > 0 such that∫
Bd(yϵ)

∂Q
∂yj

(
Uy0(

y − yϵ

ϵ
) + ωϵ

)2dy = O(e−
σ
ϵ ).

Also, similar to (6), we have

∣∣ ∫
Bd(yϵ)

∂Q
∂yj

Uy0(
y − yϵ

ϵ
)ωϵdy

∣∣ ≤ Cϵ
3
2 (ϵmj−1 + |yϵ,j − y0

j |
mj−1)||ωϵ||ϵ,

which implies that from Proposition 2

∣∣ ∫
Bd(yϵ)

∂Q
∂yj

U2
y0(

y − yϵ

ϵ
)dy

∣∣ = O(ϵ3(ϵmj+min{m1,m2,m3}−1 + max
j=1,2,3

|yϵ,j − y0
j |

2mj−1)). (13)

On the other hand, we also find

LHS of (13) = cjmjϵ
3
∫

B d
ϵ
(0)

|ϵyj + yϵ,j − y0
j |

mj−2(ϵyj + yϵ,j − y0
j )U

2
y0(y)dy

+ O(ϵ3(ϵm + |yϵ − y0|m)).
(14)

Thus, (13) and (14) imply that

∫
B d

ϵ
(0)

|yj +
yϵ,j − y0

j

ϵ
|mj−2(yj +

yϵ,j − y0
j

ϵ
)U2

y0(y)dy = O(ϵ) + O(ϵmj−1), (15)
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which, together with Proposition 2, gives that for j = 1, 2, 3,

|yϵ,j − y0
j | = O(ϵ) and ∥ωϵ∥ϵ = O(ϵ

3
2+min{m1,m2,m3}). (16)

Up to a subsequence, we can suppose that
|yϵ,j−y0

j |
ϵ → ỹ. Then, letting ϵ → 0 in (15), we

have ∫
R3

|yj + ỹj|mj−2(yj + ỹj)U2
y0(y)dy = 0.

This gives that ỹ = 0 since Uy0(|y|) is strictly decreasing with respect to |y|. So, |yϵ − y0| =
o(ϵ).

3. Proof of the Main Theorem

Suppose that u(j)
ϵ , j = 1, 2 are two distinct solutions derived as in Proposition 1. By

(11), u(j)
ϵ , j = 1, 2 are bounded functions in R3. Set

ηϵ =
u(1)

ϵ − u(2)
ϵ

∥u1
ϵ − u2

ϵ∥L∞(R3)

.

Then, ∥ηϵ∥L∞(R3) = 1, and similar to Propositions 6.1 and 6.2 in [5], we have

Lemma 2. There holds
∥ηϵ∥ϵ = O(ϵ

3
2 ).

Lemma 3. Letting η̄ϵ = ηϵ(ϵy + y(1)ϵ ), then there exist β j ∈ R, j = 1, 2, 3 such that, up to a

subsequence if necessary, η̄ϵ(y) → ∑3
j=1 β j

∂Uy0 (y)
∂yj

uniformly in C1(BR(0)
)

for any R > 0.

Lemma 4. Let β j be as in Lemma 3. Then, β j = 0, for j = 1, 2, 3.

Proof. Since u(1)
ϵ , u(2)

ϵ are the positive solutions of (2), the Pohazaev identity (12) gives that∫
Bd(y1

ϵ)

∂Q
∂yj

(u(1)
ϵ (y) + u(2)

ϵ (y))ηϵ(y)dy = O(e−
σ
ϵ ). (17)

On the other hand,∫
Bd(y

(1)
ϵ )

∂Q
∂yj

(u(1)
ϵ (y) + u(2)

ϵ (y))ηϵ(y)dy

= mjcj

∫
Bd(y

(1)
ϵ )

|yj − y0
j |

mj−2(yj − y0
j )(u

(1)
ϵ (y) + u(2)

ϵ (y))ηϵ(y)dy

+ O
( ∫

Bd(y
(1)
ϵ )

|y − y0|m(u(1)
ϵ (y) + u(2)

ϵ (y))ηϵ(y)dy
)
.

(18)

Note that

u(1)
ϵ (y) + u(2)

ϵ (y) = 2Uy0
(y − y(1)ϵ

ϵ

)
+ o(1)∇Uy0

(y − y(1)ϵ

ϵ

)
+ O

( 2

∑
j=1

|ω(j)
ϵ |

)
. (19)
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Then, it holds∫
Bd(y

(1)
ϵ )

|yj − y0
j |

mj−2(yj − y0
j )(u

(1)
ϵ (y) + u(2)

ϵ (y))ηϵ(y)dy

= 2
∫

Bd(y
(1)
ϵ )

|yj − y0
j |

mj−2(yj − y0
j )Uy0

(y − y(1)ϵ

ϵ

)
ηϵ(y)dy

+ o(1)
∫

Bd(y
(1)
ϵ )

|yj − y0
j |

mj−2(yj − y0
j )∇Uy0

(y − y(1)ϵ

ϵ

)
ηϵ(y)dy

+ O
( ∫

Bd(y1
ϵ)
|yj − y0

j |
mj−1(|ω(1)

ϵ (y)|+ |ω(2)
ϵ (y)|)ηϵ(y)dy

)
.

(20)

Now, since
∂Uy0 (y)

∂yj
is an odd function with respect to yj and an even function with respect

to yi for i ̸= j, using Lemma 3, we deduce that

∫
Bd(y

(1)
ϵ )

|yj − y0
j |

mj−2(yj − y0
j )Uy0

(y − y(1)ϵ

ϵ

)
ηϵ(y)dy

= ϵmj+2
∫

B d
ϵ
(0)

|yj +
y(1)ϵ,j − y0

j

ϵ
|mj−2(yj +

y(1)ϵ,j − y0
j

ϵ
)Uy0(y)

( 3

∑
j=1

β j
∂Uy0(y)

∂yj
+ o(1)

)
dy

= β jϵ
mj+2

∫
R3

|yj|mj−2yjUy0(y)
∂Uy0(y)

∂yj
dy + o(ϵmj+2),

(21)

and similarly,

∫
Bd(y

(1)
ϵ )

|yj − y0
j |

mj−2(yj − y0
j )∇Uy0

(y − y(1)ϵ

ϵ

)
ηϵ(y)dy = O(ϵmj+2). (22)

Also, Proposition 4 gives that∫
Bd(y

(1)
ϵ )

|yj − y0
j |

mj−1(|ω(1)
ϵ (y)|+ |ω(2)

ϵ (y)|)ηϵ(y)dy

= O(ϵmj−1(∥ω
(1)
ϵ ∥ϵ + ∥ω

(2)
ϵ ∥ϵ)∥ηϵ∥ϵ)

= O(ϵmj+2+min{m1,m2,m3}).

(23)

Moreover, with the same argument, we obtain∫
Bd(y

(1)
ϵ )

|y − y0|m(u(1)
ϵ (y) + u(2)

ϵ (y))ηϵ(y)dy = O(ϵm+3). (24)

Then, from (20)–(24), it holds

LHS of (18) = 2cjmjβ jϵ
mj+2

∫
R3

|yj|mj−2yjUy0(y)
∂Uy0(y)

∂yj
dy + o(ϵmj+2). (25)

Thus, (17) and (25) imply that β j = 0.

Proof of Theorem 2. Suppose that u(j)
ϵ , j = 1, 2 are two distinct solutions derived as in

Proposition 1; then, ∥ηϵ∥L∞(R3) = 1 by assumption. But it follows from Lemmas 3 and 4
and the maximum principle that ηϵ(y) = 0. We reach a contradiction by constructing
ηϵ. We find u(1)

ϵ = u(1)
ϵ , which proves that problem (2) has only one positive single-peak

solution if ϵ is small enough.
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