
Citation: Li, R.; Yuan, H.; Ren, B.;

Zhang, X.; Chen, T.; Luo, X. Optimal

Unmanned Combat

System-of-Systems Reconstruction

Strategy with Heterogeneous Cost via

Deep Reinforcement Learning.

Mathematics 2024, 12, 1476. https://

doi.org/10.3390/math12101476

Academic Editor: Andrea Scozzari

Received: 24 April 2024

Revised: 5 May 2024

Accepted: 8 May 2024

Published: 9 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimal Unmanned Combat System-of-Systems Reconstruction
Strategy with Heterogeneous Cost via Deep
Reinforcement Learning
Ruozhe Li , Hao Yuan, Bangbang Ren *, Xiaoxue Zhang, Tao Chen and Xueshan Luo

National Key Laboratory of Information Systems Engineering, National University of Defense Technology,
Changsha 410073, China; liruozhe@nudt.edu.cn (R.L.); yuanhao@nudt.edu.cn (H.Y.);
zxiaoxue@nudt.edu.cn (X.Z.); chentao@nudt.edu.cn (T.C.); xsluo@nudt.edu.cn (X.L.)
* Correspondence: renbangbang11@nudt.edu.cn; Tel.: +86-1937-412-6399

Abstract: The unmanned combat system-of-systems (UCSoS) in modern warfare is comprised of
various interconnected entities that work together to support mission accomplishment. The soaring
number of entities makes the UCSoS fragile and susceptible to triggering cascading effects when
exposed to uncertain disturbances such as attacks or failures. Reconfiguring the UCSoS to restore
its effectiveness in a self-coordinated and adaptive manner based on the battlefield situation and
operational requirements has attracted increasing attention. In this paper, we focus on the UCSoS
reconstruction with heterogeneous costs, where the collaboration nodes may have different recon-
struction costs. Specifically, we adopt the heterogeneous network to capture the interdependencies
among combat entities and propose a more representative metric to evaluate the UCSoS reconstruc-
tion effectiveness. Next, we model the combat network reconstruction problem with heterogeneous
costs as a nonlinear optimization problem and prove its NP-hardness. Then, we propose an approach
called SoS-Restorer, which is based on deep reinforcement learning (DRL), to address the UCSoS
reconstruction problem. The results show that SoS-Restorer can quickly generate reconstruction
strategies and improve the operational capabilities of the UCSoS by about 20∼60% compared to the
baseline algorithm. Furthermore, even when the size of the UCSoS exceeds that of the training data,
SoS-Restorer exhibits robust generalization capability and can efficiently produce satisfactory results
in real time.

Keywords: unmanned combat system-of-systems; heterogeneous cost; optimal reconstruction
strategy; deep reinforcement learning

MSC: 90-10

1. Introduction

The rapid development of data links, satellite communications, and other technological
innovations have changed the operational patterns of modern warfare. As a unique oper-
ational concept, mosaic warfare aims to realize the autonomous collaboration of various
types of combat entities and construct an on-demand integrated, highly flexible, and adapt-
able system-of-systems (SoS) to meet the requirements of combat tasks [1,2]. The UCSoS
concept refers to the integrated use of various homogeneous or heterogeneous unmanned
combat platforms, including unmanned aircraft, unmanned vehicles, and unmanned under-
water vehicles, to create a new form of distributed, networked, and collaborative combat
force [3–5]. Under the mosaic warfare concept, the relationship between different combat
entities in the UCSoS is no longer fixed but adaptively transformed based on combat tasks
and evolving battlefield situations.

The UCSoS is susceptible to interference in hostile battlefields [6], e.g., being attacked,
loss of communication between members, and malfunction [7], especially when critical

Mathematics 2024, 12, 1476. https://doi.org/10.3390/math12101476 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101476
https://doi.org/10.3390/math12101476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0005-5538-3808
https://orcid.org/0000-0002-8031-7117
https://doi.org/10.3390/math12101476
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101476?type=check_update&version=1

Mathematics 2024, 12, 1476 2 of 23

entities are destroyed, resulting in a significant decrease in the operational capability of
the UCSoS. Due to the high development cost of combat entities, it is often difficult to
produce more combat entities to replace the destroyed entities. Furthermore, repairing
destroyed entities in a confrontational environment is difficult, making redundancy or
repair strategies less likely to improve operational capability. To address these issues,
researchers focus on the information flow between entities in the UCSoS and propose
the dynamic reconstruction of the collaborative relationship between entities [8–11]. This
method reconfigures the collaborative relationships of surviving entities to maintain reliable
operational capabilities so that the UCSoS can regain the operational loop of observation,
orientation, decision-making, and action (OODA) again and achieve efficient decision-
centered operations. There are related studies that refer to the UCSoS reconstruction
process as system-of-systems (SoS) resilience [12].

However, regarding the current research advancements in the reconstruction of the
entity link relationship, most studies assume that the reconstruction costs of all links are
identical. Hence, the total reconstruction cost is only limited by the number of added edges.
In fact, the reconstruction cost corresponding to added edges may be heterogeneous. In
general, the reconstruction cost of edges is mainly related to the operational capabilities
of the entities connected by the edges. For instance, the cost of collaboration between two
highly capable aircraft is often much higher than the cost of collaboration between two
soldiers. In the case of the limited reconstructed resources and environment, it is both
realistic and meaningful to consider the inclusion of heterogeneous costs in the strategy or
model. In this paper, we focus on the problem of UCSoS reconstruction with heterogeneous
costs. Our goal is to determine how to balance the reconstruction efficiency against the
reconstruction cost, and to quickly find the optimal reconstruction strategy.

Nevertheless, it will face the following challenges when solving the UCSoS reconstruc-
tion problem with heterogeneous costs: (i) How to evaluate the effect of UCSoS reconstruction?
There are often dependencies, connections, and interactions between entities in the UCSoS
that show distinct functional and emergent characteristics at the SoS level. [13]. Thus, the
method used to describe the characteristics of the UCSoS and the metric used to measure
the effect of the reconstruction will directly determine the cost allocation strategy. (ii) How to
balance the reconstruction efficiency against the reconstruction cost? Usually, reconstructing the
edges between the nodes with higher capability can effectively restore the operational ca-
pability, but it will also consume higher costs. A reasonable reconstruction strategy should
find the optimal edge or the edge with lower cost, and the reconstruction may improve the
UCSoS performance more. However, the existing methods that focus on homogeneous cost
make it difficult to find a low-cost and efficient set of key edges. (iii) How to quickly generate
reconstruction strategies in uncertain and large-scale scenes? In real battlefield scenarios, due
to the inability to know which nodes in the UCSoS will be attacked by the adversary, the
obtained fragmented structure of the UCSoS is uncertain. It is challenging to readjust the
connection between surviving combat entities in real time based on the current state of
the UCSoS. In addition, the UCSoS reconstruction problem is essentially a variant of the
portfolio decision problem [14,15], which means that the UCSoS reconstruction problem is a
combinatorial optimization problem and also an NP-hard problem. Traditional algorithms,
such as approximation algorithms and metaheuristic algorithms, are usually used to solve
the portfolio decision problem, but it is difficult to achieve a satisfactory balance between
solution time and solution quality in large-scale cases. In summary, designing a solu-
tion approach for UCSoS reconstruction that solves the above problems is both attractive
and challenging.

Inspired by recent advances in solving large-scale optimization problems using deep
reinforcement learning [16–18], we propose a novel method called DRL-Restorer to solve
the UCSoS reconstruction problem with heterogeneous costs as quickly and accurately as
possible. This method integrates deep learning and the performance recovery of UCSoS to
make decisions more intelligent. In summary, the main achievements of this paper can be
summarized as follows:

Mathematics 2024, 12, 1476 3 of 23

• We treat the UCSoS as a heterogeneous combat network (HCN) and incorporate the cost
of edge reconstruction into the UCSoS reconstruction problem. The HCN reconstruction
problem with heterogeneous costs is formulated as a nonlinear optimization problem.

• A task-oriented UCSoS operational capability metric is proposed to comprehensively
consider the coverage and balance of striking enemy targets and the operational
capability of the force. The metric can effectively describe the operational effectiveness
of the UCSoS and provide an optimization goal for the reconstructed model.

• We propose an innovative approach to the UCSoS reconstruction problem called DRL-
Restorer, which uses a deep neural network and the actor-critic algorithm to generate
the optimal solution in real time. The proposed method is more suitable for dynamic
combat scenarios that require real-time UCSoS reconstruction.

• With extensive experiments, the results demonstrate that DRL-Restorer exhibits
significant advantages over the benchmark algorithm in terms of solution quality
and scalability, while also finding optimal reconstruction strategies in a remarkably
short time.

This remainder is organized as follows. Section 2 describes related work focusing
on the UCSoS reconstruction and deep reinforcement learning. Section 3 presents the
heterogeneous network model and the operational capability measure of the UCSoS. The
problem of UCSoS reconstruction and the mathematical model are presented in Section 4.
Then, the SoS-Restorer method is described in detail in Section 5. Experimental results
are performed to verify the proposed approach in Section 6. Finally, the conclusion of this
paper is given in Section 7.

2. Related Work

In this section, we first review the related work on UCSoS reconstruction. Then, we present
the application of deep reinforcement learning to combinatorial optimization problems.

2.1. UCSoS Reconstruction

Recently, many scholars have studied the development of combat networks and UC-
SoS, but the results are mixed. Li et al. conducted a series of studies on heterogeneous
combat networks, including HCN robustness [19], HCN operational capability disintegra-
tion [20], and temporal combat network operational capability evaluation [21]. The above
studies consider the weakening of combat network capabilities in various attack scenarios
and propose protection measures for critical entities to enhance the resilience of the UCSoS.
However, the study fails to mention methods for restoring the operational capability of the
UCSoS under disruptive conditions such as malfunctions or failures. Establishing system
or functional redundancy, using backup nodes or parallel functional paths to replace failed
nodes or subsystems, is a common strategy for restoring the efficiency of a failed SoS. A
system reliability optimization model based on a hybrid redundancy strategy has been
proposed by Zhang et al. [22]. Levitin et al. [23] optimized the number of components
of an active redundancy system that performs a mission with multiple attempts. Peiravi
et al. [24] proposed a redundancy allocation strategy that aims to increase system reliability
by determining the most appropriate time for reconfiguration and activating an optimal
number of components. However, in adversarial battlefields, the reasons for disrupting
the UCSoS have become increasingly ambiguous and unpredictable [25]. In addition, the
high cost of producing redundant combat units makes it difficult to counter interference
through the implementation of redundancy strategies. A strategy is then proposed that
leverages the collaborative relationships among surviving nodes to restore operational
capability. In response to stochastic external disturbances and dynamic reconfiguration,
Chen et al. [9] presented a mission reliability model for unmanned weapon SoS based
on the operational loop. Sun et al. [10] proposed a method framework called UCSoS au-
tonomous decision-making to enable SoS with reconfiguration capability amidst battlefield
disturbances. Zhong et al. [26] aimed to restructure the collaborative relationships between

Mathematics 2024, 12, 1476 4 of 23

network nodes and optimize the selection of kill chains in the operational system, thereby
enhancing its resilience to disruptions.

However, despite existing research that considers the reconstruction of cooperation
relationships between entities to restore reliable operational capability, these studies mostly
ignore the heterogeneity of costs required to achieve synergies between different entities
and their impact on the reconstruction problem. Furthermore, these studies are limited to
addressing small-scale issues that improve the resilience of the SoS. However, the battle-
fields of the future will be composed of massive unmanned systems, which urgently require
an algorithmic design that efficiently addresses the problem of UCSoS reconstruction in
large-scale scenarios. The summary of the UCSoS reconstruction problem is shown in
Table 1.

Table 1. Summary of the UCSoS reconstruction problem.

Reference Research Content Research Deficiencies

References [19–21]
Evaluate and disintegrate the

operational capabilities of
the UCSoS

No mention of how to restore
the operational capabilities of

the UCSoS

References [22–24]
Adopt a redundancy strategy
to restore the efficiency of the

failed SoS

Too expensive for UCSoS to
build a redundancy strategy

References [9,10,26]

Reconstruct the collaborative
relationship between survival
combat entities to restore the

operational capabilities of
the UCSoS

Ignore the heterogeneity of
collaboration costs between

different entities

2.2. Deep Reinforcement Learning in Combinatorial Optimization Problems

Combinatorial optimization problems (COP) have wide applications in various fields,
including national security, industrial manufacturing, and intelligent transportation [27].
These problems involve finding the best solution from a finite set of objects and are known to
be NP-hard. Examples of common COP include the traveling salesman problem (TSP) [28],
the knapsack problem [29], and the job-shop scheduling problem [30]. The traditional
approach to solving COP mainly uses exact techniques [31] and approximate methods [32].
However, traditional approaches struggle to quickly generate optimal COP solutions as the
complexity of real-world problems increases and the demand for real-time solutions grows.
In addition, these traditional methods rely on iterative search algorithms and cannot learn
from historical data. Consequently, any change in data for the same problem requires a
new search and solution process, increasing computational complexity.

To tackle these challenges, researchers have proposed a new paradigm for solving
COP [33] using end-to-end DRL: training a deep neural network to generate solutions to
the given problem. The parameters of the neural network are typically optimized by using
a set of problem instances that are in the same category as the problem.

First, Hopfield et al. [34] presented the application of neural networks in solving
COP by performing experiments on a small TSP problem. However, in a fresh instance
of the TSP problem, there is a need for re-training of the neural network parameters,
which has no advantage over heuristic methods. To address this problem, Vinyals et al.
proposed a sequence-to-sequence approach, i.e., the famous pointer network model [35],
which achieved satisfactory results and triggered a wave of using deep neural networks
to tackle COP. Due to the challenge of obtaining training labels for supervised learning
methods, Bello et al. [36] used reinforcement learning to train the pointer network model
and incorporated a critic network as a reference point to reduce training variance, which
demonstrated its scalability in solving TSP and KnapSack problems. On the contrary, when
it comes to tackling COP using a graph structure such as the minimum vertex cover problem
(MVC), Dai first introduced a graph neural network called structure2vec to solve COP [37].

Mathematics 2024, 12, 1476 5 of 23

Furthermore, Li et al. [38] employed graph convolutional networks (GCN) and guided tree
search techniques to tackle both the MVC and maximum independent set problems (MIS).
This approach effectively handles scenarios where multiple optimal solutions exist. The
summary of the DRL method for COP is shown in Table 2.

Table 2. Summary of the DRL method for COP.

Reference Model Training Method Solving Problems

Reference [35] Pointer network Supervised training TSP problem

Reference [36] Pointer network REINFORCE and
critic baseline

TSP and KnapSack
problems

Reference [37] Structure2vec DQN MVC problem

Reference [38] GCN Guided tree search MVC and MIS
problems

Although the DRL method has been successfully applied to other combinatorial
optimization problems, it faces specific challenges when dealing with the UCSoS recon-
struction problem. Therefore, an appropriate design in addition to the basic methods of
DRL is needed.

3. UCSoS Model

In this section, we review the heterogeneous network model of UCSoS and then
propose the operational capability measurement method of UCSoS.

3.1. Heterogeneous Network Model of UCSoS

Definition 1 ([39] Heterogeneous Network). Given a network G = (V, E), where V denotes the
set of nodes and E denotes the set of edges. Define two types of mapping functions, (i) φ : V → A,
where for each node v ∈ V there exists a certain node type φ(v) ∈ A, (ii) Ψ : E → R, where for
each edge e ∈ E there exists a specific link type Ψ(e) ∈ R. If the number of node types |A| > 1 or
the number of link types |R| > 1, then G is considered a heterogeneous network.

Definition 2 ([40] Meta-Path). For a heterogeneous network G, the meta-path P can be described
as a path based on the network schema TG = (A,R), which represents a series of links between

nodes A1 and Al+1: A1
R1−→ . . .

Rl−→ Al+1, where node types Ai ∈ A, i ∈ {1, 2, . . . l + 1}, and
link types Ri ∈ R, i ∈ {1, 2, . . . l}.

According to Cares’s information age combat model [41], the UCSoS entities can be
divided into four types based on their different functions on the battlefield:

• Sensor Entities (S): entities that carry out reconnaissance, detection, and early warn-
ing assignments.

• Decider entities (D): entities that carry out command and control missions.
• Influence entities (I): entities that carry out the precision strike, fire damage, and

electronic interference functions.
• Target entities (T): enemy combat entities, including sensors, deciders, and influence

entities, can all be considered targets on the battlefield.

A military engagement is a loop process in which the enemy target is detected by the
sensor entities (T → S) and the information from the enemy target is transmitted to the
decider entities for information analysis (S → D); the decider entities make operational
decisions and give the order to fire at the influence entities (D → I); then the influence
entities execute the orders and attack the enemy targets (I → T). Therefore, the concept of
an operation loop is introduced based on the four entities of the UCSoS, and the operation
loop can be divided into basic and generalized categories based on the number of entities.
The basic operation loop contains only a sensor entity (S), a decider entity (D), an influence
entity (I), and an enemy target (T) to fulfill the processes of observation, orientation,

Mathematics 2024, 12, 1476 6 of 23

decision-making, and action, which can be formed as T → S→ D → I → T. In contrast,
the generalized operational loop considers additional types of links, such as information
sharing between sensor entities (S→ S) and between decider entities (D → D). Figure 1
shows four types of operational loops.

T S ID

(a) Basic operation loop

T S S D I

(b) Generalized operation loop

T S D D I

(c) Generalized operation loop

T S S D D I

(d) Generalized operation loop

Figure 1. Four types of operational loops. Different types of entities are represented by graphics of
different colors.

Based on the above, a UCSoS can be abstracted as a heterogeneous combat network
G = (V, E), where V = S∪D∪ I ∪ T = {v1, v2, . . . , vN} is a node set representing entities of
the UCSoS, and the edge set E = ES→S ∪ ES→D ∪ ED→D ∪ ED→I ∪ EI→T ∪ ET→S =

{
eij
}

is
the flow of information between entity vi and vj. We consider different types of entities pos-
sessing distinct capabilities during the operation process: (i) sensor entities: reconnaissance
capability; (ii) decider entities: decision-making capability; (iii) influence entities: strike
capability; (iv) target entities: anti-reconnaissance capability.

3.2. Operational Capability Measurement of UCSoS

The operational loop depicts a full operational trajectory from reconnaissance to enemy
target destruction, with each loop representing a mode of attack or kill chain against the
target. The greater the number of operational loops constructed against the target, the more
diverse the methods available to destroy the target entity [42]. Thus, we can measure the
operational capability of the UCSoS by analyzing and synthesizing the capabilities of all
the operational loops in the UCSoS.

For an operational loop consisting of multiple sensor (decider and influence) nodes,
the reconnaissance (decision-making and strike) capability of the operational loop can
be considered to be the sum of the capabilities of these sensor (decider and influence)
nodes. Let lj be an operational loop including a target node vt, a sensor node set S = {vs},
a decider node set D = {vd}, and an influence node set I = {vi}, then the operational
capability of lj can be expressed as follows according to Ref. [21]:

U
(
lj
)
=

1∣∣lj
∣∣ × q(vt)× ∑

vs∈S
q(vs)× ∑

vd∈D
q(vd)× ∑

vi∈I
q(vi) (1)

where
∣∣lj
∣∣ is the length of the operational loop. q(vs), q(vd), and q(vi) denote the capability

values of our equipment, while q(vt) represents the anti-reconnaissance capability values
of the target entities.

For an HCN G with a set of operational loops LG =
{

lj
}

, the usual approach to
evaluating its operational capability f (G) is by the weighted summation method, which is
computed using Equation (2):

f (G) = ∑
vt∈T

∑
lj∈LG

w(vt)×U(lj) (2)

where w(vt) represents the weight of the target node in the lj loop.
However, using Equation (2) to calculate the operational capability of UCSoS often

poses a problem: most of our weapons will focus on the target nodes with higher weights,

Mathematics 2024, 12, 1476 7 of 23

while ignoring the coverage and balance of the destruction of enemy targets. As shown in
Figure 2, the operational capability of the HCN constructed in the two scenarios is the same.
However, compared to scenario 1, the operational loop constructed in scenario 2 can cover
more enemy targets (T1 and T2), which means we can destroy more enemy combat forces
and the chance of victory is greater. Therefore, when evaluating the operational capability
of HCN, the range for attacking enemy targets should also be considered. Thus, we have

Γ(G) = f (G)× ∑
vt∈T

σ(vt) (3)

where σ(vt) is a binary variable used to determine whether the target node vt is inside
the loop. If it is, then σ(vt) = 1; otherwise it is equal to 0. Obviously, the operational
capability of scenario 1 and scenario 2 in Figure 2 calculated by Equation (3) is 3.90 and
7.80, respectively. Higher values correspond to a more destructive operational effect.

(a) Scenario 1

I1

I2

T1 T2

S2

S1

D1 D2

6

5

4

3

7

22
7

6

𝜔1 = 0.5 𝜔2 = 0.5

(b) Scenario 2

I1

I2

T1 T2

S2

S1

D1 D2

6

5

4

3

7

22
7

6

𝜔1 = 0.5 𝜔2 = 0.5

Figure 2. Two different scenarios for the construction of HCN. The color bar represents the capability
value of the node. w1 and w2 represent the weights of the target nodes T1 and T2, respectively.
(a) In scenario 1, two operational loops T1→ S1→ D1→ I1→ T1 and T1→ S2→ D2→ I2→ T1
are constructed for target T1. The operational capability of HCN calculated by Equation (2) is 3.90.
(b) In scenario 2, the operational loops T1→ S1→ D1→ I1→ T1 and T2→ S2→ D2→ I2→ T2
are constructed for target T1 and T2, respectively. The operational capability of HCN calculated by
Equation (2) is 3.90.

4. UCSoS Reconstruction Problem with Heterogeneous Costs

In this section, we present the mathematical model of the UCSoS reconstruction
problem with heterogeneous costs, including the problem illustration, problem model, and
complexity analysis.

4.1. Problem Illustration

Battlefield strategy requires the integrated and synchronized use of all relevant ca-
pabilities in response to changes in posture. As the disrupted entities on the battlefield
are difficult to repair, the cooperative relationship of the surviving entities can be locally
reorganized to enhance the combat effectiveness of the UCSoS. Figure 3 illustrates the
diagram of the UCSoS reconstruction process.

Mathematics 2024, 12, 1476 8 of 23

Reconstructed HCN

(a) Reconstruction strategy 1

𝛤 𝐺 : 32 𝐶𝑜𝑠𝑡: 29

Reconstructed HCN

(b) Reconstruction strategy 2

𝛤 𝐺 : 17 𝐶𝑜𝑠𝑡: 20

𝑆1
122 5 64 2

7

𝐷1 𝐼1 𝐼2 𝐼3 𝑇1 𝑇2

Node

capability

Disrupted node

Candidate link

Information flow link

Collaborative link

Collaborative cost

Total budget

D1

I3

T1 T2

11

96

32

3

20

S1 I1 I2

I1

D1

S1 I2

T2T1

D1

I3

T1 T2

11

96

32

3

20

S1 I1 I2

I1

D1

S1 I2

T2T1

20

Figure 3. Two different reconstruction strategies. (a) The link set
{

ED1→I1 , ED1→I2 , EI1→T1 , EI2→T2
}

is
chosen to reconstruct the broken network. The cost of reconstruction and the network performance
after reconstruction are 29 and 32, respectively. (b) The link set

{
ED1→I1 , ED1→I2 , EI1→T2 , EI2→T1

}
is

chosen to reconstruct the broken network. The cost of reconstruction and the network performance
after reconstruction are 20 and 17, respectively.

As shown in Figure 3, there is a UCSoS composed of a sensor node, a decider node,
three influence nodes, and two target nodes. Each node in the UCSoS has different ca-
pability values. Without loss of generality, the capabilities of {S1, D1, I1, I2, I3, T1, T2}
are {2, 4, 2, 5, 7, 1, 6}, respectively. Unfortunately, node I3 is attacked by the enemy, re-
sulting in the inability to form a complete operational loop against the targets T1 and
T2. We assume that once an entity is attacked, the edges connected to the entity are
deleted. At this point, we can add the cooperative relationship between the surviving
entities to form the operational loop. Currently, there are six candidate links and the
construction of each link requires different costs. The collaboration costs of the links{

ED1→I1 , ED1→I2 , EI1→T1 , EI1→T2 , EI2→T1 , EI2→T2
}

are {6, 9, 3, 3, 2, 11}, respectively.
There are two different cost allocation strategies for reconstructing the UCSoS. In

strategy 1, the links
{

ED1→I1 , ED1→I2 , EI1→T1 , EI2→T2
}

are added to the previous UCSoS
with a total cost of 29. In strategy 2, the links

{
ED1→I1 , ED1→I2 , EI1→T2 , EI2→T1

}
are added

to the previous UCSoS with a total cost of 20. With Equation (3), we can easily calculate
that the operational capabilities of the UCSoS after executing strategies 1 and 2 are 32 and
17, respectively. However, despite the superior reconstruction effectiveness of strategy 1,
it cannot ultimately be implemented because the reconstruction cost exceeds the budget
(29 ≥ 20).

Through the above examples, the problem of UCSoS reconstruction can be for-
mally defined.

Definition 3. Given a broken heterogeneous UCSoS G0 = (V, E0), where each node has a force
type and a capability value. Suppose that the network of G0 with all candidate edges added can
be represented by G1 = (V, E1). Therefore, the set of candidate links E2 is equal to E1 − E0 and
the construction of each link requires a cost. Then, the UCSoS reconstruction problem is to add
appropriate links to G0 from the set of candidate links E2 at finite cost, so as to maximize the
operational capability of the UCSoS.

4.2. Problem Model

According to the above problem illustration, the optimization model of the UCSoS
reconstruction problem can be established.

The broken UCSoS can be described as a heterogeneous combat network G0 = (V, E0)
with node set V = {v1, v2, . . . , vN} and edge set E0 =

{
eij
}

, ∀i, j ∈ V. Define the adjacency
matrix of G0 as A(G0) = (aij)N×N , where aij = 1 if vj is connected to vi. The state of the
node vi can be described by a tuple vi := ⟨ti, qi, rin

i , rout
i ⟩. Specifically, (i) ti represents the

type of force of node vi, (ii) qi denotes the capability of node vi to correspond to the type of

Mathematics 2024, 12, 1476 9 of 23

force, and (iii) rin
i and rout

i represent the maximum amount of information the node vi can
receive and send, respectively. In general, the larger the operational capability of a node,
the more information it can receive or send:

rin
i = αiqi, i = 1, · · · , N, αi > 0 (4)

rout
i = βiqi, i = 1, · · · , N, βi > 0 (5)

where αi and βi are random disturbance values, indicating that external factors such as
electromagnetic interference affect the throughput of nodes.

In this paper, reconstruction methods only consider the edge increase strategy. Gener-
ally, the collaborative cost between nodes is related to the capability between nodes. The
nodes with higher capability imply their higher importance on the battlefield, requiring
more manpower and material resources for protection against enemy interference, which
eventually leads to an increase in the cost of cooperation between nodes. Assuming that
cij is the cost of collaboration between nodes vi and vj, then the calculation formula is
as follows:

cij =

(qi + qj

2

)p
(6)

where p ≥ 0 is called the cost-sensitive parameter. The reconstruction cost cij of each
edge is identical when p = 0. The larger p value implies that such a reconstruction cost is
more sensitive.

Let G1 = (V, E1) be a fully connected network formed by adding all candidate edges to
G0. We denote the set of added links by Ê ⊆ E1 − E0, and the network after reconstruction
by Ĝ = (V, E0 + Ê). Let n =

∣∣Ê∣∣ denote the reconstruction strength. The reconstruction
strategy is denoted by X = (xij)N×N , where xij = 1 if eij ∈ Ê; otherwise, xij = 0. Then,
we have

n =
N

∑
i=1

N

∑
j=1

xij (7)

It is easy to see that the cost of the reconstruction strategy X should satisfy the
following constraints:

N

∑
i=1

N

∑
j=1

xijcij ≤ Cmax (8)

where Cmax is the total budget for reconstruction costs.
To ensure that the number of received messages for our equipment after reconstruction

does not exceed its maximum value, we have

N

∑
i=1

(aij + xij) ≤ rin
i , ∀j (9)

To make sure that the number of messages sent by our equipment after reconstruction
does not exceed its maximum value, we have

N

∑
j=1

(aij + xij) ≤ rout
i , ∀i (10)

As introduced in Section 3.2, we define the effect of the reconstruction strategy as the

increase of the operational capability after edge addition Φ(X) = Γ(Ĝ)−Γ(G0)
Γ(G1)

. The objective
of UCSoS reconstruction is to find a set of reconstruction strategies X∗ that can maximize
the recovery of the operational capability of UCSoS.

To sum up, the optimization model for the reconstruction problem defined in Definition 3
can be denoted as follows:

Mathematics 2024, 12, 1476 10 of 23

max Φ(X = (xij)N×N)

s.t. (1) ∼ (10)
(11)

4.3. Complexity Analysis

To prove that the UCSoS reconstruction problem characterized by Model (11) is NP-
hard, we first present the definition of a well-known NPC problem, i.e., the 0-1 backpack
problem [43].

Definition 4. The 0–1 backpack problem involves two sets of non-negative integers,
C = {c1, c2, ..., cm} and U = {u1, u2, ..., um}, together with an integer b. The goal is to de-
cide whether a subset s ⊆ {1, 2, . . . , m} exists such that ∑

j∈s
cj ≤ b and ∑

j∈s
uj is maximized.

Theorem 1. The UCSoS reconstruction problem formulated in Model (11) is NP-hard.

Proof. Assuming that there are three integer values {qT , qD, qI}, then we can construct a
special UCSoS problem case from a 0-1 backpack problem instance. As shown in Figure 4,
the UCSoS G0 is composed of a target entity T1, a decider entity D1, an influence entity
I1, m + 1 sensor entities {S0, S1, S2, ..., Sm}, and total budget Cmax. Initially, there is only
one meta-path in the UCSoS, i.e., T1 → S1 → D1 → I1. {qT , qD, qI} represent the node
capabilities of {T1, D1, I1}, respectively. qSi represents the node capability of Si. Then the
operational capability of the UCSoS G0 is

Γ(G0) = f (G) =
1
3
× qT × qS0 × qD × qA (12)

I1

T1

D1

S2 S0

S1

Sm

Figure 4. A simple example to show that the UCSoS reconstruction problem is NP-hard.

Next, assume that node S0 in Figure 4 is destroyed and the cost-sensitive parameter
p = 1. Then the cost of absorbing the nodes {S1, S2, ..., Sm} into the UCSoS G0 is { qT+qS1

2 +
qS1

+qD
2 ,

qT+qS2
2 +

qS2+qD
2 , ..., qT+qSm

2 +
qSm+qD

2 }.
The optimization objective of model 11 is to maximize Φ(X) = Γ(Ĝ)−Γ(G0)

Γ(G1)
, which

equals to maximize Γ(Ĝ), i.e.,

Γ(Ĝ) =
1
3
× qT × ∑

Si∈Ŝ

qSi × qD × qA (13)

where Ŝ represents the newly added sensor nodes. Furthermore, maximizing Γ(Ĝ) equals
to maximizing ∑Si∈Ŝ qSi . In other words, the UCSoS problem instance G0 can be reduced

Mathematics 2024, 12, 1476 11 of 23

to a 0-1 backpack problem defined in Definition 4, where C = { qT+qS1
2 +

qS1
+qD
2 ,

qT+qS2
2 +

qS2+qD
2 , ..., qT+qSm

2 +
qSm+qD

2 }, U = {qS1 , qS2 , ..., qSm} and b = Cmax. As the 0-1 backpack
problem is NPC, the UCSoS reconstruction problem formulated in Model (11) is NP-
hard.

5. The Design of SoS-Restorer

In this section, we propose the deep learning-based approach SoS-Restorer to find
the optimal solution for the UCSoS reconstruction problem. First, we present the overall
framework of SoS-Restorer with severe-key procedures. Next, we describe the structure
of the encoder-decoder neural network with an attention mechanism. Finally, we give the
specific training procedure of SoS-Restorer.

5.1. General Overview

A complex UCSoS reconstruction problem can be viewed as a Markov decision process
(MDP) [44]. At each iteration step, the agent selects a link from the optional link set as
an action based on the current state and updates the state. In addition, the DRL method
excels in executing sequential decision tasks without prior domain knowledge about the
system [45], so it is appropriate to choose the DRL method to solve the problem of UCSoS
reconstruction. In this paper, we use the famous actor-critic (AC) [46] method in DRL.
In the AC method, actors are tasked with developing strategies to optimize cumulative
returns. At the same time, the critic evaluates the actor-generated strategy and provides a
value function to facilitate strategy updates. As illustrated in Figure 5, the SoS-Restorer
solution process includes three stages: preparation, selection, and mapping.

Input

link m=node i + node j

1. Preparation

2. Selection

3. Mapping

Initial

Solution

Gradient

NN links

Select

Link y(k)

Attention

Encoder Decoder

Attention

Encoder Decoder

Actor

network

Baseline

Select

Link y(1)

Critic

network

Parameters

Selected

Link Set

Output

Figure 5. The general framework of SoS-Restorer. In the preparation stage, for a broken UC-
SoS with N nodes, any two nodes are connected to form N × N links. In the selection stage, we
will select the solution to the link composition problem with the highest probability based on the
deep neural network model until a complete solution is constructed. In the mapping phase, by
mapping the selected link to the broken UCSoS, we can calculate the operational capability of the
reconstructed UCSoS.

5.1.1. Stage I: Preparation

In the preparation stage, we pair the N surviving nodes currently distributed on the
battlefield, resulting in the generation of N × N links. As shown in Figure 6, each link

Mathematics 2024, 12, 1476 12 of 23

consists of two nodes and can be viewed as an optional candidate action. In particular, the
link Lk can be represented as Lk := ⟨vi, vj⟩, which means that the node vi collaborates with
the node vj.

V1

V1

V1

V2

VN

VN

Link 1 Link 2 Link NN

Figure 6. Input structure of the UCSoS reconstruction problem. The information contained in the
input sequence link contains the input information of two nodes.

5.1.2. Stage II: Selection

In the selection stage, the neural network consisting of an encoder, decoder, and
attention mechanism is used to output the optimal solution to the reconstruction problem.
First, the encoder extracts the feature information of all the candidate links and generates
their embedding vectors (i.e., high-dimensional vectors). These embedding vectors are then
passed to the decoder as input to the decoding process. The decoding process aims to select
the optimal subset of links from the candidate link set to form a solution to the problem. In
each decoding step, we combine the decoder and the attention mechanism to compute the
probability of each candidate link being selected, and then the agent selects the link with
the largest probability as the action of that step. Once a link is selected, it is removed from
the candidate link set. The above operation is repeated until the maximum reconstruction
cost budget constraint is reached. The neural network architecture is described in detail
in Section 5.2, while the training process of the neural network parameters is presented in
Section 5.3.

5.1.3. Stage III: Mapping

After the selection phase, we can obtain the selected set of links. By mapping the
selected links to the broken UCSoS, we can easily obtain the structure of the reconstructed
UCSoS, and then calculate the reconstruction effect through the objective function Φ.

A key issue when using the DRL method is how to design the state, action, and
reward functions. In our problem, we define the state S as the set of selected links. At
time t, if the agent has already selected t− 1 links, then the state of the environment can
be represented as st = {L1,L2, ...,Lt−1}, st ∈ S. When designing the action space, we
consider the selection of a link as an action, so the size of the action space is obviously
N × N. Furthermore, the definition of the reward function is identical to the objective
function of the optimization problem, which is the operational capability value of the
UCSoS after reconstruction.

Through the above design of the SoS-Restorer, we can easily obtain the solution to
the UCSoS reconstruction problem. During the training phase, we use the reward value
of the solution as feedback provided from the environment to perform backpropagation
and adjust the network parameters. Once the loss value of the network parameters and
the reconstruction solution stabilize or meet our expectations, we can obtain a well-trained
network structure. During the application phase, we can use the trained network to quickly
find the optimal solution to the reconstruction problem by inputting the broken UCSoS

Mathematics 2024, 12, 1476 13 of 23

and the reconstruction budget information. As shown in Figure 7, the main steps of the
proposed SoS-Restorer method can be summarized as follows:

• Step 1: Initialize the trained parameters of the deep neural network, the fragmented
UCSoS structure, and the total reconstruction budget.

• Step 2: The nodes in the fragmented UCSoS are paired in pairs to generate candidate links.
• Step 3: Termination condition: The iteration stops when the sum of costs for selected

links exceeds the total reconstruction budget.
• Step 4: According to the deep neural network, calculate the probability of selecting

each node.
• Step 5: Select the link with the highest probability using a greedy strategy.
• Step 6: If the termination condition is not met, go to step 3.

Start

Initialize model parameters

and problems

Generate candidate links

Calculating the probability

of selecting each link

Select the link with a

greedy policy

Termi

nation?

End

Figure 7. The flowchart of the proposed SoS-Restorer.

5.2. The Neural Network Architecture Model

Recently, in the field of natural language processing, Vinyals et al. proposed a pointer
network architecture based on the sequence-to-sequence (Seq2Seq) model to solve COP
tasks [47], which shows remarkable progress in terms of solution speed and quality. Both
the encoder and the decoder of the pointer network use recurrent neural networks (RNNs).
Inspired by the pointer network model, we propose a neural network architecture to
address the UCSoS reconstruction problem. The neural network architecture in the AC
framework consists of an encoder, a decoder, and attention components, as depicted in
Figure 8.

Mathematics 2024, 12, 1476 14 of 23

Embedding

Attention

Query

Softmax

Mask

Output

Input

Encoder Decoder

ℒ𝑁𝑁ℒ1 ℒ2

𝑒𝑁𝑁𝑒1 𝑒2

Attention

𝑝(𝜋𝑡|𝜋1, 𝜋2, … , 𝜋𝑡−1)

𝜋𝑡−1
𝑑𝑡−1 𝑑𝑡+1𝑑𝑡

Figure 8. Our neural network architecture model. The encoder extracts features of input links through
the CNN network, while the RNN decoder is responsible for storing information about the decoding
sequence. The attention mechanism is used to generate the probability distribution for the next input
based on the RNN hidden state and the embedded information.

5.2.1. The Encoder

The role of the encoder is to learn all the features of the input sequence, enabling the
agent to comprehend the representation of each link. In pointer networks, the encoder
adopts the RNN structure, which effectively captures the sequential information of the
input sequence. However, for the UCSoS reconstruction problem, the input order of the
links does not provide any valuable information since any random permutation contains
the same information as the original input. Thus, to reduce computational complexity with-
out compromising efficiency, one-dimensional convolutional neural networks (CNN) are
used as the encoding neural networks. Specifically, each input link Li is encoded and trans-
formed into ei, thereby generating a (N ∗N)× dh-dimensional matrix E = {e1, e2, . . . , eNN},
where N ∗ N and dh represent the length of the input sequence and the dimensionality of
the target vector, respectively.

5.2.2. The Decoder

The task of the decoder is to convert the high-dimensional vector generated by the
encoder into the output sequence. Unlike the encoding stage, the decoding process needs
to consider the sequential output order of the selected links. Therefore, it is appropriate
to choose an RNN with a memory function as the decoding network. At each time step t,
the decoding network uses its previous hidden state dt−1 and input πt−1 (i.e., the output
sequence πt−1 at time step t− 1) to generate the current hidden state dt for querying by the
attention layer.

5.2.3. The Attention

The traditional Seq2Seq model is only suitable for dealing with problems where
the output dimensions are fixed, but it cannot deal with situations where the output
dimensions change dynamically. Fortunately, Vinyals has successfully incorporated the
attention mechanism into the Seq2Seq model, which effectively solves the problem of the
uncertain output dimension [35]. For the defined UCSoS reconstruction problem, when
the size of the UCSoS problem or the reconstruction budget is changed, the dimensions of
the output links will also change accordingly. Therefore, we also introduce the attention
mechanism into the neural network architecture.

As shown in Figure 8, the probability of selecting each link in the current step can be
computed using the attention mechanism. Specifically, at step t, the weighted sum of the

Mathematics 2024, 12, 1476 15 of 23

hidden state dt and the embedding vector ej is computed, and then the result is passed
through the tanh activation function as shown in Equation (14):

ut
j = vTtanh(Waej + Wbdt), j ∈ {1, 2, . . . , NN} (14)

where the parameters v, Wa and Wb can be obtained through training.
To reduce the action space and improve model efficiency, we introduced a masking

mechanism during the problem-solving process of the neural network output. The mask
is used to determine whether each link can be selected and takes a value of either 0 or 1,
as follows:

maskt
j =

{
1 , if oj is valid at time t
0 , otherwise

(15)

Finally, the final probability distribution of each link at time step t is calculated by:

p(πt |π0, π1, . . . , πt−1, st) = so f tmax(ut + maskt) (16)

During the training phase, to ensure that the link with the lower probability has
a chance of being selected, we use importance sampling way to select the next action.
However, during the testing phase, we adopt a policy of greedily selecting the link with the
highest probability. The detailed algorithm of the proposed neural network architecture
model is presented in Algorithm 1.

Algorithm 1: Processing procedure of the SoS-Restorer.
Input: All link information L = {L1,L2, . . . ,LNN}
Output: The final output sequence Π = {π(t)}T

1
1 Calculate the embedding ei for i ∈ {1, 2, . . . , NN} by the Encoder
2 Start current position π(0)← 0
3 for t = 1 : T do
4 Update the hidden layer state dt by the Decoder
5 Calculate the value ut

j for j ∈ {1, 2, . . . , NN}
6 Change the mask value maskt

j for j ∈ {1, 2, . . . , NN}
7 Calculate the output probability of each link

p(πt |π0, π1, . . . , πt−1, st) = so f tmax(ut + maskt)
8 π(t) = Greedy (p(πt |π0, π1, . . . , πt−1, st)) if choose greedy mode
9 end

5.3. Training Procedure

The AC framework consists of an actor network and a critic network. The actor
network, consisting of an encoder, a decoder, and an attention mechanism, which is a
modified version of the pointer network proposed in this article, aims to generate the
probability distribution of feasible actions at the current step. Meanwhile, the structure
of the critic network is similar to that of the encoder in the actor network and aims to
evaluate the state value of a given problem instance. Our goal is to obtain optimal network
parameters during the training phase to output the best reconstruction strategy during the
application phase.

In particular, if the actor network parameters are defined as θ and the input problem
instance is given as s, then the training goal of the actor network parameters can be
described as follows:

J(θ | s) = EΠ∼pθ(· | s)Φ(Π | s) (17)

where Φ(Π | s) represents the objective value of the optimal reconstructed link sequence Π
for problem instance s.

We train the network parameters using the classical policy gradient method [48]:

Mathematics 2024, 12, 1476 16 of 23

∇θ J(θ | s) = EΠ∼pθ(· | s)[(Φ(Π | s)− b(s))∇θ log(pθ(Π | s))] (18)

where b(s) is a benchmark independent of Π that is used to estimate the expected value of
the problem instance s, with the goal of reducing training variance.

During training, the Monte Carlo technique is employed to sample problem instances
s1, s2, ..., sD ∼ S, and then the average value of these samples is computed as a substitute
for the expected value:

∇θ J(θ) ≈ 1
D

D

∑
i=1

(Φ(Πi | si)− b(si))∇θ log(pθ(Πi | si)) (19)

To enhance learning efficiency, it is appropriate to use a parameterized baseline to
estimate the objective. Therefore, we introduce an auxiliary network called the critic
network to learn the excepted objective value that is found by the current policy pθ given a
state. Let φ be the parameters of the critic network, and the loss of the critic network can be
obtained as follows:

I(φ) =
1
D

D

∑
i=1
∇φ

∥∥Φ(Πi | si)− bφ(si)
∥∥2 (20)

where bφ(si) is the output baseline of the critic.
In each iteration, we sequentially optimize the actor and critic parameters. The actor

parameters θ are updated based on the output of the critic, ensuring that the agent learns
appropriate strategies in a positive sense. The detailed iterative procedures are illustrated
in Algorithm 2.

Algorithm 2: Training process in the AC framework
Input: Training set S, training epoch E, initialize actor network parameter θ and critic

network parameter φ

Output: Optimal parameters θ∗, φ∗ after training
1 for epoch← 1, 2, . . . , E do
2 Sample D instances from S
3 for i← 1, 2, . . . , D do
4 Initialize t← 0
5 repeat
6 Select πi

t+1 based on the given probability distribution p(πi
t |πi

0, πi
1, . . . , πi

t, si
t)

7 Update state si
t+1 ← (si

t, yi
t+1)

8 t← t + 1
9 until satisfy iterative condition;

10 Calculate the objective value Φ(Πi | si) and estimated value bφ(si)

11 end
12 Update the parameters θ and φ:
13 dθ ← 1

D ∑D
i=1(Φ(Πi | si)− b(si))∇θ log(pθ(Πi | si))

14 dφ← 1
D ∑D

i=1∇φ(Φ(Πi | si)− bφ(si))
2

15 end

6. Performance Evaluation

In this section, we first describe the details of our simulation setup and benchmark
algorithms. Then, we conducted extensive experiments to evaluate the performance of the
proposed SoS-Restorer model. Finally, we summarize the experimental results.

Mathematics 2024, 12, 1476 17 of 23

6.1. Simulation Setup
6.1.1. Dataset

As the UCSoS reconstruction problem formulated by Model (11) is a military prob-
lem, publicly available datasets are not currently available. Therefore, we generate the
dataset independently.

Specifically, the HCN was randomly generated based on the operational rules, con-
sisting of 40% sensor nodes, 30% decider nodes, 20% influence nodes, and 10% target
nodes. Six types of edges are used to represent the information interaction between nodes
in HCN. The capability values of the nodes are sampled from a uniform distribution [1, 2].
The random interference values αi and βi corresponding to node vi are randomly selected
from the interval

[
0, N

2

]
, where N is the number of nodes in the initially constructed net-

work. Meanwhile, the cost-sensitive parameter p is set to 1 to indicate a linear relationship
between the reconstruction cost of each edge and the capability of the corresponding node.

To validate the effectiveness of the SoS-Restorer method in restoring HCN capability,
we considered the random attack pattern as the disturbance condition to obtain fragmented
HCN. Since the complete removal of nodes of the same type would result in a reduction of
HCN capabilities to zero and prevent the construction of a new operational loop, we set
the number of randomly attacking HCN nodes as follows: removal of 40% of sensor nodes,
30% of decider nodes, and 20% of influence nodes.

6.1.2. Hyperparameter Setting

For the actor network, all experiments use a single-layer 1D convolutional network as
the encoder and a single hidden-layer GRU recurrent neural network as the decoder. The
number of hidden nodes in both the encoder and the decoder is 128. In addition, we use
a multilayer 1D convolutional network as the critic network. The model parameters are
trained using the Adam optimizer. The fixed learning rate is 10−4.

Based on the above settings, we trained a SoS-Restoer model consisting of 20 HCN
nodes. The training process utilized a dataset consisting of one million data points.

6.1.3. Device Configuration

The experiments are performed on a computer configured with CPU: Intel i9-12900K
3.2GHz; GPU: NVIDIA RTX3090; RAM: 64GB; OS: 64-bit Ubuntu 16.04. The software
employed for development is Python 3.7.

6.2. Benchmarks

To accurately evaluate the performance of SoS-Restorer when faced with critical nodes
in complex networks under attack, we selected three classical repair strategies as our
benchmark algorithms [49,50].

• High Capability First (HCF): Sort the nodes in descending order of capability and
prioritize reconstructing the collaboration relationships between nodes with the high-
est capability.

• High Degree First (HDF): Sort the nodes in descending order of degree and prioritize
reconstructing the collaboration relationships between nodes with the highest degree.

• High Degree Adaptive (HDA): Sort the nodes in descending order of degree, recon-
struct the collaborative relationships between the nodes with the highest degrees, and
then recalculate the degrees of each node. Repeat the above steps continuously.

6.3. Performance Results
6.3.1. Solving Quality and Speed

The performance of solutions generated by different methods was systematically com-
pared through experiments conducted in two reconstruction cost scenarios: homogeneous
cost (p = 0) and heterogeneous cost (p = 1). For each scenario, experiments were conducted
on various network scales, including {20, 40, 60, 80} network nodes. Ten problem instances

Mathematics 2024, 12, 1476 18 of 23

were randomly generated for each specific network scale, and the average reconstruction
effect of each algorithm was calculated. The solving quality of different algorithms under
the two reconstruction cost scenarios is illustrated in Figure 9, where a larger target value
Φ indicates better reconstruction results.

20 40 60 80
Node number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
co
ns
tr
uc
ti
on
 e
ff
ec
t

SoS-Restorer

HCF

HDF

HDA

(a) Homogeneous cost p = 0

20 40 60 80
Node number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
co
ns
tr
uc
ti
on
 e
ff
ec
t

SoS-Restorer

HCF

HDF

HDA

(b) Heterogeneous cost p = 1

Figure 9. The average reconstruction effect in two reconstruction cost scenarios by different algorithms.

As depicted in Figure 9, we can see that the quality of the solutions generated by
the SoS-Restorer is superior to that generated by the benchmark method in both the
homogeneous cost and heterogeneous cost scenarios. Specifically, for the homogeneous
cost scenario, regardless of the problem size, SoS-Restorer consistently outperforms the
baseline algorithm in terms of solution quality, and the accuracy of the SoS-Restorer can be
improved by about 20 ∼ 41% when compared to the well-performing HCF algorithm. For
the heterogeneous cost scenario, the accuracy of the SoS-Restorer can also be improved by
about 25 ∼ 60% compared to the HCF algorithm. Furthermore, regardless of the problem
size, the quality of the solution generated by the HCF method is always superior to the
HDF and HDA methods, indicating that reconstructing relationships between nodes with
higher capability leads often restores higher operational capability. Figure 10 visualizes the
solution to the HCN reconstruction problem; when faced with the same input instances,
SoS-Restorer can output HCN reconstruction strategies that better align with the needs of
the battlefield commander.

We plotted the box plots of solution time for SoS-Restorer in two different reconstruc-
tion cost scenarios, as shown in Figure 11. It can be observed that regardless of the scenario,
the SoS-Restorer can provide problem-solving solutions within a reasonable time frame.
As the size of the problem increases, SoS-Restorer adapts to the complexity by increasing
its solution time but still manages to generate battle plans for the commander to decide
within a few seconds.

6.3.2. Generalization Ability

A robust generalization capability allows the model to effectively adapt to novel
situations and to outperform its performance based on the training data alone. During the
training phase, SoS-Restorer is trained using instances that have a fixed range of information
throughput and operational capability for the HCN node. However, in real-world combat
scenarios, variations in the external environment, such as enemy electromagnetic jamming
and changes in terrain conditions, can have a significant impact on the physical attributes of
nodes. When there is a change in the attribute of the node in the SoS, it is necessary to adjust
the reconstruction strategy accordingly. From the above experiments on solving quality
and speed, we can conclude that regardless of network size, SoS-Restorer can quickly
produce high-quality solutions without the need for retraining. Therefore, SoS-Restorer
shows strong generalization ability when faced with networks of different sizes. Next,
we will adjust node attributes, such as node capacity and throughput range, to make

Mathematics 2024, 12, 1476 19 of 23

them inconsistent with the node attribute range of the training phase, so that evaluate the
generalization performance of SoS-Restorer when network node attributes change.

1

16

21

24

28

34

2

4

11
20

22

23

25

26

27

31

35

36

3

14

30

32

6

12

5

7

13

19

33

18

8

9

15

10

17

29

40

48

43

44

37 41

46

38

42
47

45

49

39

50

51

52
53

54

55

56

57

1

16

21

24

28

34

2

4

11
20

22

23

25

26

27

31

35

36

3

14

30

32

6

12

5

7

13

19

33

18

8

9

15

10

17

29

40

48

43

44

37 41

46

38

42
47

45

49

39

50

51

52
53

54

55

56

57

(a) (b)

1

16

21

24

28

34

2

4

11
20

22

23

25

26

27

31

35

36

3

14

30

32

6

12

5

7

13

19

33

18

8

9

15

10

17

29

40

48

43

44

37 41

46

38

42
47

45

49

39

50

51

52
53

54

55

56

57

1

16

21

24

28

34

2

4

11
20

22

23

25

26

27

31

35

36

3

14

30

32

6

12

5

7

13

19

33

18

8

9

15

10

17

29

40

48

43

44

37 41

46

38

42
47

45

49

39

50

51

52
53

54

55

56

57

(c) (d)

Figure 10. Visualization of the reconstruction results for different algorithms. Bright blue nodes
represent sensor entities, vivid green nodes represent decider entities, light yellow nodes indicate
influence entities, and pale purple nodes denote target entities. Light gray border represents existing
edges, light red border represents edges added during reconstruction. (a) Solution to the HCN
reconstruction generated by SoS-Restorer. (b) Solution to the HCN reconstruction generated by HCF.
(c) Solution to the HCN reconstruction generated by HDF. (d) Solution to the HCN reconstruction
generated by HDA.

20 40 60 80

Node number

0

1

2

3

4

5

Ti
me

/s

p = 0
p = 1

Figure 11. The solution time of SoS-Restorer for two reconstruction cost scenarios at the same scale.

Specifically, we modified the range of operational capability and throughput for SoS
nodes and then compared the average result of each algorithm on 10 problem instances

Mathematics 2024, 12, 1476 20 of 23

when the cost-sensitive parameter p = 1. The results are shown in Table 3. We can see that
regardless of adjusting the range of node attributes, the solution quality of SoS-Restorer
is always better than the traditional methods. At the same time, we also drew a box plot
of the solving time for SoS-Restorer in specific scale problems as shown in Figure 12. It is
clear that SoS-Restorer can also find optimal solutions quickly.

Table 3. The average solution effect of each algorithm at different scales.

Algorithm Node20 Node40 Node60 Node80

SoS-Restorer 0.2988 0.1910 0.1814 0.2103
HCF 0.1539 0.1483 0.1620 0.1793
HDF 0.1579 0.1186 0.1183 0.1246
HDA 0.1068 0.0737 0.1032 0.1141

20 40 60 80
Node number

0

1

2

3

4

5

Ti
me

/s

Figure 12. The solution time of SoS-Restorer when cost-sensitive parameter p = 1. Box plots of
different colors represent the average solution time of SoS-Restorer at different problem sizes.

6.4. Summary of the Results

From the experimental results, we can conclude that SoS-Restorer can solve the UCSoS
reconstruction problem efficiently and effectively. Compared to the baseline algorithm,
SoS-Restorer shows some encouraging advantages, such as demonstrating strong general-
ization ability and finding high-quality solutions in a reasonable time frame, which can be
summarized as follows:

• Strong generalization ability: Once the network parameters of the proposed model
have been trained, it can be applied to new problems without needing re-training. In
our experiments, our method can accurately find the optimal reconstruction strategy
regardless of whether the reconstruction cost is homogeneous (p = 0) or heterogeneous
(p = 1) and regardless of the size of the problem instances.

• Achieving an optimal balance between solution speed and solution quality: Another
advantage of SoS-Restorer is that the optimization solution can be obtained directly
by simple forward propagation of deep neural networks. Therefore, the reconstructed
solution can always be found in a reasonable time while ensuring the quality of
the solutions.

Mathematics 2024, 12, 1476 21 of 23

7. Conclusions

With the rapid iteration of advanced technology, the UCSoS has become increasingly
fragile and inevitably subject to interference. Thus, how to quickly reorganize existing
simple-functioning operational units into new UCSoS is a challenging task. In this paper,
in order to facilitate the modeling and optimization of the UCSoS reconstruction problem
with heterogeneous costs, we first abstract it as an HCN that includes different types of
entities and links and improve the measurement method for evaluating the effectiveness of
UCSoS reconstruction. Then, inspired by recent advances in the field of deep reinforcement
learning, we propose a DRL-based method called SoS-Restorer to quickly find optimal
reconstruction strategies. The personalized design of SoS-Restorer ensures its outstanding
performance in terms of its problem-solving quality, solution speed, and generalization
ability. Evaluation results show that SoS-Restorer can improve the solution quality by
about 20∼60% compared to traditional algorithms. In addition, SoS-Restorer can provide
reconstructed problem solutions within a few seconds to meet the demands of real-time
reconstruction in dynamic combat scenarios.

Author Contributions: Conceptualization, R.L. and H.Y.; methodology, R.L., H.Y. and X.Z.; software,
R.L. and H.Y.; validation, R.L., H.Y. and X.Z.; formal analysis, R.L., H.Y., X.Z. and B.R.; investigation,
R.L., H.Y., X.Z., B.R., T.C. and X.L.; resources, X.Z. and B.R.; writing—original draft preparation, R.L.,
H.Y. and B.R.; writing—review and editing, R.L., H.Y., X.Z., B.R., T.C. and X.L.; supervision, X.Z., B.R.,
T.C. and X.L.; funding acquisition, X.Z. and X.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(No. 62302510). The authors are thankful for the support of the COSTA: complex system optimization
team of the College of System Engineering at NUDT.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sapaty, P.S. Mosaic warfare: From philosophy to model to solutions. Int. J. Robot. Autom 2019, 2019, 157–166. [CrossRef]
2. Clark, B.; Patt, D.; Schramm, H. Mosaic Warfare Exploiting Artificial Intelligence and Autonomous Systems to Implement Decision-Centric

Operations; Center for Strategic and Budgetary Assessments (CSBA): Washington, DC, USA, 2020.
3. Zhang, Y.; Guo, Q.-S.; Fan, Y.-P. Research on Operational Effectiveness Test Evaluation Method of Ground Unmanned Combat

System Based on Capability. Fire Control Command. Control 2021, 1633, 182–187.
4. Zhong, Y.; Yao, P.; Zhang, J.; Wan, L. Formation and adjustment of manned/unmanned combat aerial vehicle cooperative

engagement system. J. Syst. Eng. Electron. 2018, 29, 756–767.
5. Wang, Z.; Guo, Y.; Li, N.; Yuan, H.; Hu, S.; Lei, B.; Wei, J. Autonomous confrontation strategy learning evolution mechanism of

unmanned system group under actual combat in the loop. Comput. Commun. 2023, 209, 283–301. [CrossRef]
6. Zhu, X.; Zhu, X.; Yan, R.; Peng, R. Optimal routing, aborting and hitting strategies of UAVs executing hitting the targets

considering the defense range of targets. Reliab. Eng. Syst. Saf. 2021, 215, 107811. [CrossRef]
7. Madni, A.M.; Sievers, M.; Erwin, D. Formal and Probabilistic Modeling in Design of Resilient Systems and System-of-Systems. In

Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019.
8. Fan, D.; Sun, B.; Dui, H.; Zhong, J.; Wang, Z.; Ren, Y.; Wang, Z. A modified connectivity link addition strategy to improve the

resilience of multiplex networks against attacks. Reliab. Eng. Syst. Saf. 2022, 221, 108294. [CrossRef]
9. Chen, Z.; Zhou, Z.; Zhang, L.; Cui, C.; Zhong, J. Mission reliability modeling and evaluation for reconfigurable unmanned

weapon system-of-systems based on effective operation loop. J. Syst. Eng. Electron. 2023, 34, 588–597. [CrossRef]
10. Sun, Y.; Zhang, T. Research on Autonomous Reconstruction Method for Dependent Combat Networks. IEEE Syst. J. 2023, 17,

1–10. [CrossRef]
11. Sun, Q.; Li, H.; Zhong, Y.; Ren, K.; Zhang, Y. Deep reinforcement learning-based resilience enhancement strategy of unmanned

weapon system-of-systems under inevitable interferences. Reliab. Eng. Syst. Saf. 2023, 242, 109749. [CrossRef]
12. Sun, Q.; Li, H.; Wang, Y.; Zhang, Y. Multi-swarm-based cooperative reconfiguration model for resilient unmanned weapon

system-of-systems. Reliab. Eng. Syst. Saf. 2022, 222, 108426. [CrossRef]
13. Raman, R.A.r.; D’Souza, M.A. Decision learning framework for architecture design decisions of complex systems and system-of-

systems. Syst. Eng. 2019, 538–560. [CrossRef]
14. Fang, Z. System-of-Systems Architecture Selection: A Survey of Issues, Methods, and Opportunities. IEEE Syst. J. 2022, 16,

4768–4779. [CrossRef]

http://doi.org/10.15406/iratj.2019.05.00190
http://dx.doi.org/10.1016/j.comcom.2023.07.006
http://dx.doi.org/10.1016/j.ress.2021.107811
http://dx.doi.org/10.1016/j.ress.2021.108294
http://dx.doi.org/10.23919/JSEE.2023.000082
http://dx.doi.org/10.1109/JSYST.2023.3282016
http://dx.doi.org/10.1016/j.ress.2023.109749
http://dx.doi.org/10.1016/j.ress.2022.108426
http://dx.doi.org/10.1002/sys.21517
http://dx.doi.org/10.1109/JSYST.2021.3119294

Mathematics 2024, 12, 1476 22 of 23

15. Davendralingam, N.; Delaurentis, D.A. A Robust Portfolio Optimization Approach to System of System Architectures. Syst. Eng.
2015, 18, 269–283. [CrossRef]

16. Lin, M.; Chen, T.; Chen, H.; Ren, B.; Zhang, M. When architecture meets AI: A deep reinforcement learning approach for system
of systems design. Adv. Eng. Inform. 2023, 56, 101965. [CrossRef]

17. Wang, Q.; Lai, K.H.; Tang, C. Solving combinatorial optimization problems over graphs with BERT-Based Deep Reinforcement
Learning. Inf. Sci. 2023, 619, 930–946. [CrossRef]

18. Yu, J.J.Q.; Yu, W.; Gu, J. Online Vehicle Routing With Neural Combinatorial Optimization and Deep Reinforcement Learning.
IEEE Trans. Intell. Transp. Syst. 2019, 20, 3806–3817. [CrossRef]

19. Li, J.; Jiang, J.; Yang, K.; Chen, Y. Research on Functional Robustness of Heterogeneous Combat Networks. IEEE Syst. J. 2018,
13, 1487–1495. [CrossRef]

20. Li, J.; Zhao, D.; Ge, B.; Jiang, J.; Yang, K. Disintegration of Operational Capability of Heterogeneous Combat Networks Under
Incomplete Information. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 5172–5179. [CrossRef]

21. Li, J.; Zhao, D.; Jiang, J.; Yang, K.; Chen, Y. Capability Oriented Equipment Contribution Analysis in Temporal Combat Networks.
IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 696–704. [CrossRef]

22. Zhang, J.; Lv, H.; Hou, J. A novel general model for RAP and RRAP optimization of k-out-of-n:G systems with mixed redundancy
strategy. Reliab. Eng. Syst. Saf. 2023, 229, 108843. [CrossRef]

23. Levitin, G.; Xing, L.; Dai, Y. Optimizing partial component activation policy in multi-attempt missions. Reliab. Eng. Syst. Saf.
2023, 235, 109251. [CrossRef]

24. Peiravi, A.; Nourelfath, M.; Zanjani, M.K. Universal redundancy strategy for system reliability optimization. Reliab. Eng. Syst.
Saf. 2022, 225, 108576. [CrossRef]

25. Ordoukhanian, E.; Madni, A. Model-Based Approach to Engineering Resilience in Multi-UAV Systems. Systems 2019, 7, 11.
[CrossRef]

26. Zhong, Y.; Li, H.; Sun, Q.; Huang, Z.; Zhang, Y. A kill chain optimization method for improving the resilience of unmanned
combat system-of-systems. Chaos Solitons Fractals 2024, 181, 114685. [CrossRef]

27. Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity; Dover Publications, Inc.: Mineola, NY,
USA, 1998.

28. Dorigo, M.; Gambardella, L. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans.
Evol. Comput. 1997, 1, 53–66. [CrossRef]

29. Horowitz, E.; Sahni, S. Computing Partitions with Applications to the Knapsack Problem; Cornell University: Ithaca, NY, USA, 1972.
30. Yuan, E.; Wang, L.; Cheng, S.; Song, S.; Fan, W.; Li, Y. Solving flexible job shop scheduling problems via deep reinforcement

learning. Expert Syst. Appl. 2024, 245, 123019. [CrossRef]
31. Marinescu, R.; Dechter, R. AND/OR Branch-and-Bound search for combinatorial optimization in graphical models. Artif. Intell.

2009, 173, 1457–1491. [CrossRef]
32. Rabiner, L. Combinatorial optimization:Algorithms and complexity. IEEE Trans. Acoust. Speech Signal Process. 2003, 32, 1258–1259.

[CrossRef]
33. Li, K.; Zhang, T.; Wang, R.; Wang, Y.; Han, Y.; Wang, L. Deep Reinforcement Learning for Combinatorial Optimization: Covering

Salesman Problems. IEEE Trans. Cybern. 2022, 52, 13142–13155. [CrossRef]
34. Hopfield, J.J.; Tank, D.W. Neural computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152. [CrossRef]
35. Vinyals, O.; Fortunato, M.; Jaitly, N. Pointer networks. In Proceedings of the International Conference on Neural Information

Processing Systems, Montreal, QC, USA, 7–12 December 2015.
36. Bello, I.; Pham, H.; Le, Q.V.; Norouzi, M.; Bengio, S. Neural combinatorial optimization with reinforcement learning. arXiv 2016,

arXiv:1611.09940.
37. Dai, H.; Khalil, E.B.; Zhang, Y.; Dilkina, B.; Song, L. Learning Combinatorial Optimization Algorithms over Graphs. Statistics

2017, 52, 6348–6358.
38. Li, Z.; Chen, Q.; Koltun, V. Combinatorial optimization with graph convolutional networks and guided tree search. In Proceedings

of the NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, New Orleans, LA,
USA, 2–8 December 2018.

39. Chen, W.; Li, J.; Jiang, J. Heterogeneous Combat Network Link Prediction Based on Representation Learning. IEEE Syst. J. 2021,
15, 4069–4077. [CrossRef]

40. Sun, Y.; Han, J.; Yan, X.; Yu, P.S. PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks.
Proc. Vldb Endow. 2011, 4, 992–1003. [CrossRef]

41. Cares, J.R. An Information Age Combat Model; Technical Report; Produced for the United States Office of the Secretary of Defense:
Arlington, VA, USA, 2004.

42. Pan, X.; Wang, H.; Yang, Y.; Zhang, G. Resilience based importance measure analysis for SoS. J. Syst. Eng. Electron. 2019, 30,
920–930.

43. Agnetis, A.; Mirchandani, P.B.; Pacifici, P.A. Scheduling Problems with Two Competing Agents. Oper. Res. 2004, 52, 229–242.
[CrossRef]

44. Singh, R.; Gupta, A.; Shroff, N.B. Learning in Constrained Markov Decision Processes. IEEE Trans. Control. Netw. Syst. 2023, 10,
441–453. [CrossRef]

http://dx.doi.org/10.1002/sys.21302
http://dx.doi.org/10.1016/j.aei.2023.101965
http://dx.doi.org/10.1016/j.ins.2022.11.073
http://dx.doi.org/10.1109/TITS.2019.2909109
http://dx.doi.org/10.1109/JSYST.2018.2828779
http://dx.doi.org/10.1109/TSMC.2018.2867532
http://dx.doi.org/10.1109/TSMC.2018.2882782
http://dx.doi.org/10.1016/j.ress.2022.108843
http://dx.doi.org/10.1016/j.ress.2023.109251
http://dx.doi.org/10.1016/j.ress.2022.108576
http://dx.doi.org/10.3390/systems7010011
http://dx.doi.org/10.1016/j.chaos.2024.114685
http://dx.doi.org/10.1109/4235.585892
http://dx.doi.org/10.1016/j.eswa.2023.123019
http://dx.doi.org/10.1016/j.artint.2009.07.003
http://dx.doi.org/10.1109/TASSP.1984.1164450
http://dx.doi.org/10.1109/TCYB.2021.3103811
http://dx.doi.org/10.1007/BF00339943
http://dx.doi.org/10.1109/JSYST.2020.3028168
http://dx.doi.org/10.14778/3402707.3402736
http://dx.doi.org/10.1287/opre.1030.0092
http://dx.doi.org/10.1109/TCNS.2022.3203361

Mathematics 2024, 12, 1476 23 of 23

45. Zhan, W.; Luo, C.; Wang, J. Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge Computing. IEEE
Internet Things J. 2020, 7, 5449–5465. [CrossRef]

46. Bahdanau, D.; Brakel, P.; Xu, K.; Goyal, A.; Lowe, R.; Pineau, J.; Courville, A.; Bengio, Y. An Actor-Critic Algorithm for Sequence
Prediction. arXiv 2016, arXiv:1607.07086.

47. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the NIPS’14:
Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2, Montreal, QC, USA, 8–13
December 2014.

48. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8,
229–256. [CrossRef]

49. Hu, B.; Li, F.; Zhou, H. Robustness of Complex Networks under Attack and Repair. Chin. Phys. Lett. 2009, 26, 128901.
50. Bin, H.; Fang, L. Repair strategies of scale-free networks under multifold attack strategies. Syst. Eng. Electron. 2010, 32, 43–47.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/JIOT.2020.2978830
http://dx.doi.org/10.1007/BF00992696

	Introduction
	Related Work
	UCSoS Reconstruction
	Deep Reinforcement Learning in Combinatorial Optimization Problems

	UCSoS Model
	Heterogeneous Network Model of UCSoS
	Operational Capability Measurement of UCSoS

	UCSoS Reconstruction Problem with Heterogeneous Costs
	Problem Illustration
	Problem Model
	Complexity Analysis

	The Design of SoS-Restorer
	General Overview
	Stage I: Preparation
	Stage II: Selection
	Stage III: Mapping

	The Neural Network Architecture Model
	The Encoder
	The Decoder
	The Attention

	Training Procedure

	Performance Evaluation
	Simulation Setup
	Dataset
	Hyperparameter Setting
	Device Configuration

	Benchmarks
	Performance Results
	Solving Quality and Speed
	Generalization Ability

	Summary of the Results

	Conclusions
	References

