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Abstract: Multi-Camera Multi-Vehicle Tracking (MCMVT) is a critical task in Intelligent Transporta-
tion Systems (ITS). Differently to in urban environments, challenges in highway tunnel MCMVT
arise from the changing target scales as vehicles traverse the narrow tunnels, intense light exposure
within the tunnels, high similarity in vehicle appearances, and overlapping camera fields of view,
making highway MCMVT more challenging. This paper presents an MCMVT system tailored for
highway tunnel roads incorporating road topology structures and the overlapping camera fields
of view. The system integrates a Cascade Multi-Level Multi-Target Tracking strategy (CMLM), a
trajectory refinement method (HTCF) based on road topology structures, and a spatio-temporal
constraint module (HSTC) considering highway entry–exit flow in overlapping fields of view. The
CMLM strategy exploits phased vehicle movements within the camera’s fields of view, addressing
such challenges as those presented by fast-moving vehicles and appearance variations in long tunnels.
The HTCF method filters static traffic signs in the tunnel, compensating for detector imperfections
and mitigating the strong lighting effects caused by the tunnel lighting. The HSTC module incor-
porates spatio-temporal constraints designed for accurate inter-camera trajectory matching within
overlapping fields of view. Experiments on the proposed Highway Surveillance Traffic (HST) dataset
and CityFlow dataset validate the system’s effectiveness and robustness, achieving an IDF1 score of
81.20% for the HST dataset.

Keywords: multi-camera multi-vehicle tracking; ReID; camera overlapping fields of view; highway
tunnel scenarios; topology modeling

MSC: 68T45

1. Introduction

With the rapid development of Intelligent Transportation Systems (ITS) and the in-
creasing demand for digital traffic management platforms, Multi-Camera Multi-Vehicle
Tracking (MCMVT) [1–8] has attracted widespread attention in recent years. Applications
similar to MCMVT can assist in modern traffic flow prediction and analysis. The MCMVT
task in highway scenarios aims to track the trajectory of each vehicle target across multiple
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cameras. Figure 1 illustrates the complete tracking chain of a vehicle’s identity under
different cameras in a highway tunnel scenario.

Figure 1. Illustration of Multi-Camera Multi-Vehicle Tracking (MCMVT) task. The second row is the
camera position distribution map in the scene of the Tongpan Mountain Highway Tunnel. Vehicles
with IDs 5, 6, 7, 8, and 9 are correctly tracked by multiple cameras, and a visualization tracking chain
is presented for the vehicle with ID 8. “C00X” represents the camera ID.

The Multi-Camera Multi-Vehicle Tracking task typically consists of four sub-tasks:
vehicle detection, vehicle ReID, single-camera multi-object tracking, and cross-camera
trajectory association. The general workflow can be summarized as follows: First, the
vehicle detection module outputs the coordinates and categories of vehicles in each frame,
and the ReID module extracts the appearance features of the vehicles. Then, based on the
results of vehicle detection and ReID, the Single-Camera Multi-Target Tracking (SCMT)
module generates candidate trajectories for the vehicles under each camera. At last, the
cross-camera matching module utilizes information such as road topology structures, adja-
cent camera field types, and vehicle transition times to match these candidate trajectories
across different cameras. This process associates vehicle targets with global IDs, obtaining
the final cross-camera trajectories for vehicles.

The primary challenges [9–11] of the MCMVT task in highway tunnel scenarios, as
visualized in Figure 2, include:

1. Due to the large camera field of view, the scale of vehicle targets changes as they travel
through narrow tunnels. In the near field of view, vehicle confidence is high and there
is no occlusion; in the middle field of view, confidence is relatively high and vehicles
begin to occlude each other; in the far field of view, confidence is low and occlusion is
severe. During long-term tracking, there is a risk of fragmentation and loss of vehicle
trajectories, especially for large trucks;

2. The appearance of flares on both sides of the tunnel walls may cause glare in the
camera field of view. Due to intense lighting within the highway tunnel, the camera
faces difficulty accurately capturing the features of various vehicles, especially when
their appearances are similar. This situation may result in false positives, missing, and
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other issues, affecting the effectiveness of target detection and tracking. Consequently,
it impacts the accuracy and robustness of the overall MCMVT;

3. According to the road topology structures of each camera field of view, within the
narrow and lengthy highway tunnel, the camera field of view is larger near the
camera and smaller in the distance. Additionally, due to the highway movement of
vehicles, they appear to move rapidly in the near field of each camera view and have
a longer transition time in the distance. The lower resolution in the distant field is
not conducive to effective vehicle detection and tracking. Furthermore, in order to
provide more field of view coverage and obtain more continuous target trajectories
in high-speed tunnels, the distance between adjacent cameras is usually shortened
to provide higher-resolution data. This results in the same vehicle identity existing
within the field of view of a single camera. It takes a long time, but it takes a relatively
short time to appear in the next camera field of view.

(a) (b)

(c) (d)
Figure 2. Illustration of challenges in MCMVT for highways. (a) represents the target scale variation,
in which the yellow, orange and red bboxes respectively represent no occlusion at high scores, slight
occlusion at high scores and severe occlusion at low scores; (b,d) represents intense lighting in
the tunnel; (c) illustrates vehicles within green boxes being captured by adjacent cameras at the
same time.

In this paper, we propose a Multi-Camera Multi-Vehicle Tracking (MCMVT) system
designed for highway tunnel scenarios, utilizing road topology structures and spatio-
temporal prior information to alleviate these challenges. The workflow of our proposed
tracking system is illustrated in Figure 3. Given a sequence of videos from cameras, we
first employ Swin Transformer Detection to detect all vehicles. Subsequently, the detected
vehicle images are batched and input into the ReID module to extract 2048-dimensional
appearance features. Based on the detected vehicle bounding boxes (BBoxs) and vehicle
appearance features, we adopt a Cascade Multi-Level Multi-Target Tracking strategy in
the Single-Camera Multi-Target Tracking module to generate candidate trajectories within
each sub-camera and cross-match them. Finally, due to the presence of static traffic signs
on both sides of the highway tunnel and a small number of false-positive detections from
the detector, before the cross-camera association stage, we perform scene modeling based
on the road topology structures. We filter the original vehicle tracking trajectories for each
camera based on highway entry–exit flow, obtaining refined cross-camera candidate vehicle
matching trajectories. These refined trajectories are then input into the spatio-temporal
constraint module based on the overlapping field of view for highway entry–exit flow,
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enabling cross-camera matching in overlapping regions. A similarity distance matrix is
constructed, and k-reciprocal nearest-neighbors reranking is also applied to optimize the
similarity matrix based on the size of similarities for vehicle matching pairs. Finally, local
trajectory clustering is performed for trajectories within connected regions of adjacent
camera entry–exit flow, followed by hierarchical clustering at the global trajectory ID level
for the camera group. Notably, the cross-camera trajectory matching module takes into
account road topology structures, vehicle travel time, vehicle entry–exit flow, and camera
field of view constraints to reduce the ReID search space and accelerate the matching speed.

Figure 3. The pipeline of our MCMVT system. All vehicle objects are first detected using the detector
to obtain the BBox of the vehicle from each frame of each camera video and then the ReID module
extracts the corresponding appearance features of the vehicle BBox. The SCMT module uses the BBox
and ReID feature for each tracking target to generate all trajectory candidates for every single camera.
Finally, the ICA module comprehensively considers road topology structures and spatio-temporal
information to match all candidate trajectories across all cameras.

In summary, we make the following contributions in this paper:

• Introduce a Cascade Multi-Level Multi-Target Tracking strategy, grouping vehicles
based on the scores of detection boxes. Prioritizing cascade matching helps minimize
uncertainties introduced by occlusion. The multi-level association process, considering
the changing scales of targets as vehicles traverse narrow tunnels, maximizes the
advantages of high-quality appearance features from high-scoring boxes in the near
field. This strategy effectively associates and tracks both small target vehicles in the
distant field and large target vehicles in the tunnel;

• Implement a scene modeling and candidate trajectory filtering module based on
road topology structures. This module defines predefined sub-regions for each field
of view based on highway entry–exit flow, allowing vehicles to transition through
ordered regions. This helps alleviate motion blur and detector false positives caused
by static traffic signs on both sides of the tunnel. The module aims to filter and obtain
reliable cross-camera candidate matching trajectories and improve the performance of
Multi-Camera Multi-Vehicle Tracking;

• Design a spatio-temporal constraint module tailored for highway overlapping fields of
view. Building upon high-quality cross-camera candidate vehicle tracking trajectories,
this module reduces the spatial matching domain, identifying effective matching
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segments within the long, narrow tunnel for each camera field of view. It combines
highway entry–exit flow spatio-temporal masks to rationalize the ordered transition
time sequence of vehicles. This significantly reduces the ReID search space during
cross-matching and accelerates the matching process. The result is the generation of
complete cross-camera vehicle tracking chains.

The rest of the paper is organized as follows: The Related Work section provides an
overview of related work. The Method section details the tracking system proposed in this
paper. The Experiment section presents comparative and ablation experiments on both
our self-created Highway Surveillance Traffic (HST) dataset and the CityFlow dataset to
showcase the effectiveness of our approach. Finally, the Conclusions section concludes
the paper.

2. Related Work
2.1. Vehicle Detection

Object detection, as a fundamental task in computer vision, utilizes bounding boxes
to locate the presence of objects in an image and classify the identified objects. Vehicle
detection is a specialized branch of object detection that focuses specifically on identifying
vehicles in images or videos. Based on different backbone networks, existing object detec-
tors can be categorized into two branches: CNN-based detectors [12–21] and transformer-
based detectors [22–25]. Due to the success of Convolutional Neural Networks, detectors
based on CNNs have significantly progressed and are generally divided into two main
types. One type is the one-stage detector, which balances speed and accuracy for real-time
operation. The YOLO series [12–16,26–28] is the representative; YOLO attempts to build a
fast real-time object detector by treating the detection task as a regression problem. The
other is the two-stage method, with the R-CNN series [17–20] being a representative work
that balances prediction accuracy and inference performance. However, these are time
consuming. Additionally, detection methods can be further classified into anchor-based and
anchor-free approaches. Another branch involves detectors based on transformers, such as
DETR [25] and the Swin Transformer [22]. The transformer structure, utilizing self-attention
mechanisms to learn sequences, introduces visual transformers. By treating an image as
a sequence of patches, transformer-based detectors achieve competitive performance in
terms of object detection benchmarks.

2.2. Re-Identification

As an essential component of vehicle Multi-Camera Multi-Target Tracking in smart city
applications, ReID aims to retrieve the same vehicle captured by different cameras. Vehicle
ReID not only assists in the intra-camera tracking process but also plays an irreplaceable
role in inter-camera tracking. CNN-based ReID methods have received extensive attention
and demonstrate powerful feature representation capabilities. Much research has focused
on designing effective loss functions, with representative ones including cross-entropy
loss [29], triplet loss [30], and cyclic loss [31]. Triplet loss [30] treats the ReID training
process as a retrieval ranking problem, aiming to minimize the distance between positive
pairs and maximize the distance between negative pairs. Sampling strategies and data
generation methods for learning discriminative feature representations, as well as weakly
supervised detection and synthetic data [32], have proven beneficial, expanding the training
data and reducing the receptive field. Additionally, some post-processing techniques
have been proposed to further optimize recognition results, such as model ensemble [33],
reranking [34], and image-to-trajectory retrieval [35].

With the development of transformer-based visual tasks, vehicle re-identification
has seen significant improvements. However, due to the high cost of data annotation
and limited labeled data, CNN-based ReID methods face performance limitations. To
address this issue, Generative Adversarial Networks (GAN) [36] are employed in the
ReID training process to synthesize more vehicle images for robust vehicle representation.
GAN transfer styles from the source domain to the target domain and generate samples
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conditioned on specific attributes (e.g., color, orientation, or occlusion). In addition, a
vehicle re-identification task based on a transformer [37] has achieved good performance.

2.3. Single-Camera Multi-Target Tracking

SCMT aims to associate the same targets in video sequences and connect each tar-
get from an individual camera into a tracking chain with a unique identity. Classical
tracking methods are mainly based on probability theory, with Kalman filtering and par-
ticle filters laying a solid mathematical foundation for tracking [38] problems. Modern
SCMT trackers can be divided into the tracking-by-detection [39–45] paradigm and joint-
detection-tracking [46,47] paradigm, with the majority of SCMT algorithms following the
tracking-by-detection paradigm. Tracking-by-detection methods, prevalent in SCMT tasks,
involve obtaining multiple detection boxes in each frame using an effective detector and
then associating them based on appearance and motion cues. With the gradual improve-
ment of object detection technology, tracking-by-detection methods have dominated SCMT
tasks over the years. SORT [39] employs the Kalman filter algorithm for motion-based
multi-object tracking based on observations from a deep detection model. DeepSORT [40]
introduces deep visual features into the SORT framework for object association, using an
independent ReID model to reduce identity switches. BoT-SORT [48] adopts a strategy
of IoU–ReID fusion, which further improves IDF1 and MOTA by combining IoU and
cosine distance matrices with motion and appearance information. Recently, several joint-
detection-tracking methods have been designed to integrate appearance embeddings or
motion predictions into the detection framework and train both tasks within the same
framework. JDE [46] uses weight-sharing CNNs for object detection and ReID feature
extraction. FairMOT [45] delves into the differences between detection and ReID tasks.
While joint trackers achieve comparable performance at a lower computational cost, they
face the challenge of reduced tracking performance due to competition between different
components. In addition, recent applications of transformer-based tracking, along with
ECO [49], have shown success. TransMOT [50] utilizes graph transformers for spatio-
temporal modeling. Xu et al. [11] partially address the issue of object detection and tracking
loss caused by specific environmental conditions by employing high recall and static object
filtering methods. Rios et al. [10] demonstrate that integrating motion information as sup-
plementary data alongside appearance-based cues extracted in Haar feature form relative
to given detection windows can enhance the overall performance of multi-camera tracking
systems. Wang et al. [8] contributed to tracking by leveraging MedianFlow for robust
vehicle localization under occlusion and integrating ECO for improved predictions during
fast or sharp movements. Furthermore, leveraging stage-wise differences in vehicle motion
and employing hierarchical matching have been found to optimize tracking performance.
The success of the latest SORT-like [41–43,48] frameworks suggests that, in terms of tracking
accuracy, the tracking-by-detection paradigm remains the optimal solution.

2.4. Inter-Camera Association

The task of Multi-Camera Multi-Vehicle Tracking is to link tracking chains from
different cameras. Based on the results obtained from the three modules mentioned
above, inter-camera association can be considered as a trajectory matching or trajectory
retrieval problem. Many previous works [1–4,6–8] have treated cross-camera matching as
a trajectory clustering problem. Recently, many studies have found that traffic rules and
spatio-temporal constraints can serve as prior knowledge for filtering candidate trajectories,
significantly reducing the search space and thereby greatly improving the accuracy of
vehicle ReID. Ye et al. [2] associated all candidate trajectories between two successive
cameras using the Box-Grained Reranking Matching algorithm. Yao et al. [3] predefined
entry/exit zones and proposed a zone-gate- and time-decay-based matching mechanism
to adjust the original appearance matrix. Liu et al. [1] introduced inter-camera sub-
clustering to collect potential trajectory pairs from two cameras and adopted partitioning
for intersections to exclude vehicles leaving the main road and to resolve conflicts in
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the direction of travel. He et al. [51] performed matching of candidate trajectories from
adjacent cameras based on the overlap of camera fields of view. In this paper, we impose
spatio-temporal constraints on candidate trajectory pairs for overlapping regions using a
time mask based on the flow of vehicles entering and exiting the highway tunnel. Finally,
hierarchical agglomerative clustering is applied to assign global trajectory IDs.

3. Method

This section introduces detailed information about our Multi-Camera Multi-Vehicle
Tracking system. As shown in Figure 2, our system comprises four stages, vehicle de-
tection, vehicle re-identification, Single-Camera Multi-Vehicle Tracking, and inter-camera
association. The detailed process will be described below.

3.1. Vehicle Detection

Vehicle detection is a fundamental and crucial module in Multi-Camera Multi-Vehicle
Tracking, and reliable vehicle detection is a prerequisite for such tracking. In a highway
tunnel scenario, we only need to focus on two categories related to vehicles: cars and
trucks. The challenges in the scene arise from dim lighting inside the highway tunnel and
motion blur caused by the highway movement of vehicles. To mitigate the impact of these
issues and achieve optimal performance in obtaining bounding boxes for each frame, we
employ a state-of-the-art object detection framework, Swin Transformer Detection [22]. This
framework can generate multi-scale feature maps to search for fine-grained features, better
concentrating on the regions of interest for detecting vehicles. Simultaneously, to avoid the
same target being detected multiple times in different categories, we apply Non-Maximum
Suppression (NMS) to all detected targets. All detected BBoxes in the same video frame are
filtered based on Intersection over Union (IoU) and confidence scores to prevent duplicate
detection boxes. Finally, the cropped images of the detected vehicle BBoxes for each frame
are sent to the next stage to extract ReID features.

3.2. Vehicle Re-Identification

Vehicle re-identification is a fundamental task in Multi-Camera Multi-Vehicle Tracking.
To extract robust and discriminative vehicle appearance features, common networks such
as ResNet-101-IBN, ResNeXt-101-IBN, ResNest101, and Se-ResNet101-IBN are used as
backbone networks for ReID training. Given the high similarity in brand, model, and color
among vehicles in cross-camera vehicle tracking tasks, as well as the significant visual
appearance variations caused by different cameras, lighting conditions, and occlusions
inside the tunnel, it is crucial to reduce the intra-class distance to keep vehicles with
similar appearance features close in the feature space. Simultaneously, expanding the
inter-class distance ensures that vehicles with significantly different appearances remain
at a considerable distance. To achieve this, a combination of cross-entropy loss [29] and
triplet loss [30] functions is employed.

Specifically, we use ResNet-101-IBN [52,53], ResNext-101-IBN [53], ResNest101 [54],
and Se-ResNet101-IBN [53] as backbone networks for training ReID. These networks are
pre-trained on 384 × 384 input images, and the stride of the last pooling layer is set to 1 to
retain more details of the vehicles, obtaining fine-grained features. The final result is a 2048-
dimensional average feature vector representing the vehicle. Additionally, extensive data
augmentation is applied during training. The ReID network is trained using a combination
of cross-entropy loss and triplet loss. The loss function can be expressed as:

Lreid = Lcls + αLtrp (1)

where Lcls represents softmax cross-entropy loss, Ltrp represents triplet loss, and α repre-
sents the balance weight.

Lcls = − 1
N

N

∑
i=1

C

∑
j=1

yij log (ŷij) (2)
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where N is the number of training samples per batch, C is the number of vehicle identities,
y is the label of the input image, ŷ is the predicted probability.

Ltrp =
N

∑
i=1

max(m + dist( f a
i , f n

i )− dist( f a
i , f p

i ), 0) (3)

where fa is the feature representation of the anchor sample, fp is the feature representation
of the positive sample, fn is the feature representation of the negative sample, m is the
margin, and dist represents the distance between two features.

3.3. Single-Camera Multi-Target Tracking

The multi-object tracking still focuses on following the tracking-by-detection paradigm,
which inputs vehicle detection boxes and 2048-dimensional appearance features into the
Single-Camera Multi-Object Tracking stage. Target objects are associated in each camera’s
video frames so that single-camera vehicle tracking trajectories can be obtained. The scale
variation of targets caused by the near-large far-small field of view in high-speed scene
cameras results in challenges. When vehicles just enter the camera’s field of view and are
within the near field of view of the camera, the quality of vehicle appearance features is
high and occlusion is not severe, facilitating tracking. However, as vehicles drive away to
the far end of narrow tunnels, the size of vehicle targets gradually decreases, the detection
confidence decreases, and there are track fragmentations caused by occlusions by large
vehicles. The scale variation of targets during the vehicle driving process is shown in
Figure 4.

(a) (b) (c)

Figure 4. Illustration of target scale variation of vehicles in near, medium, and far field of view.
In (a–c), the vehicles highlighted in red boxes represent high confidence with no occlusion, high
confidence with slight occlusion, and low confidence with severe occlusion, respectively.

Based on the scale variation of vehicles during their driving process, we divide the
road segment into near, medium, and far field of view regions, as shown in Figure 5, taking
C004 as an example.

(a) Original image. (b) CMLM region map.

Figure 5. Multi-level field of view illustration. The CMLM region map indicates different intervals
based on the confidence of the detection boxes, with red, blue, and green representing near, medium,
and far field of view regions, respectively, and their confidence thresholds are 0.5, 0.3, and 0.1.
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Therefore, we introduce a Cascade Multi-Level Multi-Object Tracking strategy, fully
exploiting the advantages of high- and low-confidence vehicle detection boxes in the near-
medium field of view to associate and explore potential targets of low-confidence detection
boxes in the distant field of view. The matching process is illustrated in Figure 6.

Figure 6. Cascade Multi-Level Multi-Target Tracking association.

Based on the confidence threshold of vehicle detection boxes in the field of view,
the vehicle detection boxes are divided into two groups: a high-confidence group with a
threshold of 0.3 and a low-confidence group with a threshold of 0.1. Similarity matching is
performed on vehicles in the high-confidence group based on their high-quality appearance
features, while IoU matching is applied to the low-confidence group. The age of the
vehicle tracker is influenced by various factors such as the type of field of view and vehicle
occlusion. When a vehicle enters the current camera’s field of view, the vehicle tracker
is initialized with an age of 1, indicating the initiation of a new vehicle trajectory. As the
vehicle target travels to the segment under the field of view of the camera, where the
confidence of vehicle detection remains high, occasional mutual occlusion of vehicles may
occur. During this period, the age of the tracker gradually increases. An age greater than
1 indicates that the tracker corresponds to an existing vehicle trajectory, while a smaller
age reflects the occurrence of occlusion compared to initialization and tracking. Due to
increased uncertainty caused by occlusion during long-term tracking, priority is given to
trackers with smaller ages when comparing detection boxes. When the vehicle leaves the
camera’s field of view and moves to a distant section of the road, the tracker’s age is larger,
and the confidence of vehicle detection is lower. During this period, the dynamic changes
in tracker age are accompanied by the entry of large vehicles and occlusion scenarios.

First, the trackers are initialized, and, based on the appearance features of high-
confidence vehicle detection boxes in the near-medium field of view, i.e., Figure 4a,b,
matching is performed. Successful matching updates the tracker via Kalman filtering. Next,
for the medium field of view, due to occlusion between vehicles and the glare effect in the
central field of view, first-level unmatched detection boxes and trajectories still enter the
second-level association based on high-quality appearance features. Then, for unmatched
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detection boxes at this level (e.g., due to occlusion or low appearance similarity caused
by lighting changes), they are matched with trackers with ages greater than 1 and smaller
ages in the third-level matching. Successful matching updates the tracker. At this point,
the advantage of high-quality detection boxes in the near-medium field of view has been
fully utilized. Finally, unmatched trajectories in the third-level association (e.g., missed
detections, long-term occlusion, or leaving the field of view) are sent to the fourth-level
association with low-confidence detection boxes in the distant field of view, i.e., Figure 4c,
based on the IoU to enhance the stability of the tracker.

Subsequently, we obtain the trajectory for each vehicle under a single camera, and, for
each tracklet, generate a set of vectors:

Tid = [ti, bi, fi] (4)

where Tid is the corresponding tracklet’s id, ti is the timestamp, bi is the corresponding
BBox information, and fi is the associated 2048-dimensional ReID feature.

Figure 7 illustrates the visual tracking results of introducing the Cascade Multi-Level
Multi-Target Tracking strategy under a single camera. It is evident that this strategy plays
a crucial role in maintaining the coherence of tracking trajectories for large vehicles and
improves recognition recall rates.

(a) (b)
Figure 7. Illustration of vehicle tracking visualization before and after introduction of CMLM under
the C004 camera. (a) represents before introducing CMLM, there was a situation of trajectory loss for
large vehicles; (b) represents vehicle with id 19 is tracked correctly after introducing CMLM.

3.4. Inter-Camera Association

The association between adjacent cameras is the final but crucial module in the Multi-
Camera Multi-Vehicle Tracking task. After obtaining trajectories generated in the Single-
Camera Multi-Vehicle Tracking stage, inter-camera association links all vehicle trajectories
with the same ID through vehicle appearance features, road topology structures, and
vehicle spatio-temporal information. Considering the characteristics of the highway tunnel
section, where overtaking is not considered and vehicles transition in a first-in, first-out
manner, various factors are taken into account in this section. We model the scene for
the Multi-Camera Multi-Vehicle Tracking task for the highway tunnel road, taking into
consideration road topology structures, highway vehicle inflow and outflow, and camera
field of view types to guide the cross-camera vehicle trajectory association matching. The
process of inter-camera association is illustrated in Figure 8: (1) filtering and refining the
raw trajectories generated in the Single-Camera Multi-Vehicle Tracking stage to obtain
genuine candidate cross-matching trajectories; (2) sending the candidate cross-matching
trajectories to the overlapped field of view Highway Spatio-Temporal Constraint module,
calculating similarity distance matrices for trajectories in overlapping views of adjacent
cameras, and combining the spatio-temporal mask constraints of highway entry–exit flow to
reduce the search space and accelerate matching; (3) performing k-reciprocal reranking [34]
for fine-grained updating of the similarity distance matrix; (4) hierarchically clustering
based on the similarity matrix to assign global IDs, obtaining cross-camera vehicle tracking
chain trajectories.
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Figure 8. Cross-camera candidate trajectories matching process. The red-boxed image represents
single-camera entry and exit trajectory processing, the yellow-boxed module represents the candidate
trajectory filtering, while the blue-boxed image and green-boxed stage respectively represent the
spatio-temporal constraint module for overlapping fields of view and trajectory clustering across
adjacent cameras.

3.4.1. Highway Entry–Exit Flow

This system models the scene based on the road topology structures of each camera’s
road segment and obtains the highway vehicle inflow and outflow according to the prede-
fined road entry area (in blue) and exit area (in green), as shown in Figure 9, using C005
as an example. For adjacent cameras, the current entry area connects to the exit area of
the previous camera (C004), where vehicles leave the current exit area and enter the entry
area of the next camera (C006). For each vehicle trajectory under a single camera, we can
obtain the transition region [Zin, Zout] for the current camera and their respective entry–exit
times [ts, te].

(a) C004 (b) C005 (c) C006
Figure 9. Illustration of zones in highway entry–exit flow. Blue represents driving into the area; green
represents driving out of the field of view.

3.4.2. Highway Tracklets Candidate Filter

Due to the strong light caused by static traffic signs on the roadside of the highway
and the headlights in the closed tunnel, as well as the imperfections of the vehicle detec-
tors, single-camera vehicle original tracking trajectories may contain a few false-positive
detections and errors. These incorrect trajectories will ultimately affect the matching of
cross-camera candidate trajectories. Therefore, it is necessary to filter and refine the original
trajectories from a single camera to obtain refined candidate cross-matching tracking tra-
jectories. Building upon Figure 9, further distinguishing the candidate trajectory filtering
area (white and red) from the highway entry–exit flow area (blue and green) is shown in
Figure 10. Additionally, there is a situation where the presence of a tunnel height limit
causes the trajectories of generally captured vehicles to be fragmented due to intermittent
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obstruction by nearby large vehicles during their complete journey in the tunnel. We need
to appropriately split these vehicle trajectories based on the inflow and outflow. When
the time not capturing the current vehicle exceeds a predefined threshold, assuming an
obstruction has occurred, the camera captures the driving area information of the vehicle
from the previous frame, starts splitting the trajectory from the vehicle’s entry to the onset
of the obstruction, and continues until the obstruction ends. The camera then captures the
current vehicle’s driving area information, restoring the tracking trajectory and obtaining
the transition region [Zin, Zout] and transition time [ts, te] for this vehicle during the ob-
struction phase. Finally, we obtain the cross-camera candidate matching trajectories for
cross-camera matching.

Figure 10. Highway tunnel for C005. Blue and green represent the high-speed incoming and outgoing
flows in Figure 9b, respectively, while red and white represent the filtering area (static traffic signs
and strong light false detection).

3.4.3. Highway Spatio-Temporal Constraint

There is a large overlap between adjacent cameras, as shown in Figure 11. After obtain-
ing the candidate matching trajectories for cross-camera vehicles, cross-camera trajectory
matching is performed based on spatio-temporal prior information constraints within the
predefined exit and entry areas of adjacent sub-cameras. Matching pairs are successively
searched between adjacent cameras, and, finally, all matching pairs are consolidated across
all cameras. The similarity distance matrix for cross-camera candidate matching trajectories
is calculated based on the flow of vehicles entering and leaving. The formula for the
similarity distance matrix is as follows:

S =


cos( f N

t1 , f N+1
t1 ) · · · cos( f N

t1 , f N+1
tj ) · · · cos( f N

t1 , f N+1
tJ )

· · · · · · · · ·
cos( f N

ti , f N+1
t1 ) · · · cos( f N

ti , f N+1
tj ) · · · cos( f N

ti , f N+1
tJ )

· · · · · · · · ·
cos( f N

tI , f N+1
t1 ) · · · cos( f N

tI , f N+1
tj ) · · · cos( f N

tI , f N+1
tJ )

 (5)

where f N
ti represents the trajectory features for cross-camera matching using the average

features of all frames. I represents the total number of tracklets in camera N, J represents
the total number of tracklets in camera N + 1, N is the ID of the camera, with sequence
numbers ranging from C001 to C005, and cos( f N

ti , f N+1
tj ) indicates the cosine similarity

between trajectory tN
i and trajectory tN+1

j .
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Figure 11. The analysis diagram of overlapping fields of view of adjacent cameras in HST dataset
scene S06.

To reduce the search space, we use spatio-temporal masks based on the highway
entry–exit flow, ensuring that the travel time of vehicles under adjacent cameras falls within
a reasonable interval. Specifically, as shown in Table 1, according to the spatio-temporal
mask table for highway flow, the time when a vehicle from the previous camera appears in
the exit area should be earlier than the time when the vehicle is in the entry area of the next
camera. For example, if the time a vehicle exits C005 is greater than the time it enters C006,
it is considered a conflict and cannot be matched. By using spatio-temporal masks based on
highway flow, the search space is significantly reduced, accelerating the matching process.
Additionally, k-reciprocal reranking is used for fine-grained optimization of the similarity
distance matrix. The matrix is reranked based on the magnitude of similarity, placing
vehicles with higher similarity to the target vehicle in the front positions and keeping those
with lower similarity at a greater distance, further reducing the ReID search space.

Table 1. Overlapping field of view highway entry–exit flow mask table. When Ti and T j meet the
three conditions of camera and time at the same time, Ti and T j fail to match.

Camera Time Conflict

ci < cj ti
s > [ts +

di
v̄ ]

j

ti
s > tj

e

ti
e > tj

e

True
(Ti, T j)

c represents the camera ID, ti
s and ti

e are the times when the trajectory enters and
exits the current camera i, tj

e is the time when the trajectory leaves the current camera j, di
(i = 1,2,3,4,5) is the distance between adjacent cameras, and [ts +

di
v̄ ]

j represents the time
when the trajectory enters camera j, specifically, the time when it enters the overlapping
field of view of cameras i and j.

Finally, based on the fine-grained similarity distance matrix, hierarchical clustering is
performed on the candidate trajectories under adjacent cameras. The results are further
integrated into a group clustering across all cameras to assign the same global trajectory
ID, resulting in cross-camera vehicle tracking trajectories. The matching algorithm for
cross-camera tracking is described in Algorithm 1.
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Algorithm 1 Inter-Camera Association

Require: The distance d between each camera di(i = 1,2,3,4,5), vehicle transition time
under each camera [ts, te], the average speed v̄, the average time t̄ for the vehicle to enter
the current camera N and appear in the next camera N + 1, tracking trajectory tN

x &tN+1
y .

Average characteristics of trajectory f N
ti (N = 1,2,3,4,5).

Ensure matching trajectory across cameras
1. CAM_DIST = A, A = AT ;
2. for each camera N, N belongs to [1, 5] do
3. ∆t = te − t̄, Di = v̄ · ∆t. (Overlapping-Fovs Dist);
4. end for
5. for each trajectory transition time [ts, te] do
6. Get overlapping-fovs transition time[ts +

di
v̄ , te];

7. end for
8. for each trajectory tN

x , tN+1
y do

9. Judge whether tN
x , tN+1

y , conflict based on the spatio-temporal mask of highway
entry-exit flow;

10. end for
11. for rest trajectory tN

x , tN+1
y do

12. According on the mean feature f N
ti of the trajectory to calculate the cosine

similarity cos( f N
ti , f N+1

tj ) between a and b;
13. Calculate similarity distance matrix sim(tN

x , tN+1
y );

14. end for
15. K-reciprocal nearest reranking to refine Ssim;
16. Hierarchical clustering:
17. (1) Set a distance threshold of 0.5 within a single camera for tracklets clustering;
18. (2) Set a distance threshold of 0.9 between adjacent cameras and select the

tracklets pairs with the smallest distance for clustering;
19. Assign same global ID of trajectory;
20. return Visual tracking chain

4. Experiment
4.1. Datasets

Our cross-camera multi-vehicle tracking system is evaluated using the S06 scene
of the Highway Surveillance Traffic (HST) dataset and the S02 scene of the CityFlow
dataset. The HST dataset was meticulously curated and gathered by our team in the
Tongpanshan Tunnel section of the Hangzhou–Shaoxing–Taizhou Highway in Shaoxing,
Zhejiang Province, China. The videos, captured by six cameras (C001, C002, C003, C004,
C005, C006), feature a resolution of 1920 × 1080 pixels. They encompass a highway tunnel
road divided into six segments (340, 460, 580, 700, 820, 940), providing approximately 3.03 h
(181.8 min) of traffic videos. The CityFlow [55] dataset, on the other hand, is the largest
and most representative Multi-Camera Multi-Vehicle Tracking dataset captured in a real
urban scenario. It comprises videos from 46 cameras at 16 intersections in a medium-sized
U.S. city: 3.58 h (215.03 min) of traffic videos covering six different road scenes. For our
evaluation, we select scenario S02 from the CityFlow dataset. The experimental results for
these datasets demonstrate the effectiveness and robustness of the proposed method.

4.2. Evaluation Metrics

For the Multi-Camera Multi-Vehicle Tracking task, we utilize IDF1, IDP, IDR, and
MOTA as evaluation metrics. IDF1 measures the ratio of correctly identified detections
to the ground truth and considers the average number of computed detections. MOTA
comprehensively takes into account factors such as false positives, false negatives, trajectory
switches, miss rate, and false alarm rate, providing a holistic assessment of the system’s
overall accuracy and reliability in the Multi-Camera Multi-Vehicle Tracking (MCMVT) task.
The specific formulas for IDF1, IDP, IDR, and MOTA are as follows:

IDP =
IDTP

IDTP + IDFP
(6)
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IDR =
IDTP

IDTP + IDFN
(7)

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(8)

MOTA = 1 − FN + FP + IDSW
GT

(9)

where IDTP represents the number of true-positive identities, IDFP is the number of false-
positive identities, IDFN denotes the number of false-negative identities, FP is the number
of false positives (incorrectly detected as targets), FN is the number of false negatives
(targets not detected), IDSW is the number of identity switches (i.e., the times different
targets are incorrectly linked), and GT stands for the ground truth. The formulas for
calculating IDTP, IDFP, and IDFN are as follows:

IDFN = ∑
τ

∑
t∈Tτ

m(τ, γm(τ), t, ∆) (10)

IDFP = ∑
γ

∑
t∈Tγ

m(τm(γ), γ, t, ∆) (11)

IDTP = ∑
τ

len(τ)− IDFN = ∑
γ

len(γ)− IDFP (12)

where τ represents the ground truth trajectory, and γm(τ) denotes the best match for
the computed trajectory τ. Here, γ represents the computed trajectory, τm(γ) represents
the best match for the ground truth trajectory γ, t stands for the frame index, and ∆ is
used as the IoU threshold to determine whether the computed bounding box matches the
ground truth bounding box (where ∆ is set to 0.5). Additionally, m(·) denotes the mismatch
function, set to 1 if a mismatch exists, otherwise unmatched at t and 0.

4.3. Implementation Details

This Multi-Camera Multi-Vehicle Tracking system operates on a single Tesla V100 (32G)
GPU, employing the PyTorch 1.13.1 deep learning framework in a CUDA 11.6 and Python
3.10 environment. For vehicle detection, the sliding window self-attention mechanism has
been integrated into YOLOv5, along with the addition of the CBAM [56] attention module.
A model pre-trained on the UA-DETRAC [57] dataset is used for vehicle detection, with an
image size set to 1280, confidence threshold at 0.1, and NMS and IoU algorithms applied
to reduce redundant detection boxes. In vehicle ReID, training data include CityFlow-V2,
CityFlow-V2-CROP (an extension of CityFlow-V2 with weakly supervised detection to
augment training data to overcome a lack of real-world data), VehicleX, and VehicleX-
SPGAN (using SPGAN to transfer synthetic images from VehicleX to real-world images to
minimize domain bias).

ResNet101-IBN, ResNext101-IBN, Se-ResNet101-IBN, and ResNest101 are used as
backbone networks for training and inference. The cropped image size is adjusted to (384,
384) for ReID feature extraction with a batch size of 64 and a feature dimension of 2048.
Additionally, a combination of cross-entropy loss and triplet loss functions is used to enable
the ReID model to simultaneously increase inter-class distance and decrease intra-class
distance. Finally, the three backbone networks are fused into a unified model to enhance
the robustness of vehicle ReID.

For the Single-Camera Multi-Vehicle Tracking stage, the high confidence threshold
is set at 0.3, the low confidence threshold at 0.1, and the IoU confidence for associating
low-confidence and high-confidence vehicle detection boxes is set to 0.5 and 0.85. The
maximum cosine distance is 0.5, the frame threshold is 50, and the average transition time
for vehicles across cameras is shown in Table 2, with a video frame rate of 25.

During the selection of thresholds in hierarchical clustering, vehicles with relatively
high similarity are considered likely to belong to the same category in the first clustering
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step. Therefore, we choose a relatively low threshold of 0.5 for the initial clustering. In the
second clustering step, a threshold of 0.9 is selected to define vehicle similarity more strictly,
ensuring that only vehicles with very high similarity are grouped into the same category.

Table 2. The average transition time of different adjacent camera pairs.

Camera Pairs (C001, C002) (C002, C003) (C003, C004) (C004, C005) (C005, C006)

Average Transition
time (s) 4.2 5.6 5.3 5.3 5.2

4.4. Comparative Experiment

(1) Comparison of different detectors in the performance of the MCMVT system, as
shown in Table 3.

• YOLOv8 [26]: the YOLOv8 model enhances its detection capabilities by combining
state-of-the-art backbone and neck architectures and introducing an anchor-free split
Ultralytics head. This approach eliminates the need for anchor boxes and balances
optimization accuracy and speed, further enhancing the model’s detection abilities;

• Swin Transformer [22]: the Swin Transformer leverages a sliding window self-attention
mechanism to effectively handle both global and local information through hierarchical
partitioning, achieving outstanding performance in object detection tasks with strong
scalability and computational efficiency;

• YOLOv9 [27]: YOLOv9 introduces the concept of Programmable Gradient Informa-
tion (PGI) to address information loss during data transmission in deep networks.
Additionally, it designs a lightweight network architecture called the General Efficient
Layer Aggregation Network (GELAN) based on gradient path planning, achieving
better parameter utilization using traditional convolution operators alone.

Table 3. Comparison of MCMVT results and parameter quantities with different detectors.

Model Param IDF1 IDP IDR MOTA

YOLOv8-x 64.97 M 73.53 74.67 72.41 61.32
YOLOv9-e 68.66 M 74.11 74.04 74.18 61.69

Ours 92.65 M 81.20 81.79 80.62 62.67

(2) Comparison with other methods for HST database: As shown in Table 4, our
proposed method is compared with several state-of-the-art Multi-Target Multi-Camera
Tracking (MTMCT) systems using the HST database. The visual tracking trajectories of the
HST database are represented in Figure 12.

• NCCU: NCCU focuses on optimizing the matching of vehicle image features and
geometric factors, such as trajectory continuity, vehicle movement direction, and the
continuous travel duration under different camera views;

• ELECTRICITY: ELECTRICITY is an efficient and accurate multi-camera vehicle track-
ing system that combines aggregation loss with a rapid multi-target cross-camera
tracking strategy, enabling real-time and robust vehicle tracking across diverse surveil-
lance scenarios;

• DyGlip: DyGlip introduces attention mechanisms into dynamic graphs. It includes a
structured attention layer that considers embedded feature information and camera-
specific information. Additionally, it incorporates a time attention layer containing
temporal information. These components are then encoded and decoded;

• BUPT: BUPT employs clustering loss and trajectory consistency loss to extract robust
visual vehicle features optimized for the MTMCT task. By leveraging clustering
techniques and trajectory consistency measures, the goal is to enhance the robustness
and accuracy of vehicle tracking across multiple cameras, facilitating effective multi-
target tracking in complex surveillance scenarios.
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Table 4. Comparison of MCMVT results for HST database.

Method IDF1 IDP IDR MOTA

NCCU 43.38 62.05 33.35 12.99
ELECTRICITY 56.23 73.24 45.63 35.16

DyGlip 66.75 73.69 61.01 55.75
BUPT 70.94 71.24 70.64 54.62
Ours 81.20 81.79 80.62 62.67

Figure 12. Visualization of Multi-Camera Multi-Vehicle Tracking results for the HST dataset. Each
column represents a camera ID. Each row represents vehicles with the same ID correctly tracked by
the camera group. For example, in the first row, vehicles in dark-blue and pink boxes are correctly
tracked by cameras C001 to C006; the second row represents tracking chains for vehicles with IDs 5,
6, 7, 8, and 9, respectively; the third row represents tracking trajectories for cars with IDs 10 and 20
and a truck with ID 21, respectively.

(3) Comparison with other methods using CityFlow: As shown in Table 5, our method
is evaluated on the validation set S02 of CityFlow and compared with other methods. The
qualitative results for CityFlow are represented in Figure 13.

Table 5. Comparison of MCMVT results for CityFlow.

Method IDF1 IDP IDR

NCCU 45.97 48.91 43.35
ELECTRICITY 53.80 - -

DyGlip 64.90 59.56 71.25
Ours 64.43 67.56 61.59

Figure 13. Qualitative results of MCMVT for CityFlow. From left to right, the blue, orange, and red
lines with arrows represent the tracking trajectories of IDs 4, 19, and 168 under each camera.
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4.5. Ablation Experiment

To evaluate the effectiveness of our proposed method, we conduct ablation experi-
ments on each increment of the HST dataset. Table 6 demonstrates the impact of different
modules on performance (after k-reciprocal reranking). Our baseline uses Swin-Det as the
detector, and the ReID model integrates ResNet101-IBN* and Se-ResNet101-IBN. It can be
observed that the CMLM module increases the IDF1 score from 64.03% to 69.71%. This
improvement is attributed to leveraging the advantages of associating high-confidence
detection boxes with high-quality appearance features and exploring potential information
from low-confidence detection boxes. The HTCF module effectively enhances the IDF1
value by filtering and refining the original tracking trajectories, which contain noise from
roadside static signs and false detections. The HSTC module, combining field of view
types with vehicle spatio-temporal priors, significantly boosts the IDF1 score to 81.20%.
The experimental results demonstrate the effectiveness of the proposed modules for the
Multi-Camera Multi-Vehicle Tracking task for highways.

Table 6. Ablation experiments for each incremental module.

Swin-Det CMLM HTCF HSTC IDF1 IDP IDR MOTA

✓ 64.03 58.54 70.64 50.45
✓ ✓ 69.71 67.68 71.87 62.15
✓ ✓ 65.77 72.47 60.21 50.30
✓ ✓ ✓ 77.52 78.98 76.11 61.31
✓ ✓ ✓ ✓ 81.20 81.79 80.62 62.67

Table 6 shows the incremental module strategy comparison. “CMLM” indicates the
Cascade Multi-Level Multi-Target Tracking strategy, “HTCF” indicates the Highway Tra-
jectory Candidate Filtering module, and “HSTC” indicates the Highway Spatio-Temporal
Constraints module. Experimental results for each incremental module are obtained after
applying k-reciprocal reranking.

As shown in Table 7, the impact on system performance is demonstrated by solely
utilizing motion information and employing different vehicle appearance feature thresholds
under the Cascade Multi-Level Multi-Object association strategy, where setting the ReID
threshold to 0.3 achieves an IDF1 of 81.20%.

Table 7. Performance comparison between utilizing solely motion information and employing
different ReID thresholds (thr).

Method IDF1 IDP IDR MOTA

IoU 79.12 86.11 73.17 61.37
CMLM/thr=0.1 80.38 81.64 79.17 61.36
CMLM/thr=0.2 80.43 81.48 79.40 61.35
CMLM/thr=0.3 81.20 81.79 80.62 62.67
CMLM/thr=0.4 80.68 80.99 80.38 61.52
CMLM/thr=0.5 80.43 81.31 79.57 61.28

Additionally, we examine the impact of different backbone networks (ResNet101-IBN,
ResNet101-IBN*, ResNext101-IBN, ResNext101-IBN*, Resnest101, and Se-ResNet101-IBN)
on the system, as shown in Table 8. Subsequently, we conduct combination experiments to
assess the influence of different backbone networks on system performance individually, as
presented in Table 9. Finally, we choose to merge ResNet101-IBN* and Se-ResNet101-IBN
to obtain robust features for vehicle tracking.
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Table 8. The performances of each backbone.

Backbone IDF1 IDP IDR MOTA

IBN-ResNet101 80.05 81.53 78.62 61.09
IBN-ResNet101* 80.30 81.81 78.84 61.31
ResNest101 77.19 78.56 75.86 60.85
IBN-ResNext101 76.75 78.19 75.36 61.25
IBN-ResNext101* 77.82 79.70 76.03 59.98
IBN-Se-ResNet101 80.26 81.80 78.78 61.26

Table 9. The performances of different backbone combinations.

IBN- IBN- IBN- IBN- IBN-Se-
ResNet101 ResNet101* ResNest101 ResNext101 ResNext101* ResNet101 IDF1 IDP IDR MOTA

✓ ✓ ✓ 80.50 80.74 80.27 61.38
✓ ✓ ✓ 79.46 79.85 79.06 60.41

✓ ✓ ✓ 80.55 80.72 80.38 61.18
✓ ✓ ✓ 80.55 80.73 80.38 61.19
✓ ✓ 81.20 81.79 80.62 62.67

✓ ✓ 80.37 80.38 80.36 60.75
✓ ✓ 80.36 80.43 80.29 60.76

✓ ✓ 80.18 80.09 80.27 60.58
✓ ✓ ✓ ✓ ✓ ✓ 80.50 80.63 80.36 61.06

5. Discussion

Despite our proposed method and modules showing promising results for the HST
and CityFlow datasets, it is important to acknowledge certain limitations. Firstly, our
MCMVT system lacks real-time capability and cannot accurately track vehicle targets in
real time online. Secondly, our system is designed for specific scenario patterns; thus,
the robustness of the system in different scenarios needs improvement, and it cannot
simultaneously accommodate scenes such as large-scale intersections and highways.

6. Conclusions

In this paper, for the Multi-Camera Multi-Vehicle Tracking task and highway tunnel
scenarios, we introduced a Cascade Multi-Level Multi-Target Tracking strategy to address
the issue of losing tracking trajectories of large vehicles in the field of view, thereby im-
proving the tracking performance for large vehicles. The Candidate Trajectory Filtering
module, based on scene modeling, aims to refine the original trajectories of Single-Camera
Multi-Vehicle Tracking based on highway entry–exit flow, cutting off garbage trajectories in
the cross-matching process at the source. The Highway Spatio-Temporal Constraints mod-
ule leverages the topological structure types and spatio-temporal prior information of the
camera field of view, combined with the highway entry–exit-flow-based spatio-temporal
mask, significantly reducing the search space, thereby achieving fast and high-quality
cross-camera matching. Additionally, ablation experiments validated the effectiveness of
each module. Our proposed method was applied to a Multi-Camera Multi-Vehicle Tracking
system on the HST dataset, achieving an IDF1 of 81.20%. Moreover, the versatility of
our system was corroborated through validation on the CityFlow dataset, highlighting its
effectiveness and robustness.

In future work, we will focus on two aspects. Firstly, we will collect datasets from
diverse highway scenarios, including dual carriageways, nighttime conditions, and various
weather conditions such as snowy and foggy. Additionally, we will focus on the construc-
tion of a real-time online MCMVT system while enhancing scene robustness to further
advance research on intelligent highway traffic systems.
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