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Abstract: In many cases, it is difficult to obtain precise distributional information on multivariate
sequences. Therefore, there is a need to propose nonparametric methods for monitoring multivariate
sequences. This article discusses the multivariate change detection problem and utilizes the kernel
function as the statistic to construct the nonparametric Multivariate Cumulative Sum multi-chart,
under the assumption that there is prior information about the abrupt changes. Through theoretical
and numerical analysis, we show that the proposed control chart is more effective compared to other
existing control charts. The good monitoring effect of this method demonstrates a strong potential
for application.
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1. Introduction

Statistical Process Control (SPC) is an important problem in numerous applications.
The development of science and the increase in data storage have led to an increasing need
for Multivariate Statistical Process Control (MSPC) [1,2]. The purpose of change detection
is to raise an alarm as soon as possible when a change occurs. In order to evaluate the
detectability of the control chart, we usually use two kinds of average run lengths (ARLs):
one is in-control (IC) ARL, denoted by ARL0, and the other is out-of-control (OC) ARL,
denoted by ARL1. With the same ARL0, a control chart with a smaller ARL1 is better and
can detect changes more effectively.

In the literature, many researchers focus on this area and propose various methods
to detect multivariate variables. Multivariate Statistical Process Control techniques were
established by Hotelling in his pioneering paper in 1947 [3], which monitored the mean
vector of multiple quality variables following a multivariate normal distribution. Sub-
sequently, the field has attracted many experts to conduct related research and many
different multivariate control charts have been proposed. In the literature, multivariate
control charts can be classified into two categories according to the presence or absence
of the assumption of data distribution. The first category with a distribution assumption
is parametric. These include the Multivariate Exponentially Weighted Moving Average
control chart (MEWMA [4,5]), Multivariate Cumulative Sum control chart (MCUSUM [6,7])
and other control charts, such as [8–10], which use different strategies to construct control
charts to detect multivariate variables. These charts typically require the distribution of
the observed data to obey a parametric (usually normal) form. However, in most cases,
we lack the distributional information, or we do not have enough samples to estimate the
exact distribution. The second category is nonparametric without distribution assumption,
i.e., distribution-free control charts. Unfortunately, unlike many univariate nonparametric
charts, it is challenging to design a distribution-free MSPC scheme based on conventional
construction [11]. There are many multivariate nonparametric control charts proposed.
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Refs. [12,13] discussed multivariate process control in the context of multivariate data.
Ref. [14] proposed general and multiplicative nonparametric ratio models for data envelop-
ment analysis problems with interval data. Ref. [15] provided a variable sampling interval
(VSI) Shewhart X̄ chart. Ref. [2] proposed a multivariate sign EWMA chart without dis-
tribution assumption, which requires some in-control observations. Other nonparametric
multivariate control charts such as [16–18] also tried to use different methods to detect
changes without parametric assumption.

In this paper, we develop a nonparametric or distribution-free control chart for moni-
toring multivariate data. Our approach is different from the existing nonparametric SPC
methods in the sense that we apply the kernel function to construct the CUSUM multi-chart,
that is, we construct a CUSUM-type control chart that does not require the distributional
information of the multivariate data. Meanwhile, the method proposed in this paper solves
three challenges in multivariate change detection:

• The first challenge is as follows: It is known that the traditional CUSUM control
chart needs both pre-change and post-change information [7]. However, in reality,
for online detection, we usually do not know the post-change information, we only
have some pre-change observations. In order to solve this challenge, we construct the
nonparametric multivariate CUSUM multi-chart. The idea of the multi-chart approach
originates from [19], which shows that the multi-chart approach can detect different
types of changes.

• The second challenge is how to capture important features when constructing a control
chart for multivariate data. It is known that for multivariate data, such as when the
dimension is p = 30, which is a relatively large number, statistics like Hotelling’s T2

may contain errors and trigger false alarms in online change detection [3]. In order to
overcome this challenge, we utilize the kernel function to capture information for the
multivariate data.

• The last challenge is the amount of historical pre-change observations; we may not
have too many historical pre-change observations, that is, the amount of historical
pre-change observations required for the method proposed in this paper does not need
to be very large, making this method promising for application. For nonparametric
control charts, historical pre-change observations are required. However, if the number
of observations needed is excessively large, the loss outweighs the gain, and in many
application scenarios, it is not achievable [20].

From the above statements, we can conclude that the kernel-based multivariate non-
parametric CUSUM multi-chart proposed in this paper can overcome the aforementioned
three challenges. We also present the theoretical results and simulation results of the control
chart proposed in this paper.

The remainder of this paper is organized as follows: In Section 2, we first present a
brief review of the reproducing kernel Hilbert space (RKHS) and then introduce the kernel-
based multivariate nonparametric CUSUM multi-chart proposed in this paper, along with
some theoretical properties. Section 3 uses the simulated data to present that the proposed
kernel-based multivariate nonparametric CUSUM multi-chart has a better performance
compared with other existing control charts. The conclusion and recommendations are
given in Section 4. The proofs of the theoretical results are listed in Appendix A.

2. Kernel-Based Multivariate Nonparametric CUSUM Multi-Chart

In this section, we propose the kernel-based CUSUM multi-chart for the multivariate
observation sequences. To illustrate this model in detail, we first briefly review the repro-
ducing kernel Hilbert space (RKHS). This involves providing the definition of the kernel
function and the statistics used for change detection. With the kernel function, we define
the nonparametric CUSUM multi-chart and obtain the theoretical properties to ensure the
performance of this model.

It is known that for a traditional univariate CUSUM control chart, we need to know
the pre-change and post-change distributions to define the statistics used in the control
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chart. However, the post-change information is usually unknown in reality, as is the
distribution information. So, in this section, the kernel-based CUSUM multi-chart can solve
the above problem when both the post-change information and the distribution information
are unknown.

2.1. Examples of Kernels

In this section, we construct the CUSUM multi-chart based on the kernel function.
Here, we give some examples of kernels that are widely used, as follows:

• When X = Rd, klin(x, y) =< x, y >Rd defines the linear kernel. When d = 1, the KCP
(kernel change-point) then coincides with the algorithm proposed in [21].

• When X = Rd, kG
h (x, y) = exp[−||x − y||2/(2h2)] defines the Gaussian kernel with

bandwidth h > 0, which is used in the experiments in Section 3.
• When X = Rd, kL

h (x, y) = exp[−||x − y||/h] defines the Laplace kernel with band-
width h > 0, which is used in the experiments in Section 3.

• When X = Rd, ke
h(x, y) = exp(< x, y >Rd /h) defines the exponential kernel with

bandwidth h > 0. Note that, unlike Gaussian and Laplace kernels, the exponential
kernel is not translation-invariant.

Classical kernels can be found in the books by [22], with the advantageous properties
of the Gaussian kernel and Laplace kernel; we use these two kernels in the simulations and
compare the results with other online detection methods. Kernel change-point methods
can be used in offline monitoring problems and online monitoring problems. Here, we
consider online change detection. So, we have pre-change information through historical
pre-change observations, but the exact post-change information is usually unknown.

2.2. Kernel Change-Point Online Detection Method

Let X−m+1, X−m+2, . . . , X0, X1, X2, X3, . . . , XN be the multivariate observation sequence.
And, Xi,−m + 1 ≤ i ≤ N ∈ Rp are all p-dimensional vectors. We assume that X−m+1,
X−m+2, . . ., X0 are historical pre-change observations, and the change-point is defined as
τ (1 ≤ τ ≤ N). The observation sequence changes from an in-control to an out-of-control
state after the change-point τ. From the m historical pre-change observations, we can
estimate the pre-change mean vector denoted as µ̂0 ∈ Rp. While the post-change mean
vector, denoted by µ1 ∈ Rp, usually is not known in online change detection, we can
obtain the possible boundary of the post-change mean vector, denoted by D, based on
empirical knowledge or prior information. With the possible boundary D, we can define
the c reference post-change mean vectors µk

1, 1 ≤ k ≤ c to construct multiple control charts
to detect different types of changes.

With the kernel function, estimated pre-change mean vector µ̂0, and possible post-
change mean vectors µk

1, where 1 ≤ k ≤ c, we can construct the kernel-based CUSUM
multi-chart. The kernel-based CUSUM multi-chart is defined as follows: For fixed c ≥ 2,

TMC = min
1≤k≤c

Tk,

Tk = min
{

1 ≤ n ≤ N : max
1≤j≤n

n

∑
i=j

ln
k(Xi, µk

1)

k(Xi, µ̂0)
> dk

n

}
,

(1)

where dk
n ∈ R is called the control limit. If an abrupt change occurs, we warn as soon as

the statistic exceeds the control limit. So, it is important to study the statistical properties
of TMC. For p-dimensional observations, possible changes may occur in each dimension.
Suppose that in each dimension we give l pre-specified known reference values, then
c = lp. However, in reality, the changes usually only occur in several dimensions, and in
the simulation, we consider the changes only occur in selected [p/5] dimensions.

The traditional probability likelihood ratio function is replaced by the kernel ratio
function in (1). Under a nonparametric assumption, the CUSUM-type control chart can
not use the probability likelihood ratio function. Therefore, we aim to find an alternative
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function to replace the probability function. The reasons why we consider the kernel
function are listed as follows:

• The kernel function contains a lot of information, especially in high dimensional cases,
and is commonly used in classification problems [23]. While change detection is a
very special “classification” problem, in change detection, we need to classify the data
as either in-control or out-of-control data. Similarly, can we apply the kernel function
in change detection?

• Actually, the kernel function is widely used in the literature in online and offline
change detection problems, as demonstrated in [24,25]. Can we naturally apply this
function in a CUSUM-type control chart?

For the two reasons mentioned above, we apply the kernel function to replace the
probability function and construct the CUSUM multi-chart to solve the problem that the
shift is unknown before detection.

Similarly, for the kernel-based CUSUM multi-chart defined in this section, in order to
evaluate the detection power of any kernel-based test T with ARL0(T) = E0(T) = γ, we
also propose an index called KCPI (Kernel Control Chart Performance Index), as in [19],
which is as follows:

KCPI(T) = exp{−
∫

D
w(µ1)

ARL1(T)− ARL∗
1

ARL∗
1

dµ1}, (2)

where
ARL1(T) = E1(T).

The definition of ARL is the average value of run length T. Since the state is divided
into in-control and out-of-control states, there are two ARLs. E0 means the mathematical
expectation of the in-control state, and the in-control ARL is denoted by ARL0 = E0(T).
Similarly, E1 stands for the mathematical expectation of the out-of-control state; the out-
of-control ARL is denoted by ARL1 = E1(T). ARL∗

1 is the lower bound and w(µ1) is the
weight of the unknown post-change mean vector µ1, that is, we do not know the exact value
of µ1, but from engineering knowledge, we know the possible boundary of µ1 denoted by
D and the weight function denoted by w(µ1). If we have no additional information about
the unknown µ1, the weight function is w(µ1) = 1/

∫
D dµ1.

Since the purpose of change detection is to provide an alert as soon as possible
in the case of an abrupt change, a smaller value of ARL1 represents an earlier alarm.
For comparison purposes, we usually need a benchmark, i.e., a common ARL0 for different
control charts. So, in general, in order to compare the performance of several control
charts, we ensure they have a common ARL0 and then compare the ARL1 of the control
charts. The smaller the value of ARL1, the better the performance of the control chart,
which is the essence of the definition of the KCPI. If KCPI(TMC) is larger, the performance
of the kernel-based CUSUM multi-chart is better. So, finding the optimal design of the
kernel-based CUSUM multi-chart involves finding the maximum value of KCPI(TMC).
Under the multivariate observation cases, if finding the maximum value of KCPI(TMC) is
hard, we can choose stochastic reference values of post-change µk

1, 1 ≤ k ≤ c, as long as the
corresponding KCPI is large.

2.3. Theoretical Properties of Kernel-Based CUSUM Multi-Chart

In this section, we discuss the theoretical properties of the proposed kernel-based
CUSUM multi-chart to ensure the performance of change detection.

Similarly, as in Theorem 3 of [26,27], for a large γ, we can obtain the lower bound
ARL∗

1 = [E1(T)]∗ with ARL0(T) = E0(T) = γ, as follows:

[E1(T)]∗ ∼
ln γ

KI(µ1, µ̂0)
, (3)
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where

KI(µ1, µ̂0) = E1

[
ln

k(X, µ1)

k(X, µ̂0)

]
. (4)

For a large N, γ, in order to obtain the asymptotic ARL1 of the kernel-based CUSUM
multi-chart, we first divide the region D into several disjointed subsets by using the
reference post-change µk

1, 1 ≤ k ≤ c, according to the kernel-based Kullback–Leibler
information distance in (4).

Let

Dk =

{
µ1 ∈ D : KI(µ1, µk

1) ≤ min
l ̸=k

KI(µ1, µl
1)

}
for 1 ≤ k ≤ c. Thus, we have a disjointed division of the region D, with Dk, 1 ≤ k ≤ c,
and then,

KCPI(TMC) = exp{−
c

∑
k=1

∫
Dk

w(µ1)
ARL1(TMC)− ARL∗

1
ARL∗

1
dµ1}. (5)

The definition of the kernel-based inner Kullback–Leibler information distance is
as follows:

KI(µ1, µk
1, µ̂0) = E1

[
ln

k(X, µk
1)

k(X, µ̂0)

]
= E1

[
ln

k(X, µ1)

k(X, µ̂0)

]
− E1

[
ln

k(X, µ1)

k(X, µk
1)

]
= KI(µ1, µ̂0)− KI(µ1, µk

1).

(6)

The last equation holds with the definition of KI(µ1, µ̂0) and KI(µ1, µk
1) in (4). Here,

we assume that the reference µk
1, 1 ≤ k ≤ c satisfies the following conditions:

(1) KI(µ1, µk
1, µ̂0) > 0 if µ1 ∈ Dk for 1 ≤ k ≤ c.

(2) KI(µ1, µ̂0) ≥ 0 for µ1 ∈ D.

The first condition means that if µ1 ∈ Dk, then KI(µ1, µ̂0) > KI(µ1, µk
1), which is

consistent with the intuitive reality. We can interpret that the “distance” from µ1 to µk is
smaller than the distance from µ1 to µ̂0. The reference post-change µk

1 should be designed
to be closer to the real but unknown post-change µ1. The second condition ensures that
the kernel-based Kullback–Leibler information distance is non-negative, which imposes
constraints on the selection of different kernel functions. So, in the simulation, we choose
the Gaussian kernel and Laplace kernel; these two kernel functions all satisfy the above
two conditions. In order to give a clear form of (5), we set

dk
lim = lim

n→∞
dk

n.

By using a similar method as in [28], we can prove the following theorems. Theorem 1
shows the asymptotic results regarding ARL1 for a large N, γ.

Theorem 1. Let Tk, 1 ≤ k ≤ c have a common ARL0 = E0(Tk) = γ. If µ1 ∈ Dk, then, a.s.,

Tk
Tl

≤
max(0, KI(µ1, µl

1, µ̂0)

KI(µ1, µk
1, µ̂0)

,

Tk < Tl ,
TMC

dk
lim

=
Tk

dk
lim

+ o(1) → 1
KI(µ1, µk

1, µ̂0)

(7)
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for τ = 1, k ̸= l, and

E1

[
TMC

dk
lim

]
= E1

[
Tk

dk
lim

]
+ o(1) =

1
KI(µ1, µk

1, µ̂0)
(1 + o(1)) (8)

for large N, γ.

By introducing the kernel-based Kullback–Leibler information distance in (4) and the
kernel-based inner Kullback–Leibler information distance in (6), we can obtain the statistical
properties of TMC. For the kernel-based CUSUM multi-chart, in order to compare their
ARL1s, there are two common ARL0s, γ′ and γ, respectively, for Tk and T′

MC. The dynamic
control limits d′kn , 1 ≤ k ≤ c are for γ′, and dk

n, 1 ≤ k ≤ c are for γ, and the inequality
d′klim > dk

lim holds. Writing T′
k = T(d′kn ) for short, then

E0
[
T′

k
]
= γ′ > E0

[
Tk
]
= γ = E0(T′

MC) (9)

for 1 ≤ k ≤ c, where T′
MC = min1≤k≤c{T′

k}.
So, from Theorem 1, we have

ARL1(T′
MC) →

d′klim
KI(µ1, µk

1, µ̂0)
a.s.

And, from (3),

ARL∗
1 → ln γ

KI(µ1, µ̂0)
a.s.

Then, KCPI(TMC) can have a simple form for a large N and γ:

KCPI(TMC) = KCPI(µk
1, 1 ≤ k ≤ c) = exp{−

∫
D

w(µ1)
ARL1(T)− ARL∗

1
ARL∗

1
dµ1}

= exp
{

1 −
∫

D
w(µ1)

ARL1(T)
ARL∗

1
dµ1

}
= exp

{
1 − ∑

k

∫
Dk

w(µ1)
KI(µ1, µ̂0)

KI(µ1, µ̂0)− KI(µ1, µk
1)

dµ1

}
.

(10)

Then, we give a theorem about the relationship between the kernel-based CUSUM
multi-chart and its constituent chart. Indeed, Theorem 2 shows that the performance of the
kernel-based CUSUM multi-chart is better than that of its constituent charts in detecting an
unknown abrupt change. That is to say, it makes sense to use the kernel-based CUSUM
multi-chart; the kernel-based CUSUM multi-chart has better performance than a single
kernel-based CUSUM chart in detecting unknown abrupt changes.

Theorem 2. pl , 1 ≤ l ≤ c are positive numbers and satisfy

∑
1≤l≤c

pl = 1.

If condition (7) holds for T′
MC and for µ1 ∈ Dk, there is µl

1, k ̸= l such that KI(µ1, µl
1, µ̂0) <

KI(µ1, µk
1, µ̂0), and then for every µ1 ∈ D,

∑
1≤l≤c

pl ARL1(Tl) > ARL1(T′
MC)

for large N, γ.

The theorems above illustrate the beneficial properties of our proposed kernel-based
CUSUM multi-chart.
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3. Comparison and Analysis of Simulation Results

In this section, we present simulation results to demonstrate the performance of
the proposed kernel-based CUSUM multi-chart. And, we choose the commonly used
multivariate normal distribution, multivariate t distribution, and multivariate Gamma
distribution as the simulation examples. For comparison, we use different control charts
to compute the out-of-control average run length ARL1, under the condition that the in-
control average run length ARL0 is the same. For detection problems, we expect to detect
changes promptly as soon as changes occur. Hence, with the same in-control average run
length (ARL0), the smaller the value of out-of-control average run length (ARL1), the better
the performance of the detection.

In the simulation, in order to evaluate the performance of change detection for different
shifts, the criterion is as follows:

KCPI(T) = exp{−
∫

D
w(µ1)

ARL1(T)− ARL∗
1

ARL∗
1

dµ1}

∝ −
∫

D
w(µ1)

ARL1(T)− ARL∗
1

ARL∗
1

dµ1

∝ −
∫

D

ARL1(T)− ARL∗
1

ARL∗
1

dµ1 (if no prior information)

∝ −
∫

D
ARL1(T)dµ1.

We choose a number of possible values of µ1 as a representation in the numerical
simulations and compute the out-of-control ARL1. In this view, we can also conclude that
the performance of the control charts depends on the value of the out-of-control average
run length (ARL1); the smaller the value, the better the performance.

Remark 1. In this section, we compare the performance with different control charts, and the
performance is measured by the ARL. It is well known that the bandwidth has an impact on the
kernel function estimation. The optimal bandwidth h in regression problems has been studied
in [29,30]. However, in the monitoring problem discussed in this paper, the stopping rule is that if
an abrupt change occurs, we issue a warning whenever the statistic exceeds the control limit. In the
case of the same ARL0, the control limit was also influenced by h, so if an abrupt change occurs,
the bandwidth h in Gaussian and Laplace kernel functions has a joint effect on the statistic and the
control limit, and their effects theoretically cancel each other out.

In this section, we compare the Gaussian kernel-based CUSUM multi-chart, Laplace
kernel-based CUSUM multi-chart, and other existing control charts. The performance (i.e.,
detectability) is measured by the ARL. Since the out-of-control state is unknown before
change detection, we choose several representative out-of-control states in the simulation.

3.1. The Case for Multivariate Normal Distribution

In this section, we present simulation results to demonstrate the performance of the
Gaussian kernel-based CUSUM multi-chart (KMulti-Gaussian), the Laplace kernel-based
CUSUM multi-chart (KMulti-Laplace), the distribution-free multivariate goodness-of-fit
chart (DFMGoF), the self-starting EWMAC (SSEWMAC) chart [31], the chart based on the
change-point and generalized likelihood ratio test (short for ChangePt [32]), and the RTC
chart [16]. In the simulation, we consider the Gaussian and Laplace kernel functions-based
CUSUM multi-charts with DFMGoF, RTC, ChangePt, and SSEWMAC. We compare the
values of ARL1 under the case that ARL0 ≈ 200 and m = 100. The bandwidth in the
Laplace and Gaussian kernels is set to h = 1.

Without loss of generality, the mean vector µ0 is set to 0, and the covariance matrix
Σ0 = I is chosen to be diagonal. We consider p = 10, 30, representing the low-dimensional
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and high-dimensional cases, respectively. We compare the out-of-control performance of
the six competing charts.

Similar to other MSPC studies, it is impossible to enumerate all the change patterns
to allow a full-scale study of the charts’ performance. Following similar studies in the
literature [2,20,31,32], we consider scenarios as examples: shifts in the process mean vector
in the first [p/5] components of size δ, i.e., µ1 = µ0 + δe with e = (1, · · · , 1, 0, · · · , 0)T .
We compare their performance in detecting mean shifts of magnitude δ = 0.25, 0.5, 1, 2, 4,
respectively.

The upper part of Table 1 represents the value of the ARL1 for different control charts
for p = 10 with the same value of ARL0 ≈ 200. As we have elaborated before, the smaller
the value of ARL1, the better the detection performance, given the same ARL0. Thus,
from Table 1, we can conclude that KMulti-Gaussian outperforms the other five charts
when p = 10. The lower part of Table 1 represents the value of the ARL1 for different control
charts for p = 30 with the same value of ARL0 ≈ 200; the conclusion is entirely similar.

Table 1. The comparison of the ARL1 in detecting location shifts when m = 100 for a multivariate
normal distribution.

p δ
KMulti-

Gaussian
KMulti-
Laplace DFMGoF RTC ChangePt SSEWMAC

10

0.25 42.63 45.24 93.9 132 186 122
0.5 15.77 16.97 36.1 51.8 134 70.3
1 5.32 5.67 12.4 12.1 36.4 11.6
2 1.84 1.85 5.83 6.23 12.4 4.04
4 1.01 1.01 3.93 4.72 4.81 1.59

30

0.25 23.22 25.92 83.1 100 186 87.8
0.5 7.71 8.33 20.6 24.7 148 22.9
1 2.46 2.36 8.4 7.62 52.9 9.09
2 1.03 1.03 4.08 4.82 23.9 4.6
4 1.01 1.01 2.74 3.9 12.2 2.37

In our simulation setting, we observed that the charts generally have a smaller ARL1
when p = 30 than that when p = 10 given the same δ. This is because the detectability is
largely determined by the Mahalanobis distance of the shifted mean vector from the IC
mean vector, ∆ = (µ1 − µ0)

TΣ−1
0 (µ1 − µ0) (see [31]). Given Σ0 and the change pattern in

our study, we have ∆p=30 > ∆p=10 given the same δ. This can partially explain the better
performance when p = 30.

Our proposed method has a priori information compared to other methods and
extracts the information in the form of kernel functions, such that the simulation results are
not unexpected.

3.2. The Case for Multivariate t Distribution

In this section, we consider the multivariate t distribution. We use tp,ϵ, which repre-
sents multivariate t distribution with ϵ degrees of freedom. Let pre-change observations
belong to multivariate t distribution with 5 degrees of freedom, denoted by tp,5. We
also consider the scenario as follows: shifts in the process mean vector in the first [p/5]
components of size δ, i.e., µ1 = µ0 + δe with e = (1, · · · , 1, 0, · · · , 0)T . We compare their
performance in detecting mean shifts of magnitude δ = 0.25, 0.5, 1, 2, 4, respectively. Table 2
also compares our proposed methods with other existing methods.

The upper part of Table 2 represents the value of the ARL1 for different control charts
for p = 10 with the same value of ARL0 ≈ 200, and the lower part of Table 2 represents
the value of the ARL1 for different control charts for p = 30 with the same value of
ARL0 ≈ 200. As we have elaborated before, the smaller the value of the ARL1, the better
the detection performance, given the same ARL0. Thus, from Table 2, we can conclude that
KMulti-Laplace outperforms the other five charts when p = 10 and p = 30.
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Table 2. The comparison of the ARL1 in detecting location shifts when m0 = 100 for a multivariate
t distribution.

p δ
KMulti-

Gaussian
KMulti-
Laplace DFMGoF RTC ChangePt SSEWMAC

10

0.25 60.75 51.60 140 151.6 188 162
0.5 25.54 20.75 58.5 68.3 155 88.9
1 9.04 7.40 16.4 15.1 59.9 21.4
2 3.58 2.89 7.37 6.74 19.9 8.1
4 1.45 2.01 4.42 5.21 8.21 4.11

30

0.25 63.83 43.05 127 136 184 140
0.5 18.81 11.89 37.7 45.6 154 55.3
1 6.70 4.14 11.5 9.38 64.4 14.2
2 2.76 1.55 5.46 5.77 31.5 6.43
4 1.01 1.01 3.31 4.58 15.8 3.6

3.3. The Case for Multivariate Gamma Distribution

In this section, we consider the multivariate Gamma distribution. We use Gammap,ϵ,
which represents the multivariate Gamma distribution with the shape parameter ϵ and
scale parameter of one. Let the pre-change observations belong to multivariate Gamma
with the shape parameter of three and scale parameter of one, denoted by Gammap,3. We
also consider the scenario as follows: shifts in the process mean vector in the first [p/5]
components of size δ, i.e., µ1 = µ0 + δe with e = (1, · · · , 1, 0, · · · , 0)T . We compare their
performance in detecting mean shifts of magnitude δ = 0.25, 0.5, 1, 2, 4, respectively.

The upper part of Table 3 represents the value of the ARL1 for different control charts
for p = 10 with the same value of ARL0 ≈ 200, and the lower part of Table 3 represents the
value of the ARL1 for different control charts for p = 30 with the same value of ARL0 ≈ 200.
As we have elaborated before, the smaller the value of the ARL1, the better the detection
performance, given the same ARL0.

Table 3. The comparison of the ARL1 in detecting location shifts when m0 = 100 for a multivariate
Gamma distribution.

p δ
KMulti-

Gaussian
KMulti-
Laplace DFMGoF RTC ChangePt SSEWMAC

10

0.25 72.73 73.94 88.3 147 188 137
0.5 35.76 35.03 26.8 59.3 152 67.2
1 14.41 14.33 13.2 10.5 52.9 17.4
2 5.69 5.62 7.27 6.43 17.2 7.39
4 2.30 2.57 4.57 5.05 6.87 3.4

30

0.25 57.78 64.62 43.4 126 183 109
0.5 19.84 24.56 17.2 28.4 159 35.7
1 7.26 7.04 9.2 7.43 62.5 11.9
2 2.62 2.35 5.16 5.25 27.8 5.72
4 1.14 1.09 3.3 4.13 14.7 2.85

From Table 3, we can see that DFMGoF works better in some specific situations (p = 30
and δ = 0.25, 0.5), but note that from all the drift cases combined, KMulti-Gaussian is still
better. We assume that all drift cases are equally likely. For example, the ARL1 of DFMGoF
is 14.38 less than the ARL1 of KMulti-Gaussian when δ = 0.25 and p = 30, but we set a
weight of 0.25/4 when measuring performance in aggregate. Combining all the out-of-
control states considered, KMulti-Gaussian and KMulti-Laplace are better than the other
control charts.

From the three tables of the simulation results, we can conclude that the performance
of the kernel-based multivariate nonparametric CUSUM multi-chart (KMulti-Gaussian and
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KMulti-Laplace) is better than the other four existing control charts, as the ARL1 is smaller
when the ARL0 is the same.

Remark 2. In this section, we compared the performance of different multivariate control charts.
The performance of the methods proposed in this paper may not always be the best because the
KCPI in (5) is an integrated form for all possible post-change mean vectors µ1. Combining all the
out-of-control states considered, the value of the ARL1 for the method proposed in this paper is
better compared with other existing control charts.

Remark 3. The average run length (ARL) is a very important measurement in change detection.
The in-control average run length, denoted by ARL0, is, in the case of the observations, a pre-
change observation. The out-of-control average run length, denoted by ARL1, is, in the case of the
observations, a post-change observation. The purpose of change detection is to alarm as quickly
as possible if an abrupt change occurs. Hence, the smaller the value of the ARL1, the better the
performance of detection when the ARL0 is the same.

4. Concluding Remarks
4.1. The Novelty of the Kernel-Based Multivariate CUSUM Multi-Chart

Traditional CUSUM multi-chart [19,28] is designed for one-dimensional data with a
known distribution. Generalizing to multivariate data is not as straightforward. On the
one hand, it requires some computation. On the other hand, we would like to design a
multivariate CUSUM multi-chart that does not depend on the distribution. This paper
proposes a kernel-based multivariate nonparametric CUSUM multi-chart to solve the
following three challenges:

• In reality, we usually lack post-change information in online detection.
• Effectively capturing important features is essential when the dimension is p = 30,

a slightly larger number. The statistics, such as Hotelling’s T2, may obtain the wrong
alarm in online detection.

• In some cases, the amount of historical pre-change observations is not large.

4.2. Future Research Perspectives

We initially attempted to construct a control chart using the kernel function, which
in turn was found to have good theoretical properties and simulation performance. We
defined the kernel function-based CUSUM multi-chart and KCPI, which further gives the
theoretical properties. In the simulation, we compared our proposed method with other
existing methods and showed the advantages of our proposed method in terms of the
average run length, a crucial index.

At the same time, it has some shortcomings. We assumed that multivariate data have
prior knowledge. As the number of dimensions increases, acquiring prior knowledge
becomes more and more difficult. For example, in the actual production process, there are
many steps involved in production. We can monitor the sensor data from these steps as
multivariate data, but acquiring more precise prior knowledge may necessitate a substantial
investment of time and money.

We can conduct further research on the correlation between multivariate data internally
and investigate the relationship between multidimensional variables when constructing
control charts. This is a valuable research area to consider in the future. We can also
construct parallel control charts using different kernel functions to monitor changes. In the
simulation results above, the Gaussian kernel function and Laplace kernel function each
have their own advantages and disadvantages. As to which kernel function works better,
it depends on the data and how they change. In some data, this kernel function works
well. In other data, another kernel function works well. The subsequent research intends to
combine different kernel functions to construct parallel control charts.
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Abbreviations
The following abbreviations are used in this manuscript:

CUSUM Cumulative Sum
SPC Statistical Process Control
MSPC Multivariate Statistical Process Control
IC in-control
OC out-of-control
ARL average run length
ARL0 in-control average run length
ARL1 out-of-control average run length
MEWMA Multivariate Exponentially Weighted Moving Average
MCUSUM Multivariate Cumulative Sum
VSI variable sampling interval
RKHS reproducing kernel Hilbert space
KCP kernel change-point
KCPI Kernel Control Chart Performance Index
KI Kullback–Leibler information distance
KMutl-Gaussian Gaussian kernel-based CUSUM multi-chart
KMutl-Laplace Laplace kernel-based CUSUM multi-chart
DFMGoF distribution-free multivariate goodness-of-fit chart
RTC Real-Time Constrasts
ChangePt change-point and generalized likelihood ratio test
SSEWMAC self-starting EWMA chart

Appendix A

Proof of Theorem 1. Based on the proofs provided in [19,33], we can easily prove Theorem
1. The only difference is that the measure function is a kernel function.

Proof of Theorem 2. Based on the proofs provided in [19,33], we can easily prove Theorem
2. The only difference is that the measure function is a kernel function.
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