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Abstract: In this paper, we consider a predator-prey diffusion model incorporating hunting coopera-
tion and predator-taxis. Firstly, we establish the global existence of a classical solution for the model
in any spatial dimension. Secondly, we analyze the stability/instability caused by predator-taxis, and
we observe that predator-taxis play a key role in inducing stability changes. Specifically, if the positive
equilibrium is stable for the corresponding reaction-diffusion model, the attractive predator-taxis
can further stabilize the system, while the repulsive predator-taxis may lead to a change in spatial
stability, if the positive equilibrium is unstable for the corresponding reaction-diffusion model, the
attractive predator-taxis makes the model remain unstable, while the repulsive predator-taxis has a
stabilizing effect. Finally, numerical simulations are employed to validate the obtained results.
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1. Introduction

The predator-prey relationship is a common phenomenon in nature and has gar-
nered significant attention in the field of biomathematics research. Through conducting a
investigation into the predator-prey model, we can reveal the evolution law of populations.

Hunting cooperation is a prevalent form of species interaction, which refers to the co-
operative behavior exhibited by certain predators in the process of capturing prey. Hunting
cooperation plays an important role in maintaining ecological diversity and regulating pop-
ulation density. Hunting cooperation can occur between individuals of the same species,
such as lions, wild chimpanzees, fish, ants, birds, and so on [1–5]. Additionally, hunting
cooperation behavior may also exist between different species, such as cheetahs and jackals
preying on deer or badgers and coyotes targeting ground squirrels [6].

To reveal the impact of hunting cooperation by predators on species extinction, Duarte
et al. [7] investigated a tri-trophic food chain model incorporative cooperative hunting,
and they found that predators were more sensitive to extinction when hunting cooperation
increased. Berec [8] considered hunting cooperation in the predator-prey model where the
Holling II functional response is employed. Berec found that hunting cooperation exerts a
destabilizing influence on predator-prey dynamics. Alves and Hilker [9] proposed that the
attack rate of a predator species would increase with the increase in predator density due
to foraging promotion. Therefore, they established a series of predator-prey models with
hunting cooperation and Holling type functional responses, and concluded that cooperative
hunting can improve the persistence of predator populations. Fu and Zhang [10] studied a
Holling II type predator-prey diffusion model incorporative hunting cooperation

ut = d1∆u + σu
(

1 − u
κ

)
− (1 + αv)uv

1 + h(1 + αv)u
, x ∈ Ω, t > 0,

vt = d2∆v +
(1 + αv)uv

1 + h(1 + αv)u
− v, x ∈ Ω, t > 0,

(1)
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where u, v denote prey and predator population densities, respectively. σ and κ are the per
capita birth rate and carrying capacity for prey species, h designates the average hunting
time of a predator for prey, α represents the rate of predator cooperation in hunting. Fu and
Zhang [10] investigated linear stability and Turing instability of positive constant steady
states, and analyzed the existence and stability for the Hopf bifurcated periodic solutions
of this model.

In predator-prey models, the phenomenon of predators moving towards areas with
higher prey density, known as prey-taxis, has been extensively studied. In 1987, Kareiva
and Odell [11] first proposed an ecological model with prey-taxis to elucidate the directional
movement of species. In the following decades, scholars have established numerous models
with prey-taxis to investigate the dynamic relationship between predators and prey [12–14].
Recently, a novel form of predator-taxis has been developed and distinguished from prey-
taxis, in which prey escapes from areas with a high predator density to avoid being captured.
This means that the prey is moving in the direction of the predator. Several researchers
have also explored and constructed several ecological models involving predator-taxis,
see [15–17]. These models assumed that prey would move toward a lower density of
predators to avoid dangerous situations.

Hunting cooperation and predator-taxis are prevalent in real ecosystems, so to better
describe biological phenomena, we discuss the following predator-prey diffusion model
that incorporates hunting cooperation and predator-taxis

ut = d1∆u +∇ · (χu∇v) + σu
(

1 − u
κ

)
− (1 + αv)uv

1 + h(1 + αv)u
, x ∈ Ω, t > 0,

vt = d2∆v +
(1 + αv)uv

1 + h(1 + αv)u
− v, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(2)

where Ω is a bounded domain in Rn (n ≥ 1), ν represents the outward unit normal vector
to ∂Ω, the homogeneous zero-flux condition ensures that (2) is self-contained for x ∈ ∂Ω.
Additionally, the initial data u0(x), v0(x) are smooth non-negative functions that are not
identically zero. The term −∇ · (χu∇v) denotes the directional movement of prey, and χ
represent the sensitivity coefficient of predator-taxis. In particular, when χ < 0, the prey
will move in the direction of the gradient of predators because of group defense when
sensing the risk of predation, and then the predator–taxi is attracted; when χ > 0, it means
that the prey exhibits an opposite movement direction for the gradient of predator, aiming
to evade predation, and the predator-taxi is called repulsive. The model (2) well describes
the effects of predator-taxis and hunting cooperation on a predator-prey diffusion model.
From the perspective of mathematical research, by studying the dynamic behavior of the
model (2), we can understand the relationship between species in the ecosystem more
clearly so as to provide some theoretical support for maintaining a balance of the ecosystem
and preventing species extinction.

The organization of this paper is as follows. Section 2 presents the global existence of
a classical solution to model (2). In Section 3, we analyze the instability caused by predator-
taxis for positive equilibrium in the model (2). Section 4 uses numerical simulations to
verify the theoretical results. Finally, concise conclusions are provided in Section 5.

2. Global Existence of Classical Solution

In this section, we prove the global existence of a solution for the model (2) in any
spatial dimensions. Moreover, throughout this section, we denote Ci (i = 1, 2, 3, · · · ) by
generic positive constants that may differ from line to line. For simplicity, write

∫
Ω wdx

instead of
∫

Ω w.
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2.1. Local Existence and Preliminary

We firstly employ the abstract theorem of the quasilinear parabolic system [18,19] to
establish the local existence of a solution for model (2).

Lemma 1. Assume the initial data (u0(x), v0(x)) ∈ [W1,p(Ω)]2 with p > n and u0(x), v0(x) ≥
0( ̸≡ 0). Then, we have the following:

(i) There exists a positive constant Tmax such that model (2) admits a unique local-in-time classical
solution (u(x, t), v(x, t)), which satisfies;

(u(x, t), v(x, t)) ∈
(

C(Ω × [0, Tmax)) ∩ C2,1(Ω × (0, Tmax))
)2

.

(ii) There exists a constant M1 > 0 such that;

∥u(·, t)∥L1(Ω) + ∥v(·, t)∥L1(Ω) ≤ M1 f or all t ∈ (0, Tmax). (3)

(iii) There exists a constant M2 > 0 such that;

0 < v(x, t) ≤ M2, u(x, t) > 0 f or all (x, t) ∈ Ω̄ × (0, Tmax). (4)

(iv) If Tmax < ∞, we have.

lim sup
t↗Tmax

(
∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W1,∞(Ω)

)
= ∞. (5)

Proof. The local existence and uniqueness of the solution to (2) follows from Theorem 7.3
and Corollary 9.3 in [18] or Theorem 14.4 and 14.6 in [19], and the extensibility criterion (5)
can be obtained directly from Theorem 15.5 in [19]. By utilizing the strong maximum
principle on model (2), it can be find that u(x, t) > 0 and v(x, t) > 0 in Ω̄ × (0, Tmax).

To prove (ii), we integrate the first two equations of (2) over Ω, which implies that

d
dt

∫
Ω
(u + v) = σ

∫
Ω

u
(

1 − u
κ

)
−
∫

Ω
v =

∫
Ω

(
(σ + 1)u − σ

κ
u2
)
−
∫

Ω
(u + v)

≤
∫

Ω

κ(σ + 1)2

4σ
−
∫

Ω
(u + v) ≤ κ(σ + 1)2|Ω|

4σ
−
∫

Ω
(u + v).

(6)

By employing the Gronwall inequality, one obtains (3).
Next, we establish the upper bound of v(x, t), by the second equation in (2) and

u, v > 0, we have
vt − d2∆v =

(1 + αv)uv
1 + h(1 + αv)u

− v <
1
h

v, x ∈ Ω, t > 0,

∂νv = 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x), x ∈ Ω.

(7)

Hence, we easily obtain that there exists a constant M2 > 0 such that v(x, t) ≤ M2
from Theorem 3.1 in [20] and the comparison principle.

To establish the global-in-time of the solution, we next recall some preliminary esti-
mates. For p ∈ (1, ∞), we represent the sectorial operator by A and define it as

Az := −∆z for z ∈ D(A) :=
{

z ∈ W2,p(Ω) :
∂z
∂ν

= 0, z ∈ ∂Ω
}

, (8)

similarly, we denote Ad1 u := −d1∆u, Ad2 v := −d2∆v, where Ad1 and Ad2 possess the same
properties as A with a scaling. Here, we will give some properties for A, but applying the
properties of Ad1 and Ad2 in the subsequent discussion.

Lemma 2 ([21]). Let k ∈ {0, 1}, p ∈ [1, ∞], and q ∈ (1, ∞). Then, for any z ∈ D((A + 1)ϑ),
there exists C1 > 0 such that
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∥z∥Wk,p(Ω) ≤ C1∥(A + 1)ϑz∥Lq(Ω), (9)

where ϑ ∈ (0, 1) and satisfies
k − n

p
< 2ϑ − n

q
.

If, in addition q ≥ p, then for any u ∈ Lp(Ω), there exist C2 > 0 and β > 0 such that

∥(A + 1)ϑe−t(A+1)z∥Lq(Ω) ≤ C2t−ϑ− n
2 (

1
p −

1
q )e−βt∥z∥Lp(Ω), (10)

with the associated heat semigroup {e−t(A+1)}t≥0 is known to map Lp(Ω) into D((A + 1)ϑ).
Additionally, for all p ∈ (1, ∞) and η > 0, there exist C3 > 0 and ζ > 0 such that

∥(A + 1)ϑe−tA∇ · z∥Lp(Ω) ≤ C3t−ϑ− 1
2−ηe−ζt∥z∥Lp(Ω) (11)

is valid for any Rn–valued z ∈ Lp(Ω).

Lemma 3 (Gagliardo-Nirenberg interpolation inequality [22]). Suppose p, q ∈ [1, ∞], and
ς ∈ (0, p), where p < ∞ for q = n, and p ≤ qn

n−q for q < n. Then, for ϑ ∈ (0, 1] given by:
− n

p = (1 − n
q )ϑ − n

ς (1 − ϑ) and some C4 > 0, we have

∥z∥Lp(Ω) ≤ C4(∥∇z∥ϑ
Lq(Ω)∥z∥1−ϑ

Lς(Ω)
+ ∥z∥Lς(Ω)) (12)

for any z ∈ W1,q(Ω) ∩ Lς(Ω).

2.2. Global Existence of Solution

In this section, we study the solution to model (2) and its global existence. To begin
with, we provide a bound for ∥v(·, t)∥W1,∞(Ω).

Lemma 4. Assume (u(x, t), v(x, t)) to be a classical solution of (2). Then there exists a constant
M3 > 0 such that

∥v(·, t)∥W1,∞(Ω) ≤ M3 f or all t ∈ (0, Tmax).

Proof. Let τ ∈ (0, Tmax) be chosen, satisfying τ < 1, fix q > n and ϑ ∈ ( 1
2 (1 + n

q ), 1).
Rewrite the equation of v in (2) as follows

∂v
∂t

− d2∆v + v =
(1 + αv)uv

1 + h(1 + αv)u
, (13)

in view of the variation-of-constants formula, one yields

v(·, t) = e−t(Ad2
+1)v0 +

∫ t

0
e−(t−s)(Ad2

+1) (1 + αv)uv
1 + h(1 + αv)u

ds.

From (9) and (10), we find that for any t ∈ (τ, Tmax),

∥v(·, t)∥W1,∞(Ω)

≤ C1∥(Ad2 + 1)ϑv∥Lq(Ω)

≤ C1C2t−ϑe−βt∥v0∥Lq(Ω) + C1C2

∫ t

0
(t − s)−ϑe−β(t−s)

∥∥∥∥ (1 + αv)uv
1 + h(1 + αv)u

∥∥∥∥
Lq(Ω)

ds

≤ C1C2t−ϑe−βt∥v0∥Lq(Ω) +
1
h

C1C2

∫ t

0
(t − s)−ϑe−β(t−s)∥v∥Lq(Ω)ds

≤ C3t−ϑ + C3

∫ t

0
(t − s)−ϑe−β(t−s)ds

≤ C3t−ϑ + C3

∫ ∞

0
ζ−ϑe−βζ dζ

≤ C3τ−ϑ + C3Γ(1 − ϑ),
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where Γ(·) is a Gamma function, then Γ(1− ϑ) > 0 due to 0 < ϑ < 1. Therefore, we can obtain

∥v(·, t)∥W1,∞(Ω) ≤ M3.

Next, we state u(x, t) is uniformly bounded in Lp(Ω) for any p ≥ 2

Lemma 5. Assume (u(x, t), v(x, t)) to be a classical solution of (2). Then for any p ∈ [2, ∞), there
exists a constant M4 > 0 such that

∥u(·, t)∥Lp(Ω) ≤ M4 f or all t ∈ (0, Tmax).

Proof. For p ≥ 2, the equation of u in (2) is multiplied by up−1 and then integrated over Ω,
one has

1
p

d
dt

∫
Ω

up

=
∫

Ω
up−1

(
d1∆u +∇ · (χu∇v) + σu

(
1 − u

κ

)
− (1 + αv)uv

1 + h(1 + αv)u

)
≤ d1

∫
Ω

up−1∆u +
∫

Ω
up−1∇ · (χu∇v) + σ

∫
Ω

up

≤ −4d1(p − 1)
p2

∫
Ω
|∇u

p
2 |2 + M3|χ|(p − 1)

∫
Ω

up−1∇u + σ
∫

Ω
up

≤ −4d1(p − 1)
p2

∫
Ω
|∇u

p
2 |2 + 2M3|χ|(p − 1)

p

∫
Ω

u
p
2 |∇u

p
2 |+ σ

∫
Ω

up

≤ −4d1(p − 1)
p2

∫
Ω
|∇u

p
2 |2 + σ

∫
Ω

up

+
M3|χ|(p − 1)

p

(
2d1

M3|χ|p

∫
Ω
|∇u

p
2 |2 + M3|χ|p

2d1

∫
Ω

up
)

= −2d1(p − 1)
p2

∫
Ω
|∇u

p
2 |2 +

(
M2

3χ2(p − 1)
2d1

+ σ

) ∫
Ω

up,

this implies

d
dt

∫
Ω

up +
∫

Ω
up ≤ −2d1(p − 1)

p

∫
Ω
|∇u

p
2 |2 +

(
M2

3χ2 p(p − 1)
2d1

+ σp + 1

) ∫
Ω

up. (14)

From (12), we have∫
Ω

up =
∥∥u

p
2
∥∥2

L2(Ω)

≤ C1

(∥∥∇u
p
2
∥∥ϑ

L2(Ω)

∥∥u
p
2
∥∥1−ϑ

L
2
p (Ω)

+
∥∥u

p
2
∥∥

L
2
p (Ω)

)2

≤ C2

(∥∥∇u
p
2
∥∥2ϑ

L2(Ω)

∥∥u
p
2
∥∥2(1−ϑ)

L
2
p (Ω)

+
∥∥u

p
2
∥∥2

L
2
p (Ω)

)
≤ C2

(
ϵϑ
∥∥∇u

p
2
∥∥2

L2(Ω)
+ ϵ

ϑ
ϑ−1 (1 − ϑ)

∥∥u
p
2
∥∥2

L
2
p (Ω)

+
∥∥u

p
2
∥∥2

L
2
p (Ω)

)
= C2

(
ϵϑ
∥∥∇u

p
2
∥∥2

L2(Ω)
+
(
ϵ

ϑ
ϑ−1 (1 − ϑ) + 1

)∥∥u
p
2
∥∥p

L1(Ω)

)
≤ C3

(∥∥∇u
p
2
∥∥2

L2(Ω)
+ 1
)

,

(15)
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where 0 < ϵ < 1 and ϑ = np−n
2+np−n ∈ (0, 1). Fix C3 with(

M2
3χ2 p(p − 1)

2d1
+ σp + 1

)
C3 =

2d1(p − 1)
p

. (16)

Combining (14)–(16), we find that

d
dt

∫
Ω

up +
∫

Ω
up ≤ C4.

Therefore, we have ∫
Ω

up ≤ max
{

C4,
∫

Ω
up

0

}
.

Now we prove that ∥u(·, t)∥L∞(Ω) is uniformly bounded for any t ∈ (0, Tmax).

Lemma 6. Assume (u(x, t), v(x, t)) to be a classical solution for (2). Then there exists a constant
M5 > 0 such that

∥u(·, t)∥L∞(Ω) ≤ M5 f or all t ∈ (0, Tmax).

Proof. The equation of u in (2) is written as

ut − d1∆u + u = χ∇ · (u∇v) + u + σu
(

1 − u
κ

)
− (1 + αv)uv

1 + h(1 + αv)u
. (17)

The use of the variation-of-constants formula in (17) to obtain

u(·, t) = e−t(Ad1
+1)u0 + χ

∫ t

0
e−(t−s)(Ad1

+1)∇ · (u∇v)ds

+
∫ t

0
e−(t−s)(Ad1

+1)
(

u + σu
(

1 − u
κ

)
− (1 + αv)uv

1 + h(1 + αv)u

)
ds

:= w1(·, t) + w2(·, t) + w3(·, t).

(18)

Then, we discuss the L∞(Ω)-bounded of w1, w2 and w3, respectively.
From the parabolic maximum principle, we have

∥w1(·, t)∥L∞(Ω) = ∥e−t(Ad1
+1)u0∥L∞(Ω)

≤ C1∥(Ad1 + 1)ϑe−t(Ad1
+1)u0∥Lq(Ω)

≤ C2t−ϑe−βt∥u0∥Lq(Ω) ≤ C3∥u0∥L∞(Ω),

(19)

where τ ∈ (0, 1), ϑ ∈ ( n
2q , 1), q > n, β > 0.

In Lemma 2, letting k = 0, q := n + 2 and p = ∞, taking ϑ ∈ ( n
2q , 1

2 ), we can establish

that η ∈ (0, 1
2 − ϑ). Consequently, there exists C2 > 0 and ζ > 0 such that

∥w2(·, t)∥L∞(Ω) = χ

∥∥∥∥∫ t

0
e−(t−s)(Ad1

+1)∇ · (u∇v)ds
∥∥∥∥

L∞(Ω)

≤ C1χ

∥∥∥∥(Ad1 + 1)ϑ
∫ t

0
e−(t−s)(Ad1

+1)∇ · (u∇v)ds
∥∥∥∥

Lq(Ω)

≤ C1χ

∥∥∥∥∫ t

0
(Ad1 + 1)ϑe−(t−s)(Ad1

+1)∇ · (u∇v)ds
∥∥∥∥

Lq(Ω)

≤ C2χ
∫ t

0
(t − s)−ϑ− 1

2−ηe−(ζ+1)(t−s)∥u∇v∥Lq(Ω)ds,

(20)
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from Lemmas 4 and 5, we can obtain that

∥u∇v∥Lq(Ω) ≤ C3.

Then

∥w2(·, t)∥L∞(Ω) ≤ C4

∫ t

0
(t − s)−ϑ− 1

2−ηe−(ζ+1)(t−s)ds

≤ C4

∫ ∞

0
δ−ϑ− 1

2−ηe−(ζ+1)δdδ

≤ C4Γ( 1
2 − ϑ − η),

(21)

where C4 > 0 and 1
2 − ϑ − ε > 0, then we find that Γ( 1

2 − ϑ − η) is positive.
Similarly, for w3(·, t), one has

∥w3(·, t)∥L∞(Ω)

=

∥∥∥∥∫ t

0
e−(t−s)(Ad1

+1)
(

u + σu
(

1 − u
κ

)
− (1 + αv)uv

1 + h(1 + αv)u

)
ds
∥∥∥∥

L∞(Ω)

≤ C1

∥∥∥∥(Ad1 + 1)ϑ
∫ t

0
e−(t−s)(Ad1

+1)
(
−σ

κ
u2 + (1 + σ)u − 1

h
v
)

ds
∥∥∥∥

Lq(Ω)

≤ C1

∫ t

0

∥∥∥∥(Ad1 + 1)ϑe−(t−s)(Ad1
+1)
(
−σ

κ
u2 + (1 + σ)u − 1

h
v
)∥∥∥∥

Lq(Ω)
ds

≤ C2

∫ t

0
(t − s)−ϑe−(t−s)β

∥∥∥∥−σ

κ
u2 + (1 + σ)u − 1

h
v
∥∥∥∥

Lq(Ω)
ds

≤ C2

∫ t

0
(t − s)−ϑe−(t−s)β

(
∥u∥Lq(Ω) +

κσ

4
+

1
h
∥v∥L∞(Ω)

)
≤ C3

∫ t

0
(t − s)−ϑe−(t−s)βds

≤ C3

∫ ∞

0
ρ−ϑe−ρβdρ

≤ C4Γ(1 − ϑ),

(22)

where Γ(1 − ϑ) > 0 holds from 0 < ϑ < 1. Hence, by (19), (21) and (22), we get that for any
t ∈ (0, Tmax), u(·, t) is bounded on the L∞(Ω).

Assume that 0 < Tmax < ∞, where Tmax is the maximum existence time. From
Lemmas 4 and 6 with some p > 2, we have

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W1,∞(Ω) < ∞ f or all t ∈ (0, Tmax),

this is contrary to Lemma 1 (iv), it can be inferred that Tmax = ∞ and, consequently, the
solution (u(x, t), v(x, t)) remains bounded for all (x, t) ∈ Ω × (0, ∞). On the basis of
Lemmas 1, 4 and 6, we have the following conclusion.

Theorem 7. Let the initial data (u0(x), v0(x)) ∈ [W1,p(Ω)]2 with p > n and u0(x), v0(x) ≥
0( ̸≡ 0). Then, model (2) admits a unique global-in-time classical solution (u(x, t), v(x, t)) ∈(
C(Ω × [0, ∞)) ∩ C2,1(Ω × (0, ∞))

)2 satisfying

∥u(·, t)∥L∞(Ω) + ∥v(·, t)∥W1,∞(Ω) ≤ M f or all t ∈ [0, ∞),

where M is a positive constant that depends on the initial value, but not on t.
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3. Stability/Instability Caused by Predator-Taxis

In this section, the instability of the positive constant steady state for model (2) caused
by predator-taxis behaviour is investigated. For convenience, we consider the case of (2) in
one-dimensional space and assume Ω = (0, lπ), then model (2) can be rewritten as

ut = d1uxx + χ(uvx)x + σu(1 − u
κ
)− (1 + αv)uv

1 + h(1 + αv)u
, x ∈ (0, lπ), t > 0,

vt = d2vxx +
(1 + αv)uv

1 + h(1 + αv)u
− v, x ∈ (0, lπ), t > 0,

ux(x) = vx(x) = 0, x = 0, lπ, t > 0,

u(x, 0) = u0(x), v(x, 0) = u0(x), x ∈ (0, lπ),

(23)

We denote the positive equilibrium of (23) by E∗ = (u∗, v∗), and it can be easily to show
that u∗ = 1

(1−h)(1+αv∗) , while v∗ corresponds the positive root of the following equation

f (v) := ρ3v3 + ρ2v2 + ρ1v + ρ0 = 0,

where ρ3 = (1− h)2α2κ, ρ2 = 2(1− h)2ακ, ρ1 = (1− h)(1− h − σα)κ, ρ0 = σ(1− (1− h)κ).
First, let us assume

(H0) h < 1, κ >
1

1 − h
.

Observing the facts ρ3 > 0 and ρ2 > 0, if (H0) is true, then ρ0 < 0 can be obtained,
where the sign of the coefficients of f (v) is + + + − or + + − −. In both cases, the
symbol changed only once. According to Descartes’ rule of signs [23], f (v) = 0 has a
unique positive root, which means that model (23) exhibits a unique positive equilibrium
when condition (H0) holds true. To simplify matters, we will assume condition (H0) to
hold throughout the remainder of the discussion.

Model (23) linearization at E∗ has the form ut

vt

 = D

 ∆u

∆v

+ J(u∗ ,v∗)

 u

v

, (24)

where

D =

 d1 χu∗

0 d2

, J(u∗ ,v∗) =

 a11 a12

a21 a22

,

and

a11 = − σ

κ(1 − h)(1 + αv∗)
+ h(1 − h)(1 + αv∗)v∗, a12 = −1 + (2 − h)αv∗

1 + αv∗
< 0,

a21 = (1 − h)2(1 + αv∗)v∗ > 0, a22 =
(1 − h)αv∗

1 + αv∗
> 0.

By simple calculation, we know that a11a22 − a12a21 > 0. The characteristic equation
of (23) is

µ2 − Tkµ + Dk(χ) = 0, (25)

where

Tk = −(d1 + d2)(
k
l )

2 + a11 + a22,

Dk(χ) = d1d2(
k
l )

4 − (a11d2 + a22d1 − χu∗a21)(
k
l )

2 + a11a22 − a12a21,
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and ( k
l )

2, k ∈ N = {0, 1, 2, · · · } be the eigenvalues of −∆ on Ω subject to the zero-flow
boundary condition.

According to the standard linear stability theory, for any non-negative integer k, the
positive equilibrium E∗ is locally asymptotically stable if and only if all the roots of the
characteristic equation have negative real parts, E∗ is unstable if the characteristic equation
has at least one root with a positive real part for some non-negative integer k.

Since we are interested in the predator-taxis-driven instability, we take the assumption

(H1) a11 + a22 < 0,

It can be easily shown that the condition (H1) guarantees E∗ is locally asymptotically
stable in the corresponding ordinary differential equation model (d1 = d2 = χ = 0).

Let

χ(k) := − Dk(0)
u∗a21(

k
l )

2
= −

d1d2(
k
l )

4 − (a11d2 + a22d1)(
k
l )

2 + a11a22 − a12a21

u∗a21(
k
l )

2
, k ∈ N.

Then, we can deduce the following theorem.

Theorem 8. Suppose (H0) and (H1) hold. For model (23), then we have

(i) If Dk(0) > 0, then for all χ > 0, E∗ is always locally asymptotically stable;
(ii) If Dk(0) > 0 and χ < 0, then E∗ is locally asymptotically stable when χ > maxk∈N χ(k)

and it is unstable when χ < maxk∈N χ(k);
(iii) If Dk(0) < 0, then E∗ is locally asymptotically stable when χ > maxk∈N χ(k) > 0 and it is

unstable when χ < 0 or 0 < χ < maxk∈N χ(k).

Proof. From the assumption (H1), we know that Tk < 0 for all k ∈ N, thus, we only discuss
the sign of Dk(χ).

(i) If Dk(0) > 0 and χ > 0, it is evident that Dk(χ) > 0 for any k ∈ N, then E∗ exhibits
locally asymptotically stability;

(ii) If Dk(0) > 0, together with a21 > 0, one has χ(k) < 0 for any k ∈ N. When
maxk∈N χ(k) < χ < 0, then Dk(χ) > 0 for any k ∈ N, thus E∗ is locally asymptotically
stability. When χ < maxk∈N χ(k) < 0, we have Dk(χ) < 0 for some k ∈ N, which
implies E∗ is unstable;

(iii) If Dk(0) < 0, then E∗ is unstable for the corresponding reaction–diffusion model.
From a21 > 0, it follows that χ(k) > 0 for any k ∈ N. When χ > maxk∈N χ(k), we
observe that Dk(χ) > 0 for any k ∈ N, and then E∗ is locally asymptotically stability.
When χ < 0 and 0 < χ < maxk∈N χ(k), we have Dk(χ) < 0 for some k ∈ N, then E∗

is unstable.

Next, we show that χ(k) can reach its maximum on k ∈ N. Set

Υ(m) = −d1d2m2 − (a11d2 + a22d1)m + a11a22 − a12a21

u∗a21m
, m > 0.

A simple calculation gives that Υ′(m) > 0 for m < m0 and Υ′(m) < 0 for m > m0 with

m0 =

√
a11a22 − a12a21

d1d2
.

Then, there exists k0 ∈ N such that when k0 = max{[√m0l], [
√

m0l] + 1}, we have
maxk∈N χ(k) = χ(k0).

Remark 9. Theorems 8 (i) and (ii) show that when the positive equilibrium is stable with respect to
the reaction-diffusion model, the attractive predator-taxis can further stabilize the system, while the
repulsive predator-taxis may lead to a change in spatial stability, which means the formation of the
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pattern caused by the predator-taxis. Theorem 8 (iii) shows that when the positive equilibrium is
unstable with respect to the reaction-diffusion model, the attractive predator-taxis make the model
remain unstable, while the repulsive predator-taxis have a stabilizing effect.

Remark 10. From an ecological point of view, a stable equilibrium means that over time, predator
and prey species will eventually converge at this point, and their numbers will remain constant, thus
achieving permanent coexistence. The conclusion of Theorem 8 shows that attractive predator-taxis
are beneficial to species coexistence.

4. Numerical Simulations

In this part, we give some numerical simulations in order to verify the above theoretical
analysis by utilizing the MATLAB software. We fixed Ω = (0, 20), dx = 0.25, dt = 0.01,
and set parameter

σ = 1, κ = 3, α = 0.6, h = 0.5, d1 = 1. (26)

It is evident that model (23) possesses a trivial equilibrium E0 = (0, 0), a boundary
equilibrium E1 = (3, 0), and a unique positive equilibrium E∗ = (1.382, 0.745). Note that
under the given parameters (26), both conditions (H0) and (H1) are satisfied, rendering
E∗ stable with respect to the corresponding ODE model (i.e., d1 = d2 = χ = 0). When
we choose d2 = 0.01, the equilibrium E∗ is unstable with respect to the corresponding
reaction-diffusion model (see Figure 1), by performing calculations χ(k) = 0.13, taking
χ = 0.2 > 0.13, E∗ is unstable with respect to model (23), which shows that positive
predator-taxis have stabilizing effects (see Figure 2). When we choose d2 = 0.1, E∗ is
locally asymptotically stable with respect to the corresponding reaction-diffusion model
(see Figure 3), the calculation gives that χ(k) = −0.537, taking χ = −0.59 < −0.537, E∗

is stable with respect to the model (23), indicating that the negative predator-taxis have a
destabilizing effect (see Figure 4).

Figure 1. When d2 = 0.01, χ = 0, E∗ is unstable for model (23) with (26).

Figure 2. When d2 = 0.01, χ = 0.2 > 0.13, E∗ is local asymptotically stable, which is caused by the
predator-taxis for model (23) with (26).
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Figure 3. When d2 = 0.1, χ = 0, E∗ is local asymptotically stable for model (23) with (26).

Figure 4. When d2 = 0.1, χ = −0.59 < −0.537, E∗ is unstable caused by the predator-taxis for
model (23) with (26).

5. Concluding Remarks

This paper mainly discusses the dynamics of the predator-prey diffusion model with
hunting cooperation and predator-taxis, where hunting cooperation refers to the coop-
erative behavior of some predator populations in the process of capturing prey. The
predator-taxis effect refers to the response of prey to different predator distributions, i.e.,
the prey may move in the direction of a low predator gradient to avoid being captured
by predators, or it may move in the direction of a high density of prey to defend against
predator attacks. Hunting cooperation and predator-taxis have far-reaching implications
for protecting endangered species and maintaining sustainable ecosystems.

Firstly, the global existence and uniform boundedness of a classical solution of the
model are proven strictly. Secondly, the local stability of a positive equilibrium is discussed
through linearization analysis. Finally, we use numerical simulations to visualize the
results. In addition, it can be seen from [10] that the stability of the reaction-diffusion model
depends on the ratio d1/d2 of diffusion coefficients. Combined with the discussion results
of this paper, we found that in the same region, if this ratio is less than a critical value, it
means that the predator occupies an advantageous position, which indicates that due to
strong predation pressure, the prey should stay away from the predator’s habitat to avoid
being predation. On the contrary, if this ratio is greater than a critical value, the situation is
more favorable for the prey, which means that in the face of an attack by predators, the prey
must collectively gather together and resist to obtain more survival opportunities, which is
more conducive to the long-term development of the population.
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