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Abstract: In this paper, a class of two-delay differential equations with coefficient-dependent delay
is studied. The distribution of the roots of the eigenequation is discussed, and conditions for the
stability of the internal equilibrium and the existence of Hopf bifurcation are obtained. Additionally,
using the normal form method and the central manifold theory, the bifurcation direction and the
stability for the periodic solution of Hopf bifurcation are calculated. Finally, the correctness of the
theory is verified by numerical simulation.
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1. Introduction

The interaction between species in ecosystems is one of the core contents of ecolog-
ical research. In population ecology, species relationships include parasitic, reciprocal,
competitive, and predator–prey interactions. Notably, the interaction between predators
and prey plays a significant role in maintaining ecosystem stability and diversity. The
Lotka–Volterra model { .

x(t) = x(t)(r − by(t)),
.
y(t) = αx(t)y(t)− vy(t)

(1)

is a classic predator–prey model widely used to describe the interactions between predators
and prey. In this model, x(t) and y(t) represent the population density of prey and
predators, respectively. The parameter r indicates the birth rate of the prey population,
b indicates the success rate of predators’ predation of prey, α represents the nutritional
conversion coefficient of the predators, and v represents the mortality rate of predators.
In the original Lotka–Volterra predator–prey model (1), it is assumed that the growth
of prey populations is affected by the intrinsic growth rate and predation pressure from
predators and that the growth of predator populations is affected by their feeding rates
and their natural mortality rates. In order to describe the interaction between populations
more realistically, the following model is proposed considering the density constraint effect
within populations: { .

x(t) = x(t)(r − ax(t)− by(t)),
.
y(t) = αx(t)y(t)− vy(t)− βy2(t),

(2)

where a indicates the constraint coefficient of the prey population density, β represents
the constraint coefficient of the predators’ population density, and r, b, α, v have the same
biological significance as model (1).

In model (2), it is usually assumed that all individuals have the same degree of survival
and predation ability and that the interaction between organisms is instantaneous, so there
was no time delay, which is often not true in actual ecosystems. Considering that biological
individuals usually have a growth and development process, it becomes necessary to
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consider the time delay effect between predators and prey. Time delay effect refers to the
delay caused by physiological processes such as the growth, reproduction, and migration
of biological individuals. Therefore, studying Lotka–Volterra predator–prey models with
time delays helps to better understand the interactions between predators and prey in
actual ecosystems, providing a theoretical basis for ecological protection and management.
In order to more accurately describe and predict the changing trends of species populations
with obvious seasonal or life cycle characteristics, researchers have incorporated time delay
effects into the Lotka–Volterra predation model [1–4]. Most scholars have considered the
single time delay effect [5,6]; for instance, May proposes the following model [7]:{ .

x(t) = x(t)(r − ax(t − τ)− by(t)),
.
y(t) = αx(t)y(t)− vy(t)− βy2(t),

(3)

where τ indicates the pregnancy time of the prey population.
Due to the different predatory abilities of predators at different stages, it takes time

for juvenile predators to grow into adult predators. Therefore, incorporating these stage
structures into predator models can provide a more accurate description of the relationship
between predators and prey in ecosystems. Populations are typically divided into several
stages according to certain physiological characteristics, such as juvenile, adult and old age.
Corresponding stage-structured models are established for research purposes, which may
result in new dynamic behaviors [8–10]. Assuming that the growth of the prey population
follows Lotka–Volterra and that the young predators are unable to prey on the prey and
are unable to reproduce, Xu proposes the following model [11]:

.
x(t) = x(t)(r − ax(t)− by2(t)),.
y1(t) = αx(t)y2(t)− dy1(t)− αe−dτx(t − τ)y2(t − τ),
.
y2(t) = αe−dτx(t − τ)y2(t − τ)− vy1(t)− βy2

2(t),
(4)

where x(t) represents the population density of prey, y1(t) represents the population
density of juvenile predators, y2(t) represents the population density of adult predators,
r, a, b, α, β have the same biological significance as model (2), v represents the mortality
rate of the adult predator population, d indicates the mortality rate of juvenile predators,
τ indicates the time when juvenile predators mature, and αe−dτ2 x(t − τ)y(t − τ) indicates
at the moment of t − τ, the population density of juvenile predators reproduced by adult
predators that survive after the time of [t − τ, t]. Based on previous studies, this article con-
siders the Lotka–Volterra predator–prey model with a stage structure including pregnancy
delay, as follows:

.
x(t) = x(t)(r − ax(t − τ1)− by2(t)),.
y1(t) = αx(t − τ1)y2(t)− dy1(t)− αe−dτ2 x(t − τ2)y(t − τ2),.
y2(t) = αe−dτ2 x(t − τ2)y(t − τ2)− vy1(t)− βy2

2(t).
(5)

In model (5), the first and third equations do not contain variables y1, meaning that
they are not coupled with the second equation; therefore, we only need to consider the
following models:{ .

x(t) = x(t)(r − ax(t − τ1)− by(t)),
.
y(t) = αe−dτ2 x(t − τ2)y(t − τ2)− vy(t)− βy2(t),

(6)

where x(t) represents the population density of prey, y(t) represents the population density
of adult predators, r, a, b, α, v, β, d are all positive numbers with the same biological signifi-
cance as model (4), τ1 indicates the pregnancy time of the prey population, τ2 indicates the
time when juvenile predators mature, and αe−dτ2 x(t − τ2)y(t − τ2) indicates at the moment
of t − τ2, the population density of juvenile predators reproduced by adult predators that
survive after the time of [t − τ2, t]. First, this paper studied five different scenarios based
on different values of two time delays and provided stability analysis for internal equilib-
rium and the existence of Hopf bifurcation in these scenarios. Second, using normal form
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method and central manifold theory, we determined the direction of branching for Hopf
bifurcation and analyzed the stability of periodic solutions. Finally, numerical simulations
were conducted using Matlab to verify the theoretical findings.

2. Hopf Bifurcation Analysis

By making the right-hand function of system (6) equal to 0, the internal equilibrium of
system (6) can be obtained as E∗(x∗, y∗), where:

x∗ =
bv + βr

αe−dτ2 + aβ
, y∗ =

αe−dτ2 − av
αe−dτ2 + aβ

When (H1)αe−dτ2 − av > 0 is true, system (6) has a positive internal equilibrium.
The linearization of system (6) at E∗(x∗, y∗) is as follows:{ .

x(t) = rx(t)− ax∗x(t − τ1)− ax∗x(t)− bx∗y(t)− by∗x(t),
.
y(t) = αe−dτ2 x∗y(t − τ2) + αe−dτ2 y∗x(t − τ2)− vy(t)− 2βy∗y(t).

(7)

The characteristic equation associated with (7) is:∣∣∣∣λ − r + ax∗ + αx∗e−λτ1 + by∗ bx∗

−αe−dτ2 y∗e−λτ2 λ − αe−dτ2 x∗e−λτ2 + v + 2βy∗

∣∣∣∣ = 0

i.e.,
λ2 + p1λ + e−λτ1(p2λ + p3) + e−λτ2(p4λ + p5) + p6e−λ(τ1+τ2) = 0, (8)

where:
p1 = v + 2βy∗, p2 = ax∗, p3 = ax∗(v + 2βy∗),

p4 = −αe−dτ2 x∗, p5 = αe−dτ2 x∗by∗, p6 = −aαe−dτ2(x∗)2.

Below, five different scenarios were discussed on the stability of system (6) at E∗(x∗, y∗)
and the existence of Hopf bifurcation.

Case 1. τ1 = τ2 = 0.
In this case, Equation (8) becomes:

λ2 + (p1 + p2 + p4)λ + p3 + p5 + p6 = 0.

For convenience, provide the assumption (H2)p1 + p2 + p4 > 0 ∧ p3 + p5 + p6 > 0.
According to the Routh–Hurwitz criterion, the following theorem can be obtained.

Theorem 1. If (H1) and (H2) are true, then the internal equilibrium E∗(x∗, y∗) of system (6) is
asymptotically stable.

Case 2. τ1 = 0, τ2 > 0.
Equation (8) becomes:

λ2 + (p2 + p1)λ + p3 + e−λτ2(p4λ + p5 + p6) = 0, (9)

let
p11 = p2 + p1, q11 = p4, a(τ2) = p3, b(τ2) = p5 + p6,

P(λ, τ2) = λ2 + p11λ + a(τ2), Q(λ, τ2) = q11λ + b(τ2).

Equation (9) becomes:

P(λ, τ2) + e−λτ2 Q(λ, τ2) = 0. (10)

One can obtain τ2 < 1
d ln αr

av from (H1); denote τmax = 1
d ln αr

av .



Mathematics 2024, 12, 1477 4 of 21

According to the geometric criteria in [12], the following five conditions are verified
for Equation (10):

(i) P(0, τ2) + Q(0, τ2) ̸= 0, ∀τ2 ∈ R+;
(ii) P(iω, τ2) + Q(iω, τ2) ̸= 0, ∀ω ∈ R, ∀τ2 ∈ R+;

(iii) lim
|λ|→∞

{∣∣∣Q(λ,τ2)
P(λ,τ2)

∣∣∣ : Rλ ≥ 0
}
< 1,∀τ2 ∈ R+;

(iv) ∀τ2, F(ω, τ2) := |P(iω, τ2)|2 − |Q(iω, τ2)|2 has at most a finite number of real zeros;
(v) Each positive root ω(τ2) of F(ω, τ2) = 0 is continuous and differentiable in τ2 when-

ever it exists.

Obviously, the condition (v) is valid. When λ = 0, if (H2) is true, one can obtain
P(0, τ2) + Q(0, τ2) = a(τ2) + b(τ2) > 0, so the condition (i) is valid. When ω ̸= 0:

P(iω, τ2) + Q(iω, τ2) = −ω2 + ip11ω + a(τ2) + iq11ω + b(τ2).

If (H2) is true, p11 + q11 = p1 + p2 + p4 > 0, so P(iω, τ2) + Q(iω, τ2) ̸= 0. When
ω = 0, condition (ii) is the same as condition (i), that is, condition (ii) is true. Because:

lim
|λ|→∞

∣∣∣∣Q(λ, τ2)

P(λ, τ2)

∣∣∣∣ = q11λ + b(τ2)

λ2 + p11λ + a(τ2)
= 0 < 1,

the condition (iii) is true. From:

|P(iω, τ2)|2 =
(

ω2 − a(τ2)
)2

+ p2
11ω2,

|Q(iω, τ2)|2 = b2(τ2) + q2
11ω2,

one can obtain:

F(ω, τ2) = ω4 +
(

p2
11 − 2a(τ2)− q2

11

)
ω2 + a2(τ2)− b2(τ2). (11)

Therefore, F(ω, τ2) has at most four roots, so condition (iv) is true.
To make F(ω, τ2) have a positive root, define the set according to (11):

I1 = {τ2 ∨ |a(τ2)| < |b(τ2)|, ∀τ2 ∈ [0, τmax]}.

When τ2 ∈ I1, F(ω, τ2) has a positive real zero point ω0(τ2), where:

ω0(τ2) =

√√√√−
(

p2
11 − 2a(τ2)− q2

11
)
+
√(

p2
11 − 2a(τ2)− q2

11
)2 − 4(a2(τ2)− b2(τ2))

2
.

When τ2 > 0, assume ±iω is the pure imaginary root of Equation (9), substitute
λ = iω(ω > 0) into Equation (9) and separate the real and imaginary parts to obtain:{

−ω2 + a(τ2) + b(τ2)cos(ωτ2) + q11ωsin(ωτ2) = 0,
p11ω + q11ωcos(ωτ2)− b(τ2)sin(ωτ2) = 0.

(12)

So one can obtain:

sin(ωτ2) =
−
(
−ω2 + a(τ2)

)
q11ω + p11ωb(τ2)

b2(τ2) + q2
11ω2

,

cos(ωτ2) =
−
(
−ω2 + a(τ2)

)
b(τ2) + p11q11ω2

b2(τ2) + q2
11ω2

.
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The following can be concluded from (12):(
−ω2 + a(τ2)

)2
+ (p11ω)2 = (b(τ2))

2 + (q11ω)2.

This equation is the same as F(ω, τ2) = 0, because F(ω, τ2) has a positive root,
Equation (9) has a pair of simple pure imaginary roots ±iω. When τ2 ∈ I1, make
ω(τ2)τ2 = θ(τ2) + 2nπ and Sn(τ2) = τ2 − θ(τ2)+2nπ

ω(τ2)
, so ±iω(τ2) is the pure imaginary

root of Equation (9); if and only if τ2 is the root of Sn(τ2) = 0, write τ
(j)
2 as the root of

Sn(τ2) = 0. The following theorem can be obtained from Theorem 2.2 in [12].

Theorem 2. When τ2 ∈ I1 , if there is Sn

(
τ
(j)
2

)
= 0(n ∈ N) at τ2 = τ

(j)
2 , when there is τ2 = τ

(j)
2

Equation (9) has a pair of pure imaginary roots, that is ±iω
(

τ
(j)
2

)
, and if δ

(
τ
(j)
2

)
> 0(< 0) , so

when τ2 increases and crosses τ
(j)
2 , the roots corresponding to this pair of pure imaginary roots will

cross the imaginary axis from the left (right) half plane of the complex plane to the right (left) half
plane, where:

δ
(

τ
(j)
2

)
= sign

{
dRλ(τ2)

dτ2

∣∣∣∣
τ2=τ

(j)
2

}
= sign

{
F′

ω

(
ω
(

τ
(j)
2

)
, τ

(j)
2

)}
sign

{
dSn(τ2)

dτ2

∣∣∣∣
τ2=τ

(j)
2

}
.

(13)

Due to:
p2

11 − 2a(τ2)− q2
11 = (p1 + p2 + p4)(p1 + p2 − p4)− 2p3

= p2
1 + p2

2 + p2
4 − 2p1 p4 − 2p2 p4 > 0,

therefore:
F′

ω

(
ω
(

τ
(j)
2

)
, τ

(j)
2

)
= 4ω3 + 2

(
p2

11 − 2a(τ2)− q2
11

)
ω > 0.

Thus, (13) is equivalent to:

δ
(

τ
(j)
2

)
= sign

{
dRλ(τ2)

dτ2

∣∣∣∣
τ2=τ

(j)
2

}
= sign

{
dSn(τ2)

dτ2

∣∣∣∣
τ2=τ

(j)
2

}
. (14)

It is easy to know when τ2 ∈ I1, Sn(τ2) is monotonically decreasing with respect
to n, that is Sn(τ2) < Sn+1(τ2); if S0(τ2) has no zero point, Sn(τ2)(∀n ∈ N) has no zero
point, either. When τ2 = 0, obviously S0(τ2) < 0. When τ2 → τmax, a(τ2) + b(τ2) → 0 , so
ω(τ2) → 0 . Additionally, according to sin(ωτ2) → 0 , cos(ωτ2) → 1 , one can know that
θ(τ2) → 2π , so S0(τ2) → −∞ . Therefore, Sn(τ2)(∀n ∈ N) intersects with the horizontal
axis, and the number of intersections is even. Let the intersection be:

τmin
2 ≜ τ

(1)
2 < τ

(2)
2 < τ

(3)
2 < · · · < τ

(j)
2 ≜ τmax

2 ,

where j is an even number.

Theorem 3. When τ2 ∈ I1 , if (H1), (H2) is true, then:
(1) If S0(τ2) has no zero point, then the internal equilibrium E∗(x∗, y∗) is asymptotically stable.
(2) If S0(τ2) has at least one positive root, then there exists τ

(1)
2 so that when τ2 ∈

[
0, τ

(1)
2

)
,

the internal equilibrium E∗(x∗, y∗) of system (6) is asymptotically stable. When τ2 ∈
(

τ
(1)
2 , τmax

2

)
,

the internal equilibrium E∗(x∗, y∗) of system (6) is not stable. When τ2 ∈ (τmax
2 , τmax), the internal

equilibrium E∗(x∗, y∗) of system (6) is asymptotically stable. When τ2 = τ
(j)
2 (j = 1, 2, · · ·),

system (6) has a Hopf bifurcation at E∗(x∗, y∗).
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Case 3. τ1 > 0, τ2 ∈
(

0, τ
(1)
2

)
, fix τ2 within a stable interval and discuss τ1 as

a parameter.
Substitute λ = iω(ω > 0) into Equation (8) and separate the real and imaginary parts

to obtain:{
−ω2 + p3cos(ωτ1) + p2ωsin(ωτ1) + p5cos(ωτ2) + ∧p4ωsin(ωτ2) + p6cos(ωτ1)cos(ωτ2)− p6sin(ωτ1)sin(ωτ2) = 0,
p1ω + p2ωcos(ωτ1)− p3sin(ωτ1) + p4ωcos(ωτ2)−∧p5sin(ωτ2)− p6sin(ωτ1)cos(ωτ2)− p6cos(ωτ1)sin(ωτ2) = 0.

(15)

From (15), we can obtain the following equation about ω:

ω4 + M1ω3 + M2ω2 + M3ω + M4 = 0, (16)

where:

M1 = −2p4sin(ωτ2), M2 = p2
4 + p2

1 − p2
2 − 2p5cos(ωτ2) + 2p1 p4cos(ωτ2),

M3 = 2p2 p6sin(ωτ2)− 2p1 p5sin(ωτ2), M4 = p2
5 − p2

3 − p2
6 − 2p3 p6cos(ωτ2).

Make:
f (ω) ≜ ω4 + M1ω3 + M2ω2 + M3ω + M4.

Lemma 1. When (H3)p2
5 − p2

3 − p2
6 − 2p3 p6 < 0, 4 + 8τ2 p4 − 2p5τ2

2 + 2p1 p4τ2
2 ∧ p2

4 +
p2

1 − p2
2 − 2p5 + 2p1 p4 + 2p2 p6τ2 − 2p1 p5τ2 + p3 p6τ2

2 > 0 is true, Equation (16) has only one
real root.

Proof. It is easy to know that f (ω) is a continuous function; when (H3) is true, then:

f (0) = p2
5 − p2

3 − p2
6 − 2p3 p6 < 0,

and there is:
lim

ω→+∞
f (ω) = +∞.

Therefore, Equation (16) has at least one real root. Because:

f ′(ω) = (4 − 2τ2 p4cos(ωτ2))ω
3 + (−6p4 + 2p5τ2 − 2p1 p4τ2)sin(ωτ2)ω

2

+
(
2p2

4 + 2p2
1 − 2p2

2 − 4p5cos(ωτ2) + 4p1 p4cos(ωτ2) + 2p2 p6τ2cos(ωτ2)
−2p1 p5τ2cos(ωτ2))ω + 2p2 p6sin(ωτ2)− 2p1 p5sin(ωτ2) + 2p3 p6τ2sin(ωτ2),

and when x > 0, there is obviously −x < sinx < x and |cosx| ≤ 1, so:

f ′ω(ω, τ2) >
(

4 + 8τ2 p4 − 2p5τ2
2 + 2p1 p4τ2

2

)
ω3 + 2

(
p2

4 + p2
1 − p2

2 − 2p5 + 2p1 p4 + 2p2 p6τ2 − 2p1 p5τ2 + p3 p6τ2
2

)
ω.

When (H3) is true, it has:
f ′ω(ω, τ2) > 0.

Therefore, f (ω) is monotonically increasing with respect to ω, and Equation (16) only
has one real root. □

The root of Equation (16) is denoted as ω0, and there exists a corresponding
τ
(n)
1 (n = 0, 1, 2, · · ·) as:

τ
(n)
1 =

1
ω0

(
arccos

N1N3 + N2N4

N2
3 + N2

4
+ 2nπ

)
n = 0, 1, 2, · · · (17)

where:
N1 = −ω2

0 + p5cos(ω0τ2) + p4ω0sin(ω0τ2),

N2 = p1ω0 + p4ω0cos(ω0τ2)− p5sin(ω0τ2),
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N3 = p3 + p6cos(ω0τ2), N4 = p2ω0 − p6sin(ω0τ2).

Let λ(τ1) = α(τ1) + iω(τ1) be the root of Equation (8) at τ1 = τ
(n)
1 and meet the

requirements α
(

τ
(n)
1

)
= 0, ω

(
τ
(n)
1

)
= ω0.

Take the derivative of Equation (8) with respect to τ1 at the left and right ends:

dλ

dτ1
=

λ(p2λ + p3)e−λτ1 + λp6e−λ(τ1+τ2)

2λ + p1 + [p2 − τ1(p2λ + p3)]e−λτ1 + [p4 − τ2(p4λ + p5)]e−λτ2 − p6(τ1 + τ2)e−λ(τ1+τ2)
. (18)

Substitute λ = iω0 into (18) and take the real part to obtain:

R
dλ

dτ1

∣∣∣∣
λ=iω0

=
CE + DF
E2 + F2 ,

where:
C = −p2ω2

0cos(ω0τ1) + p3ω0sin(ω0τ1) + p6ω0sin(ω0(τ1 + τ2)),

D = p3ω0cos(ω0τ1) + p2ω2sin(ω0τ1) + p6ω0cos(ω0(τ1 + τ2)),

E = p1 + p2cos(ω0τ1)− p3τ1cos(ω0τ1)− p2ω0τ1sin(ω0τ1) + p4cos(ω0τ2)− p5τ2cos(ω0τ2)−
p4ω0τ2sin(ω0τ2)− p6(τ1 + τ2)cos(ω0(τ1 + τ2)),

F = 2ω0 − p2sin(ω0τ1)− p2ω0τ1cos(ω0τ1) + p3τ1sin(ω0τ1)− p4sin(ω0τ2)− p4ω0τ2cos(ω0τ2)+
p5τ2sin(ω0τ2) + p6(τ1 + τ2)cos(ω0(τ1 + τ2)).

When (H4)CE + DF > 0, then R dλ
dτ1

∣∣∣
λ=iω0

> 0.

The following theorem can be obtained from the above lemma.

Theorem 4. If (H1), (H2), (H3), (H4) are true, then when τ1 ∈
[
0, τ

(0)
1

)
, the internal equi-

librium E∗(x∗, y∗) of system (6) is asymptotically stable. When τ1 > τ
(0)
1 , the internal equilib-

rium E∗(x∗, y∗) of system (6) is not stable. When τ1 = τ
(n)
1 (n = 0, 1, 2, · · · ) , system (6) has

a Hopf bifurcation at E∗(x∗, y∗).

Case 4. τ1 > 0, τ2 = 0.
In this case, Equation (8) becomes:

λ2 + P21λ + P22 + e−λτ1(q21λ + q22) = 0, (19)

where:
P21 = v + 2βy∗ − αx∗, P22 = αbx∗y∗,

q21 = ax∗, q22 = ax∗(v + 2βy∗)− aα(x∗)2.

Substitute λ = iω(ω > 0) into Equation (19) and separate the real and imaginary parts
to obtain: {

−ω2 + p22 + q22cos(ωτ1) + q21ωsin(ωτ1) = 0,
p21ω + q21ωcos(ωτ1)− q22sin(ωτ1) = 0.

(20)

Thus, it can be concluded that:

ω4 +
(

p2
21 − 2p22 − q2

21

)
ω2 + p2

22 − q2
22 = 0. (21)

Make:
g(ω) = ω4 +

(
p2

21 − 2p22 − q2
21

)
ω2 + p2

22 − q2
22.
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Due to g(ω) being a continuous function and:

lim
ω→+∞

g(ω) = +∞,

if (H5)p2
22 − q2

22 < 0, there is:
g(0) = p2

22 − q2
22 < 0.

Thus, Equation (21) has a positive root, denoted as ω0; that is, when τ1 = τ
(n)
1 ,

Equation (19) has a pair of simple pure imaginary roots ±iω0, where:

τ
(n)
1 =

1
ω0

(
arccos −

(
−ω2

0 + p22
)
q22 + p21q21ω2

0

q2
22 + q2

21ω2
0

+ 2nπ

)
, n = 0, 1, 2, · · · . (22)

Let λ(τ1) = α(τ1) + iω(τ1) be the root of Equation (19) when τ1 = τ
(n)
1 satisfies

α
(

τ
(n)
1

)
= 0 and ω

(
τ
(n)
1

)
= ω0, where τ

(n)
1 is determined by (22).

Lemma 2. If (H6)p2
21 − 2

(
p22 − ω2)− q2

21 > 0, then R dλ
dτ1

∣∣∣
λ=iω0

> 0.

Proof. Take the derivative of Equation (19) with respect to τ1:

(2λ + p21)
dλ

dτ1
+ q21e−λτ1

dλ

dτ1
− (q21λ + q22)e−λτ1

(
τ1

dλ

dτ1
+ λ

)
= 0. (23)

From (19), one obtains:

e−λτ1 =
−λ2 + P21λ + P22

q21λ + q22
.

Substitute it into (23) to obtain:

R
dλ

dτ1
= R

(
dλ

dτ1

)−1
= R

(
−2λ + P21

λ(λ2 + P21λ + P22)
+

q21

λ(q21λ + q22)

)
.

Substitute λ = iω0 into the above equation to obtain:

R
dλ

dτ1

∣∣∣∣
λ=iω0

=
−p2

21ω2
0 + 2ω0

(
p22ω0 − ω3

0
)(

p21ω2
0
)2

+
(

p22ω − ω3
0
)2 +

−q2
21ω2

0

q2
21ω4

0 + q2
22ω2

0
.

From (20), one can know the following:(
−ω2

0 + p22

)2
+ (p21ω0)

2 = q2
22 + (q21ω0)

2,

so:

R
dλ

dτ1

∣∣∣∣
λ=iω0

=
p2

21 − 2
(

p22 − ω2
0
)
+ q2

21

q2
21ω2

0 + q2
22

.

If (H6) is true, then R dλ
dτ1

∣∣∣
λ=iω0

> 0. □

In summary, the following theorem can be obtained.

Theorem 5. If (H1), (H2), (H5), (H6) are true, then when τ1 ∈
[
0, τ

(0)
1

)
, the internal equi-

librium E∗(x∗, y∗) of system (6) is asymptotically stable. When τ1 > τ
(0)
1 , the internal equilib-
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rium E∗(x∗, y∗) of system (6) is not stable. When τ1 = τ
(n)
1 (n = 0, 1, 2, · · ·) , system (6) has

a Hopf bifurcation at E∗(x∗, y∗).

Case 5. τ1 ∈
[
0, τ

(0)
1

)
, τ2 > 0, fix τ1 within a stable interval and discuss τ2 as

a parameter.
We see that Equation (8) takes the form:

P(λ, τ2) + Q(λ, τ2)e−λτ2 = 0, (24)

where:

P(λ, τ2) = λ2 +
(

p1 + p2e−λτ1
)

λ + p3e−λτ1 , Q(λ, τ2) = p4λ + p5 + p6e−λτ1 .

According to the geometric criteria in [12], the following five conditions are verified
for Equation (24):

(i) P(0, τ2) + Q(0, τ2) ̸= 0, ∀τ2 ∈ R+

(ii) P(iω, τ2) + Q(iω, τ2) ̸= 0, ∀ω ∈ R, ∀τ2 ∈ R+;

(iii) lim
|λ|→∞

{∣∣∣Q(λ,τ2)
P(λ,τ2)

∣∣∣ : Rλ ≥ 0
}
< 1,∀τ2 ∈ R+;

(iv) ∀τ2, F(ω, τ2) := |P(iω, τ2)|2 − |Q(iω, τ2)|2 has at most a finite number of real zeros;
(v) Each positive root ω(τ2) of F(ω, τ2) = 0 is continuous and differentiable in τ2 when-

ever it exists.

Obviously, the condition (v) is valid. When λ = 0, if (H2) is true, one can obtain
P(0, τ2) + Q(0, τ2) = p3 + p5 + p6 > 0, so the condition (i) is valid. Since:

lim
|λ|→∞

∣∣∣∣Q(λ, τ2)

P(λ, τ2)

∣∣∣∣ = p4λ + p5 + p6e−λτ1

λ2 +
(

p1 + p2e−λτ1
)
λ + p3e−λτ1

= 0 < 1,

the condition (iii) is valid. When ω ̸= 0:

P(iω, τ2) + Q(iω, τ2) = −ω2 + ip1ω + (ip2ω + p3)(cos(ωτ1)− isin(ωτ1)) + ip4ω + p5+
p6(cos(ωτ1)− isin(ωτ1)).

Lemma 3. If (H7)p1 + p2

(
1 − (ωτ1)

2

2

)
+ p4 − p2(p1 + p4) > 0 , then the condition (ii) is valid.

Proof. Because the coefficients of Equation (8) satisfy:

p6 = p2 p4, p3 = p1 p2, p1 > 0, p2 > 0, p1 + p4 > 0,

then:

I(P(iω, τ2) + Q(iω, τ2)) = p1ω + p2ωcos(ωτ1)− p3sin(ωτ1) + p4ω + p6sin(ωτ1)
= p1ω + p2ωcos(ωτ1) + p4ω − (p3 + p6)sin(ωτ1).

When x > 0, obviously sinx < x and cosx > 1 − x2

2 , so:

I(P(iω, τ2) + Q(iω, τ2)) > p1 + p2

(
1 − (ωτ1)

2

2

)
− p2(p1 + p4) + p4 > 0.

The condition (ii) is valid. □

Lemma 4. If (H8)2− 4p2τ1 > 0, p2
2 + p2

1 − p2
4 + (p4p6 − p1p3)τ1 + p2τ1

(
−p2

1 + p2
4(1− by∗τ1)

)
> 0∧ p2

3 − (p5 + p6)
2 < 0, then the condition (iv) is valid.
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Proof. Since:

F(ω, τ2) = |P(iω, τ2)|2 − |Q(iω, τ2)|2 =
(
−ω2 + p2ωsin(ωτ1) + p3cos(ωτ1)

)2
+ (p1ω + p2ωcos(ωτ1)−

p3sin(ωτ1))
2 − (p5 + p6cos(ωτ1))

2 + (p4ω − p6sin(ωτ1))
2,

(25)

because the coefficients of Equation (8) satisfy:

p6 = p2 p4, p3 = p1 p2, p1 > 0, p2 > 0, p1 + p4 > 0, p5 = −by∗p4,

then:

F′
ω(ω, τ2) = 2(2 − p2τ1cos(ωτ1))ω

3 − (6p2sin(ωτ1))ω
2 + 2

(
p2

2 + p2
1 − p2

4 + (p4 p6 − p1 p3)τ1cos(ωτ1)
)
ω+

2p2sin(ωτ1)
(
−p2

1 + p2
4(1 − by∗τ1)

)
.

When x > 0, obviously sinx < x and |cosx| ≤ 1, so:

F′
ω(ω, τ2) > 2(2 − 4p2τ1)ω

3 +
(

p2
2 + p2

1 − p2
4 + (p4 p6 − p1 p3)τ1 + p2τ1

(
−p2

1 + p2
4(1 − by∗τ1)

)
ω.

If (H8) is true, then F(0, τ2) < 0, F′
ω(ω, τ2) > 0. Because:

lim
ω→+∞

F(ω, τ2) = +∞,

F(ω, τ2) has at most four roots, so condition (iv) is true. The proof is complete. □

To make F(ω, τ2) have a positive root, define the set according to (25):

I2 = {τ2 ∨ (H8)istrue, ∀τ2 ∈ [0, τmax]}.

When τ2 ∈ I2, F(ω, τ2) has a positive real zero point ω0(τ2), where ω0(τ2) is deter-
mined by:(

−ω2 + p2ωsin(ωτ1) + p3cos(ωτ1)
)2

+ (p1ω + p2ωcos(ωτ1)− p3sin(ωτ1))
2 − (p5 + p6cos(ωτ1))

2

+(p4ω − p6sin(ωτ1))
2 = 0.

(26)

When τ2 > 0, assume ±iω is the pure imaginary root of Equation (24), substitute
λ = iω(ω > 0) into Equation (24) and separate the real and imaginary parts to obtain:{

−ω2 + p3cos(ωτ1) + p2ωsin(ωτ1) + p5cos(ωτ2) + ∧p4ωsin(ωτ2) + p6cos(ωτ1)cos(ωτ2)− p6sin(ωτ1)sin(ωτ2) = 0,
p1ω + p2ωcos(ωτ1)− p3sin(ωτ1) + p4ωcos(ωτ2)−∧p5sin(ωτ2)− p6sin(ωτ1)cos(ωτ2)− p6cos(ωτ1)sin(ωτ2) = 0.

(27)

Thus, one can obtain:

sin(ωτ2) =
−E1E4 + E3E2

E2
2 + E2

4
,

cos(ωτ2) =
−E1E2 + E3E4

E2
2 + E2

4
,

where:
E1 = −ω2 + p3cos(ωτ1) + p2ωsin(ωτ1), E2 = p5 + p6cos(ωτ1),

E3 = p1ω + p2ωcos(ωτ1)− p3sin(ωτ1), E4 = p4ω − p6sin(ωτ1),

It can be concluded from (27) that:

E2
1 + E2

3 = E2
2 + E2

4,

This equation is the same as F(ω, τ2) = 0, because F(ω, τ2) has a positive root,
Equation (24) has a pair of simple pure imaginary roots ±iω. When τ2 ∈ I2, make
ω(τ2)τ2 = θ(τ2) + 2nπ and Sn(τ2) = τ2 − θ(τ2)+2nπ

ω(τ2)
, so ±iω(τ2) is the pure imaginary

root of Equation (24); if and only if τ2 is the root of Sn(τ2) = 0, write Sn(τ2) = 0 as the root
of τ

(j)
2 .
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When (H8) is true, F′
ω(ω, τ2) > 0; according to Theorem 2, one can know that:

δ
(

τ
(j)
2

)
= sign

{
dRλ(τ2)

dτ2

∣∣∣∣
τ2=τ

(j)
2

}
= sign

{
dSn(τ2)

dτ2

∣∣∣∣
τ2=τ

(j)
2

}
.

It is easy to know when τ2 ∈ I2, Sn(τ2) is monotonically decreasing with respect
to n, that is Sn(τ2) < Sn+1(τ2); if S0(τ2) has no zero point, Sn(τ2)(∀n ∈ N) has no zero
point, either. When τ2 = 0, obviously S0(τ2) < 0. When τ2 → τmax , a(τ2) + b(τ2) → 0 , so
ω(τ2) → 0 . Additionally, according to sin(ωτ2) → 0 , cos(ωτ2) → 1 , one can know that
θ(τ2) → 2π , so S0(τ2) → −∞ . Therefore, Sn(τ2)(∀n ∈ N) intersects with the horizontal
axis, and the number of intersections is even. Let the intersection be:

τmin
2 ≜ τ

(1)
2 < τ

(2)
2 < τ

(3)
2 < · · · < τ

(j)
2 ≜ τmax

2 ,

where j is an even number.

Theorem 6. When τ2 ∈ I2, if (H1), (H2) is true, then:
(1) If S0(τ2) has no zero point, then the internal equilibrium E∗(x∗, y∗) s asymptotically stable.
(2) If S0(τ2) has at least one positive root, then there exists τ

(1)
2 , so that when τ2 ∈

[
0, τ

(1)
2

)
,

the internal equilibrium E∗(x∗, y∗) of system (6) is asymptotically stable. When τ2 ∈
(

τ
(1)
2 , τmax

2

)
,

the internal equilibrium E∗(x∗, y∗) of system (6) is not stable. When τ2 ∈ (τmax
2 , τmax), the internal

equilibrium E∗(x∗, y∗) of system (6) is asymptotically stable. When τ2 = τ
(j)
2 (j = 1, 2, · · ·), system

(6) has a Hopf bifurcation at E∗(x∗, y∗).

3. Direction and Stability of the Hopf Bifurcation

In this section, we take the fifth scenario as an example. Using τ2 as the branching
parameter, the normal form method and central manifold theory are applied to study the
direction, stability, and periodicity of the branching periodic solution under the condition
of τ1 = τ∗

1 ∈
[
0, τ

(0)
1

)
. Other situations are similar and will not be repeated. Let us assume

τ
(1)
2 > τ∗

1 and move the internal equilibrium E∗(x∗, y∗) to the origin, using the original
notation for simplicity. System (6) can be represented as:{ .

x(t) = (x(t) + x∗)(r − a(x(t − τ1) + x∗)− b(y(t) + y∗)),
.
y(t) = αe−dτ2(x(t − τ2) + x∗)(y(t − τ2) + y∗)− v(y(t) + y∗)− β(y(t) + y∗)2.

(28)

Represent the linear part of System (28) as:

Lτ2 = B1 φ(0) + B2 φ(−τ∗
1 ) + B3 φ

(
−τ

(1)
2

)
.

Let:

F(τ2, φ) =

(
rx∗ − a(x∗)2 − aφ1(t)φ2

(
t − τ∗

1
)
− bx∗y∗ − bφ1(t)φ2(t)

αx∗y∗e−dτ2 + αe−dτ2 φ1(t − τ2)φ2(t − τ2)− vy∗ − β(y∗)2 − βφ2
2(t)

)
,

where:
φ(θ) = (φ1(θ), φ2(θ))

T ∈ C1
([

−τ
(1)
2 , 0

]
, R2
)

,

B1 =

(
r − ax∗ − by∗ −bx∗

0 −v − 2βy∗

)
,

B2 =

(
−ax∗ 0

0 0

)
,
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B3 =

(
0 0
αy∗e−dτ2 αx∗e−dτ2

)
.

If θ ∈
[
−τ

(1)
2 , 0

]
, due to the Riesz representation theorem, η(θ, φ)exists, which is

a bounded variational function, satisfying:

Lτ2 φ =
∫ 0

−τ
(1)
2

dη(t, τ2)φ(t). (29)

Now, we set:

η(θ, φ) = B1δ(θ) + B2δ(θ + τ∗
1 ) + B3δ

(
θ + τ

(1)
2

)
,

where δ(·) is the Dirac-delta function.
If φ ∈ C1

([
−τ

(1)
2 , 0

]
, R2
)

, we give the definitions of Aφ and Rφ as:

A(τ2)φ =


dφ
dθ ,∧θ ∈

[
−τ

(1)
2 , 0

)
,∫ 0

−τ
(1)
2

dη(t, τ2)φ(t),∧θ = 0

and:

R(τ2)φ =

{
0,∧θ ∈

[
−τ

(1)
2 , 0

)
,

F(τ2, φ),∧θ = 0.

Hence, system (28) becomes the following:

.
ut = A(τ2)ut + R(τ2)ut, (30)

in which ut =
(
u1(t+ θ), u2(t+ θ))T, ut = u(t+ θ), u1(t+ θ) = x(t), u2(t+ θ) = y(t) with

θ ∈
[
−τ

(1)
2 , 0

]
. We assume that ψ ∈ C1

([
0, τ

(1)
2

]
, R2
)

; then, we give the definitions of A∗ψ:

A∗ψ(s) =

 − dψ(s)
ds ,∧s ∈

[
0, τ

(1)
2

)
,∫ 0

−τ
(1)
2

dηT(t, 0)ψ(−t),∧s = 0.

We assume that φ ∈ C1
([

−τ
(1)
2 , 0

]
, R2
)

and ψ ∈ C1
([

0, τ
(1)
2

]
, R2
)

, and we give the
definition of the bilinear form ⟨ψ, φ⟩:

⟨ψ, φ⟩ = ψ
T
(0)φ(0)−

∫ 0

−τ
(1)
2

∫ θ

ξ=0
ψ

T
(ξ − θ)dη(θ)φ(ξ)dξ.

It is clear that A∗ is the adjoint operator of A. Accordingly, we check that if ±iω0 are
eigenvalues of A, they are also eigenvalues of A∗, where ω0 is defined by (26).

An easy computation shows that q(θ) = (1, q1(0))
Teiw0θ is an eigenvector of A cor-

responding to A∗. In the same way, q∗(θ) = 1
R

(
1, q∗1(0)

)Teiw0θ is an eigenvector of A∗

corresponding to -iω0. Moreover, ⟨q∗(θ), q(θ)⟩ = 1 and ⟨q∗(θ), q(θ)⟩ = 0, where:

q1(0) =
αy∗e−dτ

(1)
2 e−iω0τ

(1)
2

v + 2βy∗ + iω0 − αx∗e−dτ
(1)
2 e−iω0τ

(1)
2

,

q∗1(0) =
−bx∗

v + 2βy∗ + iω0 − αx∗e−dτ
(1)
2 e−iω0τ

(1)
2

,

R = 1 + q1(0)q∗1(0) + ax∗τ∗
1 e−iω0τ∗1
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+αy∗e−dτ
(1)
2 e−iω0τ

(1)
2 q∗1(0) + αy∗e−dτ

(1)
2 e−iω0τ

(1)
2 q1(0)q∗1(0).

According to reference [13], the correlation coefficient is calculated as follows:

g20 =
2
R

(
−a − bq1(0) + q∗1(0)

(
αe−dτ

(1)
2 q1

(
−τ

(1)
2

)
− βq2

1(0)
))

,

g11 =
1
R
+ αe−dτ

(1)
2 q1

(
−τ

(1)
2

)
− 2βq1(0)q1(0),

g02 =
2
R

(
−a − bq1(0) + q∗1(0)

(
αe−dτ

(1)
2 q1

(
−τ

(1)
2

)
− βq2

1(0)
))

,

g21 = 1
R 2W(1)

11
(
−τ∗

1
)
− b + W(2)

20 (0) + 2W(2)
11 (0) + q∗1(0)q1

(
−τ

(1)
2

)
+ 2W(1)

11

(
−τ

(1)
2

)
q1

(
−τ

(1)
2

)
+ W(2)

20

(
−τ

(1)
2

)
+

2W(1)
11

(
−τ

(1)
2

)
− β

(
2W(2)

20 (0)q1(0) + 4W(2)
11 (0)q1(0)

)
,

where:
W20(θ) =

i
ω0

g20q(0)eiω0θ +
i

3ω0
g02q(0)e−iω0θ + E1e2iω0θ ,

W11(θ) =
i

ω0
g11q(0)eiω0θ +

i
ω0

g11q(0)e−iω0θ + E2,

E1 =

(
2iω0 I −

∫ 0

−τ
(1)
2

e2iω0θdη(θ)

)−1

Fz2 ,

(
2iω0 − r + ax∗ + ax∗e−2iω0τ∗1 + by∗ bx∗

−αe−dτ
(1)
2 y∗e−2iω0τ

(1)
2 2iω0 − αe−dτ

(1)
2 x∗e−2iω0τ

(1)
2 + v + 2βy∗

)−1

·(
−2a − 2bq1(0)

2αe−dτ
(1)
2 q1

(
−τ

(1)
2

)
− 2βq2

1(0)

)
,

E2 = −
(∫ 0

−τ
(1)
2

dη(θ)

)−1

Fzz,

(
r − ax∗ − ax∗e−iω0τ∗1 − by∗ −bx∗

αe−dτ
(1)
2 y∗e−iω0τ

(1)
2 αe−dτ

(1)
2 x∗e−iω0τ

(1)
2 − v − 2βy∗

)−1

·(
−2a − bq1(0)− bq1(0)

αe−dτ
(1)
2 q1

(
−τ

(1)
2

)
+ αe−dτ

(1)
2 q1

(
−τ

(1)
2

)
− 2βq1(0)q1(0)

)
,

Thus, after calculation, it can be concluded that:

c1(0) =
i

2ω0

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+

g21

2
, µ2 = −R

(c1(0))

R
(

λ′
(

τ
(1)
2

))

β2 = 2R(c1(0)), T2 = −I(c1(0)) + µ2I

(
λ′
(

τ
(1)
2

))
ω0

The properties of the Hopf bifurcation are determined by µ2, β2, T2. µ2 determines the
direction of the bifurcation; when µ2 > 0(µ2 < 0), the system undergoes a supercritical
(subcritical) Hopf bifurcation near the equilibrium. β2 determines the stability of bifur-
cation periodic solutions. β2 > 0(β2 < 0) indicates that the bifurcation periodic solution
constrained on the central manifold is unstable (asymptotically stable). T2 determines
the increase or decrease of the cycle, and T2 > 0(T2 < 0) indicates that the cycle is
increasing (decreasing).
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4. Numerical Simulation

This section will select parameters for a numerical simulation in five different scenarios.
Case 1. τ1 = τ2 = 0.
Select parameters (A), a = 0.2625, α = 0.9542, b = 0.3628, β = 0.0963, d = 0.0247,

r = 0.6433, v = 0.3117, and system (6) becomes:{ .
x(t) = x(t)(0.6433 − 0.2625x(t − τ1)− 0.3628y(t)),
.
y(t) = 0.9542e−0.0247τ2 x(t − τ2)y(t − τ2)− 0.3117y(t)− 0.0963y2(t).

(31)

After calculation, the internal equilibrium can be determined as E∗(0.4723, 1.4314), and
(H1), (H2) are true; according to Theorem 1, the internal equilibrium E∗(0.4723, 1.4314) of
the system (31) is asymptotically stable, as shown in Figure 1.
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Still select the previous set of parameters. Figure 2 illustrates the curves of S0 and

S1 as they change with τ2; it can be seen that S0 intersects with the x axis at two points;
after calculation, they are τ

(1)
2 = 2.7184 and τ

(2)
2 = 18.9941. According to Theorem

3, when τ2 = 0.1 < τ
(1)
2 , the internal equilibrium E∗(0.4723, 1.4314) of system (31) is

asymptotically stable, as shown in Figure 3. When τ2 = 4 > τ
(1)
2 , the internal equilibrium

E∗(0.5165, 1.3995) of system (31) is unstable. System (31) undergoes Hopf bifurcation at
the internal equilibrium E∗(0.5165, 1.3995), as shown in Figure 4.
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Figure 4. Time series curve and phase diagram of system (31) when τ1 = 0, τ2 = 4 under group (A)
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indicate the direction of trajectory motion.

Case 3. τ1 > 0, τ2 ∈
(

0, τ
(1)
2

)
.

Select parameters (B), a = 0.2484, α = 0.945, b = 0.0747, β = 0.3143, d = 0.7914,
r = 0.6366, v = 0.0177, and system (6) becomes:{ .

x(t) = x(t)(0.6366 − 0.2484x(t − τ1)− 0.0747y(t)),
.
y(t) = 0.945e−0.7914τ2 x(t − τ2)y(t − τ2)− 0.0177y(t)− 0.3143y2(t).

(32)

Select τ2 = 0.1; τ2 belongs to the stable interval, τ1 is the bifurcation parameter, and
(H1), (H2) are true. After calculation, it can be concluded that f (0) = −0.053 < 0, so
(H3) is valid. Because CE + DF = 0.1897 > 0, (H4) is true. At this time τ

(0)
1 = 7.82,

select τ2 = 0.1; according to Theorem 4, when τ1 = 1 < 7.82, the internal equilibrium
E∗(1.4059, 3.8495) of the system (32) is asymptotically stable, as shown in Figure 5. When
τ1 = 8 > 7.82, the internal equilibrium E∗(1.4059, 3.8495) of the system (32) is unstable.
System (32) undergoes Hopf bifurcation at the internal equilibrium E∗(1.4059, 3.8495), as
shown in Figure 6.
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Case 4. τ1 > 0, τ2 = 0.
Select parameters (C), a = 0.7569, α = 0.7399, b = 0.5541, β = 0.7393, d = 0.6334,

r = 0.3994, v = 0.1737, and system (6) becomes:
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{ .
x(t) = x(t)(0.3994 − 0.7569x(t − τ1)− 0.5541y(t)),
.
y(t) = 0.7399e−0.6334τ2 x(t − τ2)y(t − τ2)− 0.1737y(t)− 0.7393y2(t).

(33)

The internal equilibrium of the system is E∗(0.4038, 0.1692), so (H1) is valid. After
calculation, (H2), (H5), (H6) are true. At this time τ

(0)
1 = 4.41; according to Theorem 5, it

can be concluded that, when τ1 = 2 < 4.41, the internal equilibrium E∗(0.4038, 0.1692) of
the system (33) is asymptotically stable, as shown in Figure 7. When τ1 = 5 > 4.4, the
internal equilibrium E∗(0.4038, 0.1692) of the system (33) is unstable. System (33) undergoes
Hopf bifurcation at the internal equilibrium E∗(0.4038, 0.1692), as shown in Figure 8.
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Case 5. τ1 = 0.07, τ2 > 0
Select parameters (D), a = 0.2625, α = 0.8945, b = 0.3628, β = 0.0963, d = 0.0247,

r = 0.6433, v = 0.3117, and system (6) becomes:{ .
x(t) = x(t)(0.6433 − 0.2625x(t − τ1)− 0.3628y(t)),
.
y(t) = 0.8945e−0.0247τ2 x(t − τ2)y(t − τ2)− 0.3117y(t)− 0.0963y2(t).

(34)

Select τ1 = 0.07; τ1 belongs to the stable interval, τ2 is the bifurcation parameter,
and (H1), (H2) are true. Figure 9 depicts the curves of S0 and S1 as they change with
τ2. It can be seen that S0 intersects with the x-axis at two points, which are calculated as
follows: τ

(1)
2 = 3.17718 and τ

(2)
2 = 15.9877. According to Theorem 6, when τ2 = 0.5 < τ

(1)
2 ,

the internal equilibrium E∗(0.5061, 1.4069) of the system (34) is asymptotically stable, as
shown in Figure 10. When τ2 = 3.5 > τ

(1)
2 , the internal equilibrium E∗(0.5420, 1.3810) of

the system (34) is unstable, and Hopf bifurcation occurs from the positive equilibrium
E∗(0.5420, 1.3810). System (34) undergoes Hopf bifurcation at the internal equilibrium
E∗(0.5420, 1.3810), as shown in Figure 11.
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