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Abstract: A fixed-time adaptive guaranteed performance tracking control is investigated for a
category of nonholonomic mobile robots (NMRs) under asymmetric state constraints. For the sake of
favorable transient and steady-state properties of the system, a prescribed performance function (PPF)
is introduced and a transform function is further constructed. Based on the backstepping technique,
an asymmetric barrier Lyapunov function is formulated to ensure the tracking errors converge within
a human-specified time. On the foundation of this, the occupation of communication channel is
effectively reduced by assigning an event-triggered mechanism (ETM) with relative threshold to
the process of controller design. By utilizing the proposed control strategy, the NMR is capable of
implementing the enemy dislodging mission while the enemy can always be caught by the NMR and
the collision would never be presented. Finally, two simulation experiments are given to verify the
effectiveness of the proposed scheme.

Keywords: fixed-time control; event-triggered mechanism; asymmetric barrier Lyapunov function;
prescribed performance function

MSC: 93D40

1. Introduction

Over the past few years, robots have been rapidly spawned into numerous varieties
due to their reliability, e.g., unmanned aerial vehicles (UAVs) [1,2], autonomous underwater
vehicles (AUVs) [3,4], humanoid robots [5,6], etc. Among them, wheeled mobile robots
(WMRs) are considered some of the most promising robots on account of their outstanding
dynamic performance and simple mechanism structure [7]. It is worth pointing out that
MWRs are also known as nonholonomic mobile robots (NMRs) due to the nonholonomic
constraint, meaning the robot can only move along the vertical direction of the axis of the
two propelling wheels [8]. Therefore, NMRs could have more total degrees of freedom
than controllable degrees of freedom, and it is possible for NMRs to track various kinds of
trajectories between two arbitrary setpoints when the transverse slides are ignored.

Practically, the nonholonomic constraint brings difficulties to the controller design for
the stabilization of NMRs, since the system does not satisfy Brockett’s theorem [9]. There-
fore, it cannot be stabilized to the desired state by utilizing a differentiable or continuous
state-feedback controller, which attracts a great many scholars to investigate the tracking
control for NMRs [10–15]. In Ref. [10], to ensure the steady-state performance, a finite-time
control for NMRs with input and state constraints was proposed based on neural network
and dynamic surface techniques. In Ref. [11], with a linearization feedback technique,
tracking control for NMRs was studied to get rid of the stabilization problem caused by
the optimization of model predictive control. In Ref. [12], utilizing terminal sliding mode
method, an adaptive fast dynamic control strategy for NMRs was developed, which avoids
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the singularity problem from being presented in the controller. Ref. [13] developed a state
or output-feedback tracking controller for NMRs with uncertain disturbances and achieved
the finite-time convergence of tracking errors. In Ref. [14], motion control of NMRs was
proposed at the actuator level to guarantee the performance of trajectory tracking. However,
most of the aforementioned literature has not take other constraints presented in practical
applications into account, which are of significance to be studied.

At the same time, state constraint is widely available in some practical applications
for NMRs, for instance, dislodging an enemy. It is required that the robot should maintain
visibility with the enemy, but should not have a collision with it [16,17]. Usually, to handle
the above two state constraints, which can be divided into symmetric and asymmetric
constraints, scholars introduced the barrier Lyapunov functions (BLFs) to the controller
design for NMRs [18–21]. For the symmetric constraints, in Ref. [18], the BLF was estab-
lished to handle the state constraints issue for nonlinear control-affine systems to guarantee
asymptotical stabilization. Ref. [19] introduced BLF into a formation controller designing
process to cope with the state constraints problem presented between leaders and followers.
For asymmetric constraints, in Ref. [20], a tracking control was proposed for strict-feedback
nonlinear systems by constructing an asymmetric barrier Lyapunov function (ABLF), which
solves the tracking issues of constrained systems without altering the controller structure.
Ref. [21] developed a ABLF-based robust adaptive attitude controller for a hypersonic
flight vehicle to limit the angle of attack constraint to be in a human-specified asymmetric
range. Theoretically, these methods make contributions to the finite-time or asymptotical
convergence of the tracking control problem for NMRs, but the NMRs require shorter and
certain convergence time in practical engineering.

Nevertheless, the convergence time of finite-time or Lyapunov stabilization control
framework would be impacted by the initial conditions of the system, meaning the conver-
gence time of the system is usually unpredictable when the initial conditions change [22].
To guarantee the convergence time of the system, fixed-time control methods have been
proposed and extensively reported [23–27]. In Ref. [23], a multivariable fixed-time for-
mation control scheme based on a fixed-time disturbance observer was investigated to
overcome the difficulties from multiple uncertainties of the NMRs. Ref. [24] proposed a
distributed observer-based fixed-time consensus control strategy for NMRs with directed
switching topologies. In Ref. [25], for a type of second-order multi-agent system subjected
to actuator failures, a practical robust fixed-time containment control protocol was devel-
oped. In Ref. [26], for high-order systems, a fixed-time and singularity-free controller was
established for missile guidance by utilizing terminal sliding mode strategy. Nonetheless,
how to guarantee both the transient and steady-state performance of the tracking errors
and convergence within a predefined time for the tracking control of the NMRs under the
mentioned asymmetric constraints is a meaningful interest of research.

In actual network control, limited network bandwidth should also be considered, as it
may deteriorate the control performance, because high-frequency data transmission would
make the communication channel congested. Compared with a classical time-triggered
mechanism, an event-triggered mechanism (ETM) was proposed to preserve the commu-
nication bandwidth, which has attracted the attention of numerous scholars [28–31]. In
Ref. [28], a dynamic ETM consensus control protocol for multi-agent systems was pro-
posed to achieve consensus asymptotically and make the triggered instants more reason-
able. Ref. [29] investigated an ETM-based neural network control scheme and effectively
restrained vibration in flexible structures. Ref. [30] addressed the stabilization and com-
pensated time-delay for large-scale interconnected systems by constructing an ETM-based
controller with a backstepping method. Furthermore, Refs. [32,33] combined the ETM with
adaptive control strategy for mobile robots, aimed at handling the unavailable parameters
of the robot while the communication bandwidth was effectively saved. Undoubtedly,
the aforementioned literature has made great contributions on ETM control in different
domains, but it is remaining a challenging issue to reach adaptive fixed-time convergence
under limited communication resources.
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Inspired by the above discussions, a fixed-time adaptive event-triggered tracking
control with guaranteed performance is investigated for NMRs under asymmetric state
constraints in this research. The major contributions of this study are as follows:

1. To guarantee the transient and steady-state performance of system, PPF and ABLF
are both introduced into the process of backstepping design. Therefore, the violation
of asymmetric state constraints is effectively prevented. Specifically, the NMR shows
great tracking performance since the collision between enemy robot and NMR is
avoided throughout the dislodging mission and the NMR never loses the visibility of
the enemy.

2. Compared with the finite-time control scheme in Refs. [10,12,13], a fixed-time event-
triggered convergence of the system is implemented by utilizing the proposed method,
for which the upper boundary of convergence time is not impacted by different initial
conditions. Concretely, by utilizing the proposed method, the NMR can track the
enemy in a given period and implement the mission under limited communication
resources. At the same time, the Zeno phenomenon is effectively avoided.

The remainder of the research is divided into following four sections. Section 2
introduces the kinetic model of the system and some preliminaries. In Section 3, the process
of control method design and stability analysis are investigated. Section 4 verifies the
validity of the mentioned method through some simulations examples. The conclusion is
provided in Section 5.

2. System Description and Preliminaries
2.1. System Description

A class of NMRs comprising two propelling wheels and one passive wheel, whose
transverse slide and force are ignored, can be described as follows [15,17]:

η̇ = J(η)ω∗

Mω̇∗ = −C(η̇)ω∗ − Dω∗ + U
(1)

where η = [x, y, ϕ]T represents the posture of the robots, which consists of the position (x, y)
and the orientation angle ϕ in the earth-fixed rectangular coordinate system, ω∗ = [ϖ1, ϖ2]

T

is the angular velocity of the two wheels, U = [u1, u2] stands for the control torque
input applied to the two wheels, M is a symmetric positive-definite inertia matrix, C(η̇)
denotes the centripetal and Coriolis matrix, and D is the damping matrix. The matrices
J(η), M, C(η̇), and D in a dynamic system (1) are expressed by:

J(η) =
r
2

 cos ϕ cos ϕ
sin ϕ sin ϕ

b−1 −b−1

, M =

[
m1 m2
m2 m1

]
, C(η̇) =

[
0 cϕ̇

cϕ̇ 0

]
, D =

[
d1 0
0 d2

]

where r and b represent the radius of the wheels and half width of the robots, respectively.
All of the system parameters m1, m2, b, r, centripetal and Coriolis coefficient c, and damping
coefficient d1, d2 are supposed to be the unknown constants.

For facilitation, the angular velocities of two wheels ϖ1, ϖ2 are converted into the
linear velocity v and angular velocity ϖ of the robots as the following equation:

v∗ = B−1ω∗ (2)

where v∗ = [v, ϖ]T , B = 1
r

[
1 b
1 −b

]
. The matrix B is invertible and satisfies det(B) =

− 2b
r .
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Next, substituting (2) into system (1), the transformed dynamic equation of the robotic
system can be obtained as follows:

ẋ = v cos ϕ

ẏ = v sin ϕ

ϕ̇ = ϖ

v̇ = mv(βv + uv)

ϖ̇ = mϖ(βϖ + uϖ)

ẋ sinϕ − ẏ cos ϕ = 0

(3)

where mv = r
2(m1+m2)

, mϖ = r
2(m1−m2)

, βv = 2bcϖ2

r − v(d1+d2)
r − bϖ(d1−d2)

r , βϖ,j = − 2vcϖ
r −

v(d1−d2)
r − bϖ(d1+d2)

r , uv = u1 + u2, and uϖ = u1 − u2.

2.2. Relative Posture Constraints [34]

In this work, one of the objectives is to develop a prescribed performance controller
that enables a NMR to implement a task for dislodging an enemy in a certain trajectory
and satisfy desired relative distance and direction constraints simultaneously.

The desired trajectory for the dislodged enemy can be generated by the following
dynamic equation:

ẋd = vd cos ϕd

ẏd = vd sin ϕd

ϕ̇d = ϖd

(4)

where vd and ϖd are the linear velocity and angular velocity of the target enemy, respectively.
The desired posture of the enemy robot can be expressed as ηd = [xd, yd, ϕd]

T .
Assuming the relative distance and direction between the robot and the target enemy

should always fall into a given range, we considered the following limitations: tracking
range constraint, collision avoidance constraint, and bearing angle constraint.

Remark 1. In some actual tracking applications for NMRs, for example, dislodging an enemy,
it is required that the robot should maintain visibility to the enemy via its equipped cameras or
sensors, but it should not have a collision on the enemy. On the one hand, if the enemy escapes
away from the robot’s practical visible area, it would be challenging to proceed with the dislodging
mission. On the other hand, it is disastrous for the robot to crash against the enemy while carrying
out dislodging, which probably leads to physical damage, performance deterioration, or even loss
of control. Therefore, in this work, the aforementioned dislodging mission is considered, and it is
of great necessity for NMRs to ensure that the relative distance and bearing angle constraints are
never violated.

2.2.1. Tracking Range Constraint

By utilizing plane coordinate transformation, we introduce the posture error equation
between the robot and the enemy as follows: x̃

ỹ
ϕ̃

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 xd − x
yd − y
ϕd − ϕ

 (5)

The relative distance ev(t) and bearing angle eϖ(t) between the robot and the target
enemy are defined by the following equations, respectively:

ev(t) =
√
(x − xd)

2 + (y − yd)
2 (6)

eϖ(t) = arc tan 2(ỹ, x̃) (7)
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where arc tan 2(ỹ, x̃) ∈ (−π, π] is the arctangent function of the two parameters (x̃, ỹ) and
returns the appropriate interior angle eϖ of the point (x̃, ỹ), as shown in Figure 1a.

(a) basic setup (b) relative posture constraints

Figure 1. diagrams of the enemy robot and the manipulated robot in a dislodging mission.

The following tracking range constraint is taken into account:

ev(t) < E1v (8)

where E1v represents reliable tracking range predefined as the acceptable maximal distance
to sustain the dislodgement between the robot and the enemy. That is, inequality (8) should
never be violated so that the dislodgement can continue to proceed.

2.2.2. Collision Avoidance Constraint

Consider the collision avoidance constraint:

ev(t) > E2v (9)

where E2v represents the safety distance between the robot and the target, which is related
to the volume of the robot and predefined as the minimal distance between the above
two objects to avoid collision. Thus, if inequality (9) can be always satisfied, the robot is
collision free.

2.2.3. Bearing Angle Constraint

In addition to the above relative distance constraints, relative angle constraint, in other
words, bearing angle constraint, is also considered, which is proposed from the controller
singularity problem caused by robot’s nonholonomic constraint. The bearing angle between
the robot and the enemy is restricted by the following constraint:

E2ϖ < eϖ(t) < E1ϖ (10)

where 0 < E1ϖ < π
2 and −π

2 < E2ϖ < 0 are the maximal and minimal bearing angles
between the robot and the enemy, respectively.

To guarantee the relative distance and direction constraints proposed in (8) and (9)
would not be violated, the desired relative distance Ēv and the bearing angle Ēϖ are
introduced. Thus, the tracking error system is defined as follows:

zv(t) = ev(t)− Ēv

zϖ(t) = eϖ(t)− Ēϖ
(11)
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where Ēv and Ēϖ represent specified values, satisfying desired relative distance and bearing
angle, respectively.

The above constraints would be converted to the constrained tracking control problem
if the error system (11) is limited to the following inequalities for:

E2v − Ēv < zv < E1v − Ēv (12)

−Eϖ − Ēϖ < zϖ < Eϖ − Ēϖ (13)

2.3. Prescribed Performance Function [35]

To restrict the error system into a specified region for better convergence performance
of zv(t) and zϖ(t), the PPF is introduced as follows:

Bi(t) = (Bi(0)− Bi(∞))e−χit + Bi(∞)(i = v, ϖ) (14)

where Bi(t) is an exponentially decaying function of time, χi represents a designed positive-
definite constant relating to the decaying speed of Bi(t), and Bi(0) and Bi(∞) denote the
initial value and the final value of Bi(t), respectively. Prescribed performance requirement
of the error system is expressed as follows:

B1v(t) < zv(t) < B2v(t)
B1ϖ(t) < zϖ(t) < B2ϖ(t)

(15)

We assume that existing parameters λ̄i, λi, and Qi satisfy the inequalities λi < Bi(0),
λiQ−1

i < Bi(∞), λ̄i < Bi(0), and λ̄iQ−1
i < Bi(∞). Thus, the transform function li(t) is

constructed as follows:

li(t) =
eχi(t)

(1 − Q−1
i ) + Q−1

i eχi(t)
(16)

Note that the inequalities λil−1
i (t) ≤ Bi(t) andλ̄il−1

i (t) ≤ Bi(t) always hold; they are
very important for the following deductions and proofs.

For convenience, e(t), z(t), B(t), and l(t) will be rewritten as e, z, B, and l, respectively,
in the following analyses.

2.4. Preliminaries

Lemma 1 ([29]). In view of following dynamical system:

ẋ = f (x) (17)

where f (x) is a continuous function, x ∈ Rn represents the state vector and x(0) = 0, f (x) = 0.
If there exists a positive-definite function V(x) which satisfies:

V̇(x) ≤ −γ1V(x)p − γ2V(x)q + Λ (18)

where γ1 > 0, γ2 > 0, Λ > 0, p ∈ (1, ∞), q ∈ (0, 1). The origin of the system (17) is practically
fixed-time stable, and the convergence time T is given as follows:

T ≤ 1
γ1κ(p − 1)

+
1

γ2κ(1 − q)
(19)

where 0 < κ < 1. Moreover, the solution of the system can converge to:

δ =

{
x|V(x) ≤ min

{(
Λ

(1 − κ)γ1

) 1
p
,
(

Λ
(1 − κ)γ2

) 1
q
}}

(20)
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Lemma 2 ([19]). For ∀o ∈ R and ∀η > 0, one has:

0 ≤ |o| − o tanh
(

o
η

)
≤ 0.2785η (21)

Lemma 3 ([22]). For ∀a1 ∈ R and ∀a2 ∈ R, one has:

a1a2 ≤ εb

b
|a1|b +

1
cεc |a2|c (22)

where b > 1, c > 1, ε > 0 and, (b − 1)(c − 1) = 1.

Lemma 4 ([36]). For α ∈ R, β ∈ R, m1 > 0, m2 > 0, and k > 0, one has:

|α|m1|β|m2 ≤ m1

m1 + m2
k|α|m1+m2 +

m2

m1 + m2
k−

m1
m2 |β|m1+m2 (23)

Lemma 5 ([27]). For a > |z|, a > 0, and z ∈ R, one has:

ln
a2

a2 − z2 ≤ z2

a2 − z2 (24)

3. Controller Design and Stability Analysis
3.1. Fixed-Time Adaptive Event-Triggered Guaranteed Performance Controller Design

First, the transformation errors are defined as:

s1v = lvzv

s1ϖ = lϖzϖ
(25)

where lv and lϖ both satisfy the definition from (16).
The error system is constructed as:

s2v = v − αv

s2ϖ = ϖ − αϖ
(26)

where αv and αϖ represent the virtual controllers of v and ϖ, respectively.
Moreover, for the purpose of handling asymmetric barrier constraints, the function

qi(si)(i = v, ϖ) is defined as:

qi(si) =

{
1, si ≥ 0
0, si < 0

(27)

Step 1. According to Equations (3), (6), (7), and (11), the derivatives of zv and zϖ can
be expressed as follows:

żv = −v cos eϖ + vd cos θ

żϖ = −ϖ +
v
ev

sin ev −
vd
ev

sin θ
(28)

where θ = eϖ + ϕ − ϕd.
The ABLFs Vv and Vϖ are selected as follows:

Vv =
qv

2
ln

λ̄2
v

λ̄2
v − s2

1v
+

1 − qv

2
ln

λ2
v

λ2
v − s2

1v

Vϖ =
qϖ

2
ln

λ̄2
ϖ

λ̄2
ϖ − s2

1ϖ

+
1 − qϖ

2
ln

λ2
ϖ

λ2
ϖ − s2

1ϖ

(29)
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where λi(i = v, ϖ) and λ̄i(i = v, ϖ) represent the designed parameters satisfying λil−1
i ≤

Bi and λ̄il−1
i ≤ Bi, respectively. It should be noted that the inequalities λv ≤ s1v ≤λ̄v and

λϖ ≤ s1ϖ ≤λ̄ϖ hold when Vv and Vϖ are bounded, respectively.
By combining (26), (28), and (29), the derivatives of Vv and Vϖ can be given by:

V̇v = s̄1vlv
(

l̇vl−1
v zv − (s2v + αv) cos eϖ + vd cos θ

)
(30)

V̇ϖ = s̄1ϖ lϖ

(
l̇ϖ l−1

ϖ zϖ − (s2ϖ + αϖ) +
v
ev

sin eϖ − vd
ev

sin θ

)
(31)

where s̄1v = qvs1v
λ̄2

v−s2
1v
+ (1−qv)s1v

λ2
v−s2

1v
and s̄1ϖ = qϖs1v

λ̄2
ϖ−s2

1ϖ

+ (1−qϖ)s1v
λ2

ϖ−s2
1ϖ

, which are designed for simpli-

fying the equations.
Then, construct the following virtual controllers:

αv =
1

cos eϖ

[
fv

lv

(
k11vqvs3

1v
λ̄2

v − s2
1v

+
k12vqvs2ξ−1

1v(
λ̄2

v − s2
1v
)ξ−1 +

k21v(1 − qv)s3
1v

λ2
v − s2

1v
+

k22v(1 − qv)s
2ξ−1
1v(

λ2
v − s2

1v
)ξ−1

)
+ l̇vl−1

v zv + vd cos θ
] (32)

αϖ =
fϖ

lϖ

(
k11ϖqϖs3

1ϖ

λ̄2
ϖ − s2

1ϖ

+
k12ϖqϖs2ξ−1

1ϖ(
λ̄2

ϖ − s2
1ϖ

)ξ−1 +
k21ϖ(1 − qϖ)s3

1ϖ

λ2
ϖ − s2

1ϖ

+
k22ϖ(1 − qϖ)s

2ξ−1
1ϖ(

λ2
ϖ − s2

1ϖ

)ξ−1

)
+ l̇ϖ l−1

ϖ zϖ +
v
ev

sin eϖ − vd
ev

sin θ

(33)

where fv and fϖ are positive-definite gain constants.

Remark 2. According to Lemma 1, to ensure fixed-time convergence of the system, the value
range of the designed parameter ξ is (0, 1). However, ξ must also meet the following inequalities
2ξ − 1 > 0 and ξ − 1 < 0 to prevent the singularity of the terms with ξ raised to the power, such

as k12vqvs2ξ−1
1v

(λ̄2
v−s2

1v)
ξ−1 and k22v(1−qv)s

2ξ−1
1v

(λ2
v−s2

1v)
ξ−1 . Therefore, the value of ξ must be selected in the range

(
1
2 , 1
)

.

By considering (32) and (33), new expressions of V̇v and V̇ϖ, respectively, can be
obtained as follows:

V̇v =−
k11vqv fvs4

1v(
λ̄2

v − s2
1v
)2 −

k21v(1 − qv) fvs4
1v(

λ2
v − s2

1v
)2 −

k12vqv fvs2ξ
1v(

λ̄2
v − s2

1v
)ξ

−
k22v(1 − qv) fvs2ξ

1v(
λ2

v − s2
1v
)ξ

− s̄1vlvs2v cos eϖ

(34)

V̇ϖ =−
k11ϖqϖ fϖs4

1ϖ(
λ̄2

ϖ − s2
1ϖ

)2 −
k21ϖ(1 − qϖ) fϖs4

1ϖ(
λ2

ϖ − s2
1ϖ

)2 −
k12ϖqϖ fϖs2ξ

1ϖ(
λ̄2

ϖ − s2
1ϖ

)ξ
−

k22ϖ(1 − qϖ) fϖs2ξ
1ϖ(

λ2
ϖ − s2

1ϖ

)ξ

− s̄1ϖ lϖs2ϖ

(35)

Step 2. Aimed at conserving the information interchanging resources, the relative
threshold ETM is introduced into the channel from the controller to the actuator. The
event-triggered control law is designed as follows:

Ωi(t) = −(1 + σi)

(
ūi tanh

(
s2iūi

ϑi

)
+ ḡi tanh

(
s2i ḡi

ϑi

))
ui(t) = Ωi(tk), tk ≤ t < tk+1

tk+1 = inf{t ∈ R||∆i(t)| ≥ σi|ui(t)|+ gi }

(i = v, ϖ) (36)

where 0 < σi < 1, ϑi > 0, gi > 0, ḡi > gi
1−σi

; ∆i(t) = Ωi(tk) − ui(t) represents the
measurement error; ūi represents the intermediate control law, which would be designed
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later; tk > 0 denotes the triggering moment, and k ∈ Z+. The diagram that illustrates how
ETM works in the control framework is shown in Figure 2.

Figure 2. Diagram of the proposed control method.

Remark 3. It can be surely acknowledged that it is more practical and beneficial to place the ETM
in the sensor-to-controller channel, which could both help alleviate the communication burden and
reduce computation cost. However, by utilizing the aforementioned method, it would render data
discrete and lead to challenges for handling differential problems in the controller design process.
Therefore, one focus spot of our future research would be to construct an ETM implemented in both
sensor-to-controller and controller-to-actuator channels.

From the first equation of (36) and the definition of ∆i(t), the following inequality can
be obtained:

ui(t) =
Ωi(t)− υ2,i(t)gi

1 + υ1,i(t)σi
(37)

where |υ1,i(t)| ≤ 1 and |υ2,i(t)| ≤ 1.
According to Equations (36) and (37) and Lemma 2, it can be obtained as follows:

s2vuv(t) ≤ |s2vūv| − s2vūv tanh
(

s2vūv

ϑv

)
− |s2vūv|

+ |s2v ḡv| − s2v ḡv tanh
(

s2v ḡv

ϑv

)
≤ 0.557ϑv + s2vūv

(38)

s2ϖuϖ(t) ≤ |s2ϖ ūϖ | − s2ϖ ūϖ tanh
(

s2ϖ ūϖ

ϑϖ

)
− |s2ϖ ūϖ |

+ |s2ϖ ḡϖ | − s2ϖ ḡϖ tanh
(

s2ϖ ḡϖ

ϑϖ

)
≤ 0.557ϑϖ + s2ϖ ūϖ

(39)
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Then, by considering (3) and (26), it can be deduced that:

ṡ2v

mv
= uv + ΓT

v Φv (40)

ṡ2ϖ

mϖ
= uϖ + ΓT

ϖΦϖ (41)

where Γv =
[
ϖ2,−v,−ϖ,−α̇v

]T and Γϖ = [−ϖv,−v,−ϖ,−α̇ϖ ]
T . Both Φv =

[
2bc

r , d1+d2
r ,

b(d1−d2)
r , 2(m1+m2)

r

]T
and Φϖ =

[
2c
r , d1−d2

r , b(d1+d2)
r , 2b(m1−m2)

r

]T
are matrices with unknown

parameters.
In this step, the ABLF is chosen as:

V = Vv + Vϖ +
1

2mv
s2

2v +
1

2mϖ
s2

2ϖ +
1
2

Φ̃T
v K−1

v Φ̃v +
1
2

Φ̃T
ϖK−1

ϖ Φ̃ϖ (42)

where Φ̃i = Φi − Φ̂i (i = v, ϖ) represents the error between the ideal unknown matrix Φi
and its estimated value Φ̂i; K−1

i (i = v, ϖ) denotes the inverse matrix of Ki, which is a 4 × 4
symmetric positive-definite gain matrix.

Differentiate Equation (42) by substituting from (38) to (41), we obtain:

V̇ ≤ V̇v + V̇ϖ + s2v
(
ūv + ΓT

v Φv
)
+ s2ϖ

(
ūϖ + ΓT

ϖΦϖ

)
− Φ̃T

v K−1
v

˙̂Φv − Φ̃T
ϖK−1

ϖ
˙̂Φϖ

+0.557ϑv + 0.557ϑϖ
(43)

The parameter adaptive laws are defined as follows:

˙̂Φv = KvΓvs2v − κvKvΦ̂v − hvKvΦ̂3
v (44)

˙̂Φϖ = KϖΓϖs2ϖ − κϖKϖΦ̂ϖ − hϖKϖΦ̂3
ϖ (45)

According to Lemma 3, it is true that:

κvΦ̃T
v Φ̂v ≤ −κv

2
Φ̃T

v Φ̃v +
κv

2
ΦT

v Φv (46)

κϖΦ̃T
ϖΦ̂ϖ ≤ −κϖ

2
Φ̃T

ϖΦ̃ϖ +
κϖ

2
ΦT

ϖΦϖ (47)

From Lemma 4, by letting α = 1, β = κv
2 Φ̃T

v Φ̃v, m1 = 1 − ξ, m2 = ξ, k = ξ
ξ

1−ξ , one has:(κv

2
Φ̃T

v Φ̃v

)ξ
≤ ι +

κv

2
Φ̃T

v Φ̃v (48)

where ι = (1 − ξ)ξ
ξ

1−ξ .
In the similar way, the following inequality is obtained:(κϖ

2
Φ̃T

ϖΦ̃ϖ

)ξ
≤ ι +

κϖ

2
Φ̃T

ϖΦ̃ϖ (49)

Substituting inequalities from (46) to (49) into (43), one has:

V̇ ≤ V̇v + V̇ϖ + s2v

(
ūv + ΓT

v Φv − Φ̃T
v Γv

)
+ s2ϖ

(
ūϖ + ΓT

ϖΦϖ − Φ̃T
ϖΓϖ

)
− κv

2
Φ̃T

v Φ̃v −
κϖ

2
Φ̃T

ϖΦ̃ϖ + hvΦ̃T
v Φ̂3

v + hϖΦ̃T
ϖΦ̂3

ϖ + Λ1

(50)

where Λ1 = κv
2 ΦT

v Φv +
κϖ
2 ΦT

ϖΦϖ + 0.557ϑv + 0.557ϑϖ + 2ι.
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Next, for the following equation:

hvΦ̃v,jΦ̂3
v,j = hvΦ̃v,j

(
Φ3

v,j + 3Φv,jΦ̃2
v,j − 3Φ2

v,jΦ̃v,j − Φ̃3
v,j

)
(51)

By utilizing Lemma 3, one has the following inequality:

Φ̃v,jΦ3
v,j ≤

Φ4
v,j

12
+ 3Φ2

v,jΦ̃
2
v,j (52)

3Φ3
v,jΦ̃v,j ≤

9ς
4
3
v,jΦ̃

4
v,j

4
+

3Φ4
v,j

4ς4
v,j

(53)

where ςv,j > 0 (j = 1, 2).
Substitute inequalities (52) and (53) into (51), one gets:

hvΦ̃v,jΦ̂3
v,j ≤ −

(
4hv − 9hvς

4
3
v,j

)(
1
2

Φ̃2
v,j

)2
+

hvΦ4
v,j

12
+

3hvΦ4
v,j

4ς4
v,j

≤ −h̄v

(
1
2

Φ̃2
v,j

)2
+

hvΦ4
v,j

12
+

3hvΦ4
v,j

4ς4
v,j

(54)

where h̄v = min
{

4 − 9ς
4
3
v,1, 4 − 9ς

4
3
v,2

}
.

Further, for hvΦ̃T
v Φ̂3

v =
2
∑

j=1
hv,jΦ̃v,jΦ̂3

v,j,

hvΦ̃T
v Φ̂3

v =
2

∑
j=1

hv,jΦ̃v,jΦ̂3
v,j

≤ −
2

∑
j=1

h̄v

(
1
2

Φ̃2
v,j

)2
+

2

∑
j=1

hvΦ4
v,j

12
+

2

∑
j=1

3hvΦ4
v,j

4ς4
v,j

≤ − ¯̄hv

(
1
2

Φ̃T
v,jK

−1
v,j Φ̃v,j

)2
+

2

∑
j=1

(
hvΦ4

v,j

12
+

3hvΦ4
v,j

4ς4
v,j

) (55)

where ¯̄hv = h̄v

2
(

λmax

(
K−1

v,j

))2 , λmax

(
K−1

v,j

)
is the maximum eigenvalue of K−1

v,j . Similarly, we

obtain:

hϖΦ̃T
ϖΦ̂3

ϖ =
2

∑
j=1

hϖ,jΦ̃ϖ,jΦ̂3
ϖ,j ≤ −

2

∑
j=1

h̄ϖ

(
1
2

Φ̃2
ϖ,j

)2
+

2

∑
j=1

hϖΦ4
ϖ,j

12
+

2

∑
j=1

3hϖΦ4
ϖ,j

4ς4
ϖ,j

≤ − ¯̄hϖ

(
1
2

Φ̃T
ϖ,jK

−1
ϖ,jΦ̃ϖ,j

)2
+

2

∑
j=1

(
hϖΦ4

ϖ,j

12
+

3hϖΦ4
ϖ,j

4ς4
ϖ,j

) (56)

where ¯̄hϖ = h̄ϖ

2
(

λmax

(
K−1

ϖ,j

))2 , and λmax

(
K−1

ϖ,j

)
is the maximum eigenvalue of K−1

ϖ,j.

By substituting inequalities (55) and (56) into (50), V̇ can be written as:

V̇ ≤ s2v

(
ūv + ΓT

v Φ̂v

)
+ s2ϖ

(
ūϖ + ΓT

ϖΦ̂ϖ

)
−
(κv

2
Φ̃T

v Φ̃v

)ξ
−
(κϖ

2
Φ̃T

ϖΦ̃ϖ

)ξ

− ¯̄hv

(
1
2

Φ̃T
v,iK

−1
v,i Φ̃v,i

)2
− ¯̄hϖ,j

(
1
2

Φ̃T
ϖ,iK

−1
ϖ,iΦ̃ϖ,i

)2
+ V̇v + V̇ϖ + Λ2

(57)
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where Λ2 = Λ1 +
2
∑

j=1

(
hvΦ4

v,j
12 +

3hvΦ4
v,j

4ς4
v,j

)
+

2
∑

j=1

(
hϖΦ4

ϖ,j
12 +

3hϖΦ4
ϖ,j

4ς4
ϖ,j

)
.

Now, by inserting (34) and (35) into (57), one has:

V̇ ≤ −
k11vqv fvs4

1v(
λ̄2

v − s2
1v
)2 −

k21v(1 − qv) fvs4
1v(

λ2
v − s2

1v
)2 −

k12vqv fvs2ξ
1v(

λ̄2
v − s2

1v
)ξ

−
k22v(1 − qv) fvs2ξ

1v(
λ2

v − s2
1v
)ξ

−
k11ϖqϖ fϖs4

1ϖ(
λ̄2

ϖ − s2
1ϖ

)2 −
k21ϖ(1 − qϖ) fϖs4

1ϖ(
λ2

ϖ − s2
1ϖ

)2 −
k12ϖqϖ fϖs2ξ

1ϖ(
λ̄2

ϖ − s2
1ϖ

)ξ
−

k22ϖ(1 − qϖ) fϖs2ξ
1ϖ(

λ2
ϖ − s2

1ϖ

)ξ

− s̄1vlvs2v cos eϖ − s̄1ϖ lϖs2ϖ + s2v

(
ūv + ΓT

v Φ̂v

)
+ s2ϖ

(
ūϖ + ΓT

ϖΦ̂ϖ

)
−
(κv

2
Φ̃T

v Φ̃v

)ξ
−
(κϖ

2
Φ̃T

ϖΦ̃ϖ

)ξ
− ¯̄hv

(
1
2

Φ̃T
v,iK

−1
v,i Φ̃v,i

)2
− ¯̄hϖ

(
1
2

Φ̃T
ϖ,iK

−1
ϖ,iΦ̃ϖ,i

)2
+ Λ2

(58)

Subsequently, the intermediate control laws are constructed as follows:

ūv = −ηv,1s3
2v − ηv,2s2ξ−1

2v − ΓT
v Φ̂v + s̄1vlv cos eϖ (59)

ūϖ = −ηϖ,1s3
2ϖ − ηϖ,2s2ξ−1

2ϖ − ΓT
ϖΦ̂ϖ + s̄1ϖ lϖ (60)

ūv = u1 + u2, ūϖ = u1 − u2 (61)

Obviously, it can be deduced that:

V̇ ≤ −4k11v fv

(
qvs2

1v
2
(
λ̄2

v − s2
1v
))2

− 4k21v fv

(
(1 − qv)s2

1v
2
(
λ2

v − s2
1v
))2

− 2ξ k12v fv

(
qvs2

1v
2
(
λ̄2

v − s2
1v
))ξ

− 2ξ k22v fv

(
(1 − qv)s2

1v
2
(
λ2

v − s2
1v
))ξ

− 4k11ϖ fϖ

(
qϖs2

1ϖ

2
(
λ̄2

ϖ − s2
1ϖ

))2

− 4k21ϖ fϖ

(
(1 − qϖ)s2

1ϖ

2
(
λ2

ϖ − s2
1ϖ

))2

− 2ξ k12ϖ fϖ

(
qϖs2

1ϖ

2
(
λ̄2

ϖ − s2
1ϖ

))ξ

− 2ξ k22ϖ fϖ

(
(1 − qϖ)s2

1ϖ

2
(
λ2

ϖ − s2
1ϖ

))ξ

− 4m2
vηv,1

(
1

2mv
s2

2v

)2

− 2ξ mξ
vηv,2

(
1

2mv
s2

2v

)ξ

− 4m2
ϖηϖ,1

(
1

2mϖ
s2

2ϖ

)2

− 2ξ mξ
ϖηϖ,2

(
1

2mϖ
s2

2ϖ

)ξ

−

 κv

λmax

(
K−1

v,i

)
ξ(

1
2

Φ̃T
v K−1

v,i Φ̃v

)ξ

−

 κϖ

λmax

(
K−1

ϖ,i

)
ξ(

1
2

Φ̃T
ϖK−1

ϖ,iΦ̃ϖ

)ξ

− ¯̄hv

(
1
2

Φ̃T
v,iK

−1
v,i Φ̃v,i

)2

− ¯̄hϖ

(
1
2

Φ̃T
ϖ,iK

−1
ϖ,iΦ̃ϖ,i

)2

+ Λ2

(62)

For convenience, it can be rewritten as:

V̇ ≤ −γ1v,1

(
qvs2

1v
2
(
λ̄2

v − s2
1v
))2

− γ1v,j,2

(
(1 − qv)s2

1v
2
(
λ2

v − s2
1v
))2

− γ1ϖ,1

(
qϖs2

1ϖ

2
(
λ̄2

ϖ − s2
1ϖ

))2

− γ1ϖ,2

(
(1 − qϖ)s2

1ϖ

2
(
λ2

ϖ − s2
1ϖ

))2

− γ1v,3

(
1

2mv
s2

2v

)2
− γ1ϖ,3

(
1

2mϖ
s2

2ϖ

)2
− ¯̄hv

(
1
2

Φ̃T
v,jK

−1
v,j Φ̃v,j

)2
− ¯̄hϖ

(
1
2

Φ̃T
ϖ,jK

−1
ϖ,jΦ̃ϖ,j

)2

− γ2v,1

(
qvs2

1v
2
(
λ̄2

v − s2
1v
))ξ

− γ2v,2

(
(1 − qv)s2

1v
2
(
λ2

v − s2
1v
))ξ

− γ2ϖ,1

(
qϖs2

1ϖ

2
(
λ̄2

ϖ − s2
1ϖ

))ξ

− γ2ϖ,2

(
(1 − qϖ)s2

1ϖ

2
(
λ2

ϖ − s2
1ϖ

))ξ

− γ2v,3

(
1

2mv
s2

2v

)ξ

− γ2ϖ,3

(
1

2mϖ
s2

2ϖ

)ξ

− γ2v,4

(
1
2

Φ̃T
v K−1

v,j Φ̃v

)ξ

− γ2ϖ,4

(
1
2

Φ̃T
ϖK−1

ϖ,jΦ̃ϖ

)ξ

+ Λ2

(63)

where γ1v,1 = 4k11v fv, γ1v,2 = 4k21v fv, γ1v,3 = 4m2
vηv,1, γ1ϖ,1 = 4k11ϖ fϖ, γ1ϖ,2 = 4k21ϖ fϖ,

γ1ϖ,3 = 4m2
ϖηϖ,1, γ2v,1 = 2ξk12v fv, γ2v,2 = 2ξk22v fv, γ2v,3 = 2ξmξ

vηv,2, γ2v,4 =

(
κv

λmax

(
K−1

v,j

)
)ξ

,

γ2ϖ,1 = 2ξ k12ϖ fϖ , γ2ϖ,2 = 2ξ k22ϖ fϖ , γ2ϖ,3 = 2ξ mξ
ϖηϖ,2, γ2ϖ,4 =

(
κϖ

λmax

(
K−1

ϖ,j

)
)ξ

, and ¯̄hv, ¯̄hϖ ;

Λ2 was defined before.
Based on (63) and Lemma 5, it holds that:

V̇ ≤ −γ1V2 − γ2Vξ + Λ2 (64)
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where γ1 =
min{γ1v,1,γ1v,2,γ1v,3,γ1ϖ,1,γ1ϖ,2,γ1ϖ,3, ¯̄hv , ¯̄hϖ}

8 , γ2 = min{γ2v,1, γ2v,2, γ2v,3, γ2v,4, γ2ϖ,1,

γ2ϖ,2, γ2ϖ,3, γ2ϖ,4}, Λ2 = κv
2 ΦT

v Φv +
κϖ
2 ΦT

ϖΦϖ + 0.557ϑv + 0.557ϑϖ + 2ι +
2
∑

j=1

(
hvΦ4

v,j
12 +

3hvΦ4
v,j

4ς4
v,j

)
+

2
∑

j=1

(
hϖΦ4

ϖ,j
12 +

3hϖΦ4
ϖ,j

4ς4
ϖ,j

)
.

3.2. Stability Analysis

Theorem 1. Consider the NMR system (1); by constructing virtual controllers (32), (33) and
using parameter adaptive law (44), (45), intermediate control law (59)–(61), and ETM (36), it can
be achieved that:

(1) All the signals are bounded, and the tracking error system (11) converges to prescribed regions{
zv|−λvQ−1 ≤ zv ≤λ̄vQ−1} and

{
zϖ |−λϖQ−1 ≤ zϖ ≤λ̄ϖQ−1} within a bounded set-

tling time of the system.
(2) Zeno phenomenon will not present.

Proof of Theorem 1 (1). From Lemma 1 and Equation (64), it can be concluded that the
convergence time of the system (1) is practical fixed-time, and satisfies:

T ≤ 1
γ1Θ

+
1

γ2Θ(1 − ξ)
(65)

where 0 < Θ < 1.
Furthermore, it can be obtained that the trajectories of transformation errors s1v and

s1ϖ satisfy:

δ =

{
s1i|V ≤ min

{(
Λ

(1 − Θ)γ1

) 1
2
,
(

Λ
(1 − Θ)γ2

) 1
ξ

}}
(i = v, ϖ) (66)

From (29) and (42), the ABLFs are chosen as:

Vv =
qv

2
ln

λ̄2
v

λ̄2
v − s2

1v
+

1 − qv

2
ln

λ2
v

λ2
v − s2

1v
(67)

Vϖ =
qϖ

2
ln

λ̄2
ϖ

λ̄2
ϖ − s2

1ϖ

+
1 − qϖ

2
ln

λ2
ϖ

λ2
ϖ − s2

1ϖ

(68)

V = Vv + Vϖ +
1

2mv
s2

2v +
1

2mϖ
s2

2ϖ +
1
2

Φ̃T
v K−1

v Φ̃v +
1
2

Φ̃T
ϖK−1

ϖ Φ̃ϖ (69)

It can be obviously deduced that the last four items on the right side of function V are
entirely semi-positive. Combining from (66) to (68), the following inequalities hold:{

Vv ≤ Vv + Vϖ ≤ V
Vϖ ≤ Vv + Vϖ ≤ V

(70)

qv

2
ln

λ̄2
v

λ̄2
v − s2

1v
+

1 − qv

2
ln

λ2
v

λ2
v − s2

1v
≤ V ≤ δ (71)

qϖ

2
ln

λ̄2
ϖ

λ̄2
ϖ − s2

1ϖ

+
1 − qϖ

2
ln

λ2
ϖ

λ2
ϖ − s2

1ϖ

≤ V ≤ δ (72)

Case 1. If qi = 1, (71) and (72) can be simplified as follows:

1
2

ln
λ̄2

v

λ̄2
v − s2

1v
≤ δ (73)
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1
2

ln
λ̄2

ϖ

λ̄2
ϖ − s2

1ϖ

≤ δ (74)

According to the relationship between ex and lnx, we can obtain that eln x = x. Thus,
the following equations can be deduced.

λ̄2
v

λ̄2
v − s2

1v
≤ e2δ (75)

λ̄2
ϖ

λ̄2
ϖ − s2

1ϖ

≤ e2δ (76)

It is known that
√

1 − e−ρi < 1(ρi = 2δ > 0) holds. Therefore, by a simplification
operation, it can be obtained as follows:

s1v ≤λ̄v
√

1 − e−ρv <λ̄v (77)

s1ϖ ≤λ̄ϖ

√
1 − e−ρϖ <λ̄ϖ (78)

Case 2. If qi = 0, it is similar to the deduction in Case 1. However, it is worth
mentioning that, here, s1i becomes negative. Thus, the consequence in Case 2 is presented
as follows:

−λv ≤ −λv
√

1 − e−ρv ≤ s1v (79)

−λϖ ≤ −λϖ

√
1 − e−ρϖ ≤ s1ϖ (80)

By further deduction, it yields:

−λv ≤ −λv
√

1 − e−ρv ≤ s1v ≤λ̄v
√

1 − e−ρv <λ̄v (81)

−λϖ ≤ −λϖ

√
1 − e−ρϖ ≤ s1ϖ ≤λ̄ϖ

√
1 − e−ρϖ <λ̄ϖ (82)

where ρv = ρϖ = 2δ > 0.
Thus, combining with (16), the following inequalities can be obtained:

−B1v ≤ −λv

lv
≤ zv ≤ λ̄v

lv
≤ B2v (83)

−B1ϖ ≤ −λϖ

lϖ
≤ zϖ ≤ λ̄ϖ

lϖ
≤ B2ϖ (84)

According to the definition of V, we can obtain that all the errors s1v, s2v, s1ϖ, s2ϖ,
Φ̃v, and Φ̃ϖ are bounded. As Φ̃v and Φv are bounded variables, then Φ̃v = Φv − Φ̂v, and
one can obtain that Φ̂v is bounded. In the same way, we can get that Φ̂ϖ is also bounded.
Additionally, according to the definition of αv and αϖ , it can be deduced that αv and αϖ are
bounded. Last but not least, the boundness of uv, uϖ , ūv, and ūϖ are yielded from (36), (59),
(60), and (61).

Ultimately, by utilizing the proposed method, it can be proved that all the sig-
nals are bounded, and the tracking error system (11) converges to prescribed regions{

zv|−λvQ−1 ≤ zv ≤λ̄vQ−1} and {zϖ | − λϖQ−1 ≤ zϖ ≤ λ̄ϖQ−1} within a bounded set-
tling time of the system.

Proof of Theorem 1 (2). According to (36), the derivative of ∆i(t) satisfies the following
inequality:

d
dt
|∆i(t)| ≤

∣∣Ω̇i(t)
∣∣ ≤ ⌢

Ωi (85)

where
⌢

Ωi represents the upper boundary of
∣∣Ω̇i(t)

∣∣.
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As lim
tk→tk+1

∆i(t) ≥ Ωi(t)− ui and ∆i(tk) = 0, the following inequality can be obtained:

lim
tk→tk+1

d
dt
|∆i(t)| ≥

σi|ui|+ gi
tk+1 − tk

≥ gi
tk+1 − tk

(86)

Further, it can be seen that:

0 <
gi
⌢

Ωi

≤ tk+1 − tk (87)

That is, it can be deduced that there exists the minimal interval triggered time gi
⌢
Ωi

between any two continuous triggering to prevent Zeno behavior from happening. Fur-
thermore, increasing the value of the specified parameter gi could help extend the minimal
interval triggered time. Additionally, the more the value of the designed parameter σi
increases, the more communication resources could be reserved.

At this point, the proof process is completed.
The proposed theorem has been proved. With the proposed adaptive event-triggered

tracking control method, it can be deduced that the NMR system, which has asymmetric
relative distance and bearing angle constraints, is capable of converging with guaranteed
performance within a bounded settling time of the system.

Remark 4. On the foundation of the aforementioned analysis, it can be deduced that the upper bound
of convergence time of the system can be defined, which is independent of different system’s initial
conditions. Furthermore, it can be also obtained that by choosing different values of ξ, γ1, γ2, and Θ,
different upper bounds of the convergence time can be selected. Then, γ1 and γ2 can be defined by the
designed parameters such as γ1v,1, γ1v,2, γ1v,3, γ1ϖ,1, γ1ϖ,2, γ1ϖ,3, ¯̄hv, ¯̄hϖ, γ2v,1, γ2v,2, γ2v,3, γ2v,4,
and γ2ϖ,1.

4. Simulations

In this section, aimed at verifying the validity of the proposed adaptive tracking control
strategy, two practical simulation examples under different trajectories are considered. The
values of system parameters are given in Table 1. Referred from [34], the inertia matrix
parameters are given by the following equations:

m1 =
1
4

b−2r2
(

meb2 + I
)

m2 =
1
4

b−2r2
(

meb2 − I
)

me = mb + 2mw

I = mba2 + 2mwb2 + Ib + 2Im

(88)

where m1 and m2 represent the masses of a robot body and a single propelling wheel
equipped with a motor, respectively; a denotes the distance between the center of robot
mass Pc and the center of wheel axis Pw. In addition, Ib, Iw, and Im are the robot body’s
moment of inertia about the vertical axis through Pc, one propelling wheel’s moment of
inertia about the wheel axis Pw, and one propelling wheel’s moment of inertia about the
wheel diameter, respectively.

The Coriolis coefficient can be obtained as follows:

c =
1
2

b−1r2mba (89)

The simulation objective is to enable the NMR to dislodge the enemy under a desired
trajectory given by (4), and the relative distance and bearing angle constraints would never
be violated. That is, the robot can always keep a safety distance from the enemy to avoid
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collision and maintain the enemy’s visibility by the cameras and sensors equipped on
the robot.

According to Equation (4), a series of various trajectories can be generated by appoint-
ing different values for vd and ϖd, involving a static point, a straight line with different
length, a circle with a radius of vd

ϖd
, etc.

Table 1. NMRs parameters (data from [34]).

Variable Value Variable Value

b 0.75 [m] Ib 15.625 [kg·m2]
a 0.30 [m] Iw 0.0050 [kg·m2]
r 0.15 [m] Im 0.0025 [kg·m2]

mb 30 [kg] d1 5 [kg·m2·s−1]
mw 1 [kg] d2 5 [kg·m2·s−1]

4.1. Example 1: Circle Trajectory

To generate the desired circle dislodging trajectory with a radius of 20 m, the following
parameters are considered: 

xd = 20 sin(0.1t)
yd = 20 (1 − cos(0.1t))
ϕd = 0.1t

vd = 2

ϖd = 0.1

(90)

The system’s initial conditions are presented as Cases I, I I, and I I I in Table 2. The
parameters of relative posture are given in the first line of Table 3. The designed param-
eters are shown in the second line of Table 3. It is worth pointing out that the relative
distance and bearing angle constraints consisting of (8)–(10) would never be violated when
Equations (12) and (13) hold. Thus, the parameters of PPF are selected in the third line of
Table 3 for better convergence property of the tracking error system (11). In addition, the
parameters related to ETM are given in the last line of Table 3.

Table 2. NMR initial conditions in Example 1.

Case x(0) y(0) ϕ(0) v(0) ϖ(0)

I −0.2 [m] 0.8 [m] −π
4 [rad] 1 [m/s] 0 [rad/s]

I I −1.4 [m] −0.6 [m] −π
6 [rad] 3 [m/s] 0.8 [rad/s]

I I I −1.6 [m] 0.2 [m] 0 [rad] 1.8 [m/s] 2.4 [rad/s]

The simulation results are presented in Figure 3. According to Figure 3, the proposed
tracking control scheme is instrumental for a type of NMR with asymmetric relative
distance and bearing angle constraints. Figure 3a displays the enemy’s reference trajectory
and real trajectory (robot’s output trajectory), which show an ideal performance that the
robot can effectively dislodge the target under a certain trajectory. Figure 3b,c show the
tracking error of relative distance and bearing angle, respectively. It is obvious that all
the tracking errors converge into a predefined region given by PPF in a short time and
never break away from the bounded area. Next, the curve of control torque input applied
about the linear and angular axis are depicted in Figure 3d,e, respectively. It is worth
pointing out that the blue curve represents the system’s original input and the red one is
the input under the event-triggered mechanism (ETM). Accordingly, we can obtain that
the control torque inputs are bounded. The triggered time intervals are given in Figure 3f,
which depicts that the maximal triggered time intervals of uv(t) and uϖ(t) are 0.15 s and
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0.14 s, respectively. Figure 3g and Table 4 reveal that the ETM reduces the triggered number
to conserve communication resources, as the total triggered numbers based on the time-
triggered mechanism (TTM) and ETM are 12,000 and 2591, respectively. That is, 78.408% of
communication resources are successfully conserved by introducing ETM into the channel
from the controller to the actuator. In Figure 3h,i, the estimated values of Φv and Φϖ,
respectively, are given and successfully verify that Φ̂v and Φ̂v are bounded parameters.

Table 3. The specified parameters and the controller parameters of Example 1.

The parameters of relative posture E1v = 1.2 [m], E2v = 0.95 [m], E1ϖ = 0.1 [rad],
E2ϖ = −0.05 [rad], Ēv = 1 [m], Ēϖ = 0 [rad].

The parameters of controllers

ξ = 74/101, k11v = k21v = 34, k12v = k22v = 3,
k11ϖ = k21ϖ = 28, k12ϖ = k22ϖ = 2, fv = 2, fϖ = 4,
ηv,1 = ηv,2 = 2.2, ηϖ,1 = ηϖ,2 = 1.3, κv = hv = 0.2,
κϖ = hϖ = 0.3, Kv = diag(0.1, 0.1, 0.1, 0.01),
Kϖ = diag(0.1, 0.1, 0.1, 0.02), Φ̂v(0) = Φ̂ϖ(0) = [0, 0, 0, 0]T .

The parameters of PPF
B1v = (1 − 0.2)e−0.25t + 0.2, B2v = (1 − 0.05)e−0.25t + 0.05,
B1ϖ = (1 − 0.1)e−0.25t + 0.1, B2ϖ = (1 − 0.05)e−0.25t + 0.05,
χv = χϖ = 4, Qv = Qϖ = 20, λ̄v = 4, λv = 1,λ̄ϖ = 2, λϖ = 1.

The parameter of ETM ϑv = 5, ϑϖ = 2.6, σv = 0.006, σϖ = 0.001, gv = 0.01, gϖ = 0.001.

(a) output trajectory (b) tracking error zv (c) tracking error zϖ

(d) control signal uv (e) control signal uϖ (f) time intervals

(g) triggered number (h) estimated value of Φv (i) estimated value of Φϖ

Figure 3. The simulation results of Example 1 in Case I.
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On the basis of the above simulation results of Figure 3 and Table 4, it can be seen
that the NMR system achieves the ideal performance using the proposed adaptive tracking
control strategy. The system effectively conserves the communication resources while no
Zeno behavior presents. Furthermore, the tracking errors can quickly converge to the
predefined area with guaranteed transient and steady performance under relative distance
and bearing angle constraints, even in different initial states of the system.

In addition, it can be perceived from Figure 4 that the convergence time of relative
distance error and bearing angle error under different initial conditions can always be held
around 0.52 s and 0.66 s, respectively, meaning that the range of the system’s convergence
time is not impacted by different initial conditions of the system.

(a) output trajectory (b) tracking error zv (c) tracking error zϖ

Figure 4. The tracking effect comparison of Example 1 among Cases I, I I, and I I I.

Table 4. Triggered number of Example I in Case I.

Scheme

Triggered Number Object
uv uϖ Total

Time-Triggered Scheme 6000 6000 12,000

Event-Triggered Scheme 1134 1457 2591

The Rate 81.100% 75.717% 78.408%

Take ETM implemented on uϖ as an example. Aimed at comparing the ETM effect
on different values of parameters, five sets of values are selected to complement the
comparison. For convenience, the basic parameters are selected as Example I in Case I. In
addition, we take σv = σϖ = σi(i = v, ϖ), and gv = gϖ = gi(i = v, ϖ). The results are as
shown in Figure 5.

Considering the triggered threshold of the ETM, it can be seen that the variables σi
and gi show positive correlation with the threshold. That is, by increasing σi or gi, the
triggered threshold would be increased, then the triggered number would be reduced
and the triggered intervals would be longer. Simultaneously, it can be deduced that a
smaller threshold could have more precise control applied to the system, then better
system performance can be obtained. Referring to the above regulation, which is shown in
Figure 5, we can choose appropriate triggered parameters to balance system performance
and communication resources occupation.
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Figure 5. Illustration of triggered number by selecting different values of σi and gi in comparison
with time-triggered mechanism (TT).

4.2. Example 2: Varied Radius Trajectory

To further describe the validation of the proposed method, the desired dislodging
trajectory is divided into two sections in this simulation experiment. For the first section,
the trajectory is a semicircle with a radius of 24 m, which would last from 0 s to 15.7 s, and
its parameters are selected as follows:

xd = 24 sin (0.2t)
yd = 24 cos (0.2t + π)

ϕd = 0.2t

vd = 4.8

ϖd = 0.2

(91)

For the second section, the trajectory is a circular arc with a radius of 32 m, which
would last from 15.7 s to 50 s, and its parameters are chosen as follows:

xd = 32 sin (0.15t + 0.25π)

yd = 32 cos (0.15t + 1.25π)− 8

ϕd = 0.15 (t − 5π)

vd = 4.8

ϖd = 0.15

(92)

The system’s initial conditions are presented as Cases I, I I, and I I I in Table 5. Similar to
Example 1, the parameters of relative posture, the parameters of controllers, the parameters
of PPF, and the parameters of ETM are presented in Table 6. In addition, the tracking effect
comparison among Cases I, I I, and I I I is given in Figure 6.

As shown in Figures 6a and 7a, the robots are capable of convergence to the desired
trajectory. Figures 6b,c and 7b,c depict that the relative distance error and bearing angle
error could rapidly converge into a specified asymmetric region within 1 s and 0.8 s,
respectively. In Figure 7d,e, it is shown that the ETM makes great contributions for the
input signals to ease the burden of communication channels. Statistically, from Figure 7f,g
and Table 7, at least 63.020% of communication resources can be preserved. Figure 7h,i
depict that the estimated values of both Φv and Φϖ are bounded. From the aforementioned
analysis, it is obvious that the results of Example 2 are quite similar to Example 1. That is,
the proposed control scheme can practically guarantee the system performance while the
system achieves fixed-time convergence under asymmetric constraints.
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(a) output trajectory (b) tracking error zv (c) tracking error zϖ

Figure 6. The tracking effect comparison of Example 2 among Cases I, I I, and I I I.

(a) output trajectory (b) tracking error zv (c) tracking error zϖ

(d) control signal uv (e) control signal uϖ (f) time intervals

(g) triggered number (h) estimated value of Φv (i) estimated value of Φϖ

Figure 7. The simulation results of Example 2 in Case I.

Table 5. NMR initial conditions in Example 2.

State x(0) y(0) ϕ(0) v(0) ϖ(0)

I 0.2 [m] −23.1 [m] −π
3 [rad] 2.3 [m/s] 1.0 [rad/s]

I I −0.7 [m] −23.8 [m] −π
6 [rad] 3.0 [m/s] 1.5 [rad/s]

I I I −0.4 [m] −24.6 [m] π
2 [rad] 3.5 [m/s] 2.0 [rad/s]
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Table 6. The specified parameters and the controller parameters of Example 2.

The parameters of relative posture E1v = 1.2 [m], E2v = 0.95 [m], E1ϖ = 0.1 [rad],
E2ϖ = −0.05 [rad], Ēv = 1 [m], Ēϖ = 0 [rad].

The parameters of controllers

ξ = 68/101, k11v = k21v = 60, k12v = k22v = 4,
k11ϖ = k21ϖ = 42, k12ϖ = k22ϖ = 3, fv = 1.2, fϖ = 1.4,
ηv,1 = ηv,2 = 0.6, ηϖ,1 = ηϖ,2 = 1.7, κv = hv = 0.1,
κϖ = hϖ = 0.1, Kv = diag(0.1, 0.1, 0.1, 0.03),
Kϖ = diag(0.1, 0.1, 0.1, 0.01), Φ̂v(0) = Φ̂ϖ(0) = [0, 0, 0, 0]T .

The parameters of PPF
B1v = (1 − 0.2)e−0.33t + 0.2, B2v = (1 − 0.05)e−0.33t + 0.05,
B1ϖ = (1 − 0.1)e−0.33t + 0.1, B2ϖ = (1 − 0.05)e−0.33t + 0.05,
χv = χϖ = 3, Qv = Qϖ = 20, λ̄v = 4, λv = 1,λ̄ϖ = 2, λϖ = 1.

The parameter of ETM ϑv = 2, ϑϖ = 2, σv = 0.005, σϖ = 0.001, gv = 0.015, gϖ = 0.01.

Table 7. Triggered number of Example II in Case I.

Scheme

Triggered Number Object
uv uϖ Total

Time-Triggered Scheme 5000 5000 10,000

Event-Triggered Scheme 1735 1963 3698

The Rate 65.300% 60.740% 63.020%

In the actual application process of the NMR, the wheels tend to be affected by road
conditions, which would lead to various deformation of the wheels, and then the radius of
the wheels would correspondingly change. Therefore, a deformation disturbance signal of
the radius of wheels is introduced into Example 2 to further simulate the actual application
process of the NMR under wheel deformation. As shown in Figure 8a, the elements of
signal are randomly selected from the range [0.12, 0.18].

(a) deformation disturbances signal of the radius of wheels

(b) output trajectory (c) tracking error zv (d) tracking error zϖ

Figure 8. Cont.
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(e) estimated value of Φϖ (f) estimated value of Φϖ

Figure 8. The tracking effect of Example 2 under disturbances of r in Case I.

From Figure 8, it can be seen that the NMR can attain the desired performance in a
dislodging mission under deformation disturbances of the radius of the wheels, showing
nice robustness of the proposed control strategy.

4.3. Comparison with Related Work

As shown in Table 8, in comparison with related research in the literature, it can be
seen that the majority of these studies focused more on Lyapunov asymptotic or finite-
time control framework. The fixed-time framework can render the convergence time
independent of initial conditions of the system and greatly enhance the adaptability for
practical applications. Similar to the purpose of fixed-time control, ETM, asymmetric
state constraints and utilizing torque as an input signal can contribute to improving the
practicability or adaptability of the proposed method for NMRs. Moreover, prescribed
performance can even maintain the tracking errors of the system being limited in a given
region so as to effectively avoid collision or losing visibility with the enemy.

Table 8. Comparison with related work.

Scheme
Convergence Triggered Sate Input Prescribed
Framework Strategy Constraint Signal Performance

In [20] Finite-T TT Sym Torque NO
In [32] AS ET Sym Torque NO
In [33] AS ET Sym Velocity NO
In [34] AS TT Sym Torque YES
In [37] Fixed-T TT Sym Torque YES
In [38] Finite-T TT Sym Velocity NO

Proposed Fixed-T ET Asym Torque YES

AS = Asymptotic Stability, Fixed-T = Fixed-Time, Finite-T = Finite-Time, ET = Event-Triggered, TT = Time-
Triggered, Sym = Symmetric, Asym = Asymmetric.

4.4. Discussion

From the above analysis and experimental results, it can be seen that the NMR system
could implement the dislodging mission and perform high precision tracking. Addition-
ally, similar to the theoretical deduction, the system is capable of achieving fixed-time
convergence while the transient and steady-state performance are guaranteed. Therefore,
collision between the enemy robot and the manipulated robot is effectively avoided, and
the manipulated robot can always maintain the visibility of the enemy while implementing
the dislodging mission. In addition, the convergence time is independent of the initial
conditions, showing great scalability and universality of the system. Moreover, the burden
of the controller-to-actuator channel is effectively alleviated by utilizing ETM with a relative
threshold. At least 63.020% of communication resources are well preserved.
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Nevertheless, if the triggered condition of the ETM with relative threshold is satisfied,
it can be understood that the ETM would be triggered and the ETC input signal would
be updated. Consequently, when the control signal abruptly surges, the system would
suffer a significant impulse, which may deteriorate the system performance. This can be
seen in Figures 3e and 7e. Therefore, a prescribed performance function is introduced to
restrict the tracking errors zv and zϖ in a given region, so as to diminish the impact caused
by abrupt significant control signals. It can be also seen from Figures 3b,c and 7b,c that
the trajectories of the tracking errors can be effectively maintained in the prescribed region
while the control signals are relatively large.

5. Conclusions

In this research, a fixed-time guaranteed performance adaptive event-triggered track-
ing control method has been investigated for a category of NMRs under asymmetric state
constraints. By taking a backstepping technique as backbone, an ABLF is constructed to
ensure the tracking errors converge with a predefined time that is irrelevant to the initial
conditions of the system, and the violation of asymmetric constraints is effectively avoided.
Additionally, a transform function is formulated to guarantee the transient and steady-state
performance of the tracking errors. Specifically, the NMR is capable of showing great track-
ing performance since the collision between enemy robot and NMR is avoided throughout
the dislodging mission and the NMR never loses the visibility of the enemy. In addition, an
ETM with relative threshold is introduced to preserve communication bandwidth from the
controller to the actuator, and Zeno behavior is successfully eliminated. Ultimately, two
simulation results are carried out to verify the validity of the proposed control strategy. In
future work, how to develop an ETM that could prevent significant impulse input from
being introduced into the system and place that ETM into the sensor-to-controller channel
will be our area of interest.
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