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Abstract: This paper conducts a brief survey of spatial unit roots within the context of spatial
econometrics. We summarize important concepts and assumptions in this area and study the
parameter space of the spatial autoregressive coefficient, which leads to the idea of spatial unit roots.
Like the case in time series, the spatial unit roots lead to spurious regression because the system
cannot achieve equilibrium. This phenomenon undermines the power of the usual Ordinary Least
Squares (OLS) method, so various estimation methods such as Quasi-maximum Likelihood Estimate
(QMLE), Two Stage Least Squares (2SLS), and Generalized Spatial Two Stage Least Squares (GS2SLS)
are explored. This paper considers the assumptions needed to guarantee the identification and
asymptotic properties of these methods. Because of the potential damage of spatial unit roots, we
study some test procedures to detect them. Lastly, we offer insights into how to relax the compactness
assumption to avoid spatial unit roots, as well as the relationship between spatial unit roots and other
models, such as the Spatial Dynamic Panel Data (SDPD) model and Lévy–Brownian motion.

Keywords: spatial correlation; spatial unit roots; nonstationarity; spurious spatial regression; panel data

MSC: 62-02

1. Introduction

There is an extensive literature using spatial statistics that deals with cross-sectional
correlation, and is popular in regional science, urban economics and geography, to mention
a few; see Anselin [1] for a nice introduction to this literature. Unlike time-series, there is
typically no unique natural ordering for cross-sectional data. Spatial dependence models
may use a metric of economic distance that provides cross-sectional data with a structure
similar to that provided by the time index in time series. Examples in economics usually
involve spillover effects or externalities due to geographical proximity. For example,
the productivity of public capital, like roads and highways, on the output of neighboring
states. Also, the pricing of welfare in one state that pushes recipients to other states. In a
linear regression model, this spatial correlation may be in the disturbances and is called
the spatial error model (SEM), or modeled on the dependent variable itself and named the
spatial autoregression (SAR) model, or the spatial lag model. Unlike the autoregressive
model or lagged model in time series where there is a natural ordering across time and
lagged values are well defined, in cross-sections, this is dealt with using neighbors whose
shocks or disturbances are affected by their neighbor’s shocks or disturbances in the SEM.
For the SAR, the dependent variable is affected by neighbors, like house price being affected
by neighboring house prices.This leads to the construction of a weight matrix that defines
one’s neighbors by distance or contagion; see Anselin [1]. So, rather than lagged house
prices as in an autoregressive time series model, own house price is related to a weighted
average of neighboring house prices. Spatial dependence has been extended from cross-
section to panel data; see Chapter 13 of Baltagi [2] or Elhorst [3] for a textbook treatment of
the subject.
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OLS yields inconsistent estimates in the SAR model due to the endogeneity of the
spatial lagged dependent variable and the disturbances. For the SEM model, OLS yields
an unbiased but inefficient estimator. Because of the limitation of OLS, (Q)MLE is of-
ten used to estimate the spatial models as in Ord [4], Anselin [1] and Lee [5]. However,
MLE is sometimes computationally intensive especially for large sample sizes because
of the requirement to compute the Jacobian term in the likelihood function. Ord [4] pro-
poses a simplified computational procedure only requiring the eigenvalues of the spatial
weight matrix, but computing accurate eigenvalues is increasingly difficult for large n.
Kelejian and Prucha [6] suggest a Generalized Method of Moments (GMM) estimator for
the SEM with SAR structure. Alternatively, constructing instrumental variables (IVs) from
the exogenous variables, Kelejian and Prucha [7] propose the GS2SLS estimator and Lee [8]
discuss the best GS2SLS estimator by using more efficient IVs. Lee [9] considers a GMM
estimator for the SAR models with exogenoues variables and showed it is more efficient
than the 2SLS estimator and is as efficient as the ML estimator asymptotically. Spatial
panel data models (with dynamic terms) are also estimated using MLE, 2SLS or GMM as in
Yu et al. [10], Baltagi and Liu [11], Kapoor et al. [12].

However, for all of these estimation methods considered above, they constrain the
parameter space of the spatial coefficient to limit the degree of correlation between units.
This is because when such spatial correlation is too strong, the spatial echoes passing
through each unit do not die out and so the system cannot achieve an equilibrium. When
the spatial weight matrix is row-normalized by convention, such a constraint requires the
spatial coefficient to be smaller than 1 in absolute value. In this survey, we summarize
the developments that relax this constraint and allow the spatial coefficient to equal or
sufficiently approach unity, which is known as the spatial unit root. This is of practical
relevance because there are many cases where the spatial coefficients are close to 1. For ex-
ample, Keller and Shiue [13] detect the inter-regional trade of Chinese rice and find that
rice prices for different provinces are highly related with spatial coefficients lying between
0.9 to 0.95.

When (near) spatial unit roots exist, the standard estimation procedures are not
necessarily reliable and statistical inference is invalid. To remedy such a case, Fingleton [14]
avoids the circularity of the spatial weight matrix and conducts a Monte Carlo simulation
to explore the performance of OLS estimation. Alternatively, Lee and Yu [15] artificially let
the spatial autoregression coefficient sufficiently approach the unit roots and derive the
asymptotic behavior of QMLE and 2SLS estimators. The spatial unit roots have also been
generalized to Spatial Dynamic Panel Data (SDPD) model by Yu and Lee [16].

In order to investigate the possible spatial unit roots, several test procedures have
been proposed. Fingleton [14] suggests a “very high” value of the Moran’s I statistic
could be useful for testing spatial unit roots. Lauridsen and Kosfeld [17,18] propose a
two-stage Lagrange Multiplier (LM) tests that distinguish the spatial unit roots from the
stationary positive spatial correlation. By the fact that spatial impulses do not die out
under spatial unit roots and lead to explosive variance, Beenstock et al. [19] numerically
calculate the critical value even under an irregular spatial weight matrix. These tests
have been extensively used in the literature; see Yesilyurt and Elhorst [20], Olejnik [21],
Machado et al. [22], Beenstock and Felsenstein [23].

This paper is organized as follows. Section 2 introduces some basic concepts in spatial
econometrics. Next, the parameter space of the spatial autoregressive coefficient and
the corresponding singular points are considered. Stationarity and spatial cointegration
concepts derived from spatial unit roots are introduced. General assumptions and the
corresponding implications in spatial econometrics are discussed. Section 3 introduces
the potential problems with the existence of spatial unit roots: spurious and nonsense
regression. Section 4 investigates estimation methods and inference under spatial unit roots.
Section 5 discusses how to test for spatial unit roots. Section 6 discusses spatial unit roots
in the SAR model while Section 7 concludes.
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2. Basic Concepts in Spatial Econometrics

Spatial models study the spatial dependence between units. In practice, the spatial
weight matrix is used to describe such dependence. Let W∗

n be the n × n contiguity-based
spatial weight matrix, i.e., w∗

ij = 1 if unit i and j are contiguous and 0 otherwise. Also,
the diagonal elements are set to 0 by convention. In practice, the spatial weight matrix is

generally row-normalized by wn,ij =
w∗

n,ij
∑j w∗

n,ij
, so the row sum of Wn will be one.

Different spatial model specifications have different implications. The SEM with
spatial autoregressive (SAR) structure on the n × 1 error vector un can be expressed as
un = λ1Wnun + ϵn = (In − λ1Wn)

−1ϵn, where λ1 is known as the spatial coefficient and
satisfies some assumptions that will be introduced later, and ϵn is the n × 1 independent
and identically distributed (i.i.d.) innovations with variance σ2

ϵ . The error covariance matrix
for the un with SAR structure is

ΩSAR = E
[
unu′

n
]
= σ2

ϵ (In − λ1Wn)
−1(In − λ1W ′

n
)−1

= σ2
ϵ

(
B′

nBn
)−1, (1)

where u′
n = ϵ′n(In − λ1Wn)′−1 and Bn = In − λ1Wn. Though Wn may be sparse, (B′

nBn)
−1

is not necessarily so, thus the spatial covariance structure induced by such SEM model is
classified as global. Conversely, a spatial moving average (SMA) specification for the error
vector un can be expressed as un = λ2Wnϵn + ϵn = (In + λ2Wn)ϵn, and the corresponding
covariance matrix will be

ΩSMA = E
[
unu′

n
]
= σ2

ϵ

[
In + λ2

(
Wn + W ′

n
)
+ λ2

2WnW ′
n

]
, (2)

including only Wn and WnW ′
n which are first and second order neighbors if Wn is de-

fined as first-order contiguity. Hence, such a model is generally classified as local. See
Baltagi et al. [24].

Kelejian and Prucha [7] consider a “cross-sectional (first-order) autoregressive spatial
model with (first-order) autoregressive disturbances” (SARAR) and is labeled as spatial
autoregressive combined (SAC) model. If the right-hand side includes both the independent
variable and the spatially lagged dependent variable then it is termed the mixed regressive,
spatial autoregression (MRSAR) or mixed SAR model. The spatial Durbin model (SDM)
includes both the spatial lagged dependent variable and independent variables. A full
model labeled as general nesting spatial (GNS) model given in Elhorst [3] is

Yn = λ1WnYn + αιn + Xnβ + WnXnθ + un,

un = λ2Wnun + ϵn,
(3)

where λ1 is referred as spatial autoregressive coefficient (SAC) and λ2 is called the spatial
autocorrelation coefficient.

2.1. Parameter Space of the Spatial Autoregressive Coefficient

Consider the pure SAR model with data generating process (DGP):

Yn = λWnYn + ϵn, (4)

where Yn is an n × 1 vector of observations on the dependent variable, Wn is an n × n
spatial weight matrix and ϵn is an n × 1 vector of disturbances which are assumed to be
i.i.d. (0, σ2

ϵ ). The reduced form equation of Yn can be written as

Yn = S−1
n ϵn, (5)

where Sn = In − λWn. So to guarantee the system achieves equilibrium, a crucial assump-
tion is that the absolute value of the spatial coefficient λ is strictly less than 1 (see Kelejian
and Prucha [6] (Assumption 2), Kelejian and Prucha [7] (Assumption 2)) to ensure the non-
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singularity of Sn. This assumption follows from a sufficient condition for the invertibility
matrix in Horn and Johnson [25] (Corollary 5.6.16, p. 351):

Theorem 1. An n × n matrix An is nonsingular if there exists a matrix norm ∥·∥ such that
∥In − An∥ < 1. If this condition is satisified, A−1

n = ∑∞
k=0(In − An)k.

Thus, Sn is invertible if there exists a matrix norm such that ∥In − (In − λWn)∥ =
∥λWn∥ < 1. It is also well known that any norm of a matrix is larger than all of its
eigenvalues. Let Xn be the eigenvector matrix and ρi, i = 1, · · · , n, be the egienvalues of
Wn, then

|ρi|∥Xn∥ = ∥ρiXn∥ = ∥WnXn∥ ≤ ∥Wn∥∥Xn∥. (6)

So it is easy to see that |λ| < 1
∥Wn∥ and therefore

1
ρmin

< λ <
1

ρmax
, (7)

because ∑n
i ρi = tr(Wn) = 0 so that ρmin < 0 < ρmax. A useful result is given in Ord [4]:

Theorem 2. If Wn has eigenvalues ρ1, · · · , ρn, |ρIn − Wn| = ∏n
i=1(ρ − ρi). Then for

Sn = In − λWn, det(Sn) = |In − λWn| = ∏n
i=1(1 − λρi).

Moreover, the log-likelihood function for Yn, given Yn = y in (4) is

ℓ(λ, σ2) = −n
2

ln
(

2πσ2
)
− 1

2σ2 y′S′
nSny + ln |Sn|, (8)

and |Sn| = ∏n
i=1(1 − λρi) > 0, of which a sufficient condition is λρi < 1, for all i. Again,

since ρmin < 0 < ρmax, we obtain the range of λ that is given in (7).
However, either by Theorem 1 or 2, (7) is a sufficient condition for the invertibility

of Sn. The singular points of Sn are 1
ρ1

, · · · , 1
ρn

by Theorem 2, and the number of these
singular points are at most countably many as n → ∞. This raises a problem as stated
in Kelejian and Robinson [26]. These singular points can be determined generally by the
nth polynomial numerically, and to avoid inconsistency, they should be removed from the
possible values of λ. Griffith [27] (p. 19) states that this condition also ensures stationarity,
but Kelejian and Robinson [26] give a counter example showing that it does not when Wn
is a row-normalized double queen weight matrix.

When the matrix is row-normalized, Kelejian and Prucha [6] (Note 8, p. 120) show
that ρmax = 1 by Geršgorin’s theorem, and typically, |ρmin| < 1 [26]. We assume |λ| < 1,
and this is why λ is generally interpreted as the spatial autocorrelation coefficient similar
to its counterpart in time series.

2.2. Stationarity, Order of Integration and Cointegration

Stationarity is a key assumption in time series. Similarly, in spatial econometrics,
when the stationary assumption does not hold, spurious or nonsense regression appears,
as will be shown in the next section. Stationarity is tightly connected with Sn. The formal
definition of stationarity is given in Anselin [1] (p. 42):

Definition 1. A process is strictly stationary if any finite subset
{

xi, xj, · · · , xn
}

from the stochas-
tic process {xi, i ∈ I} has the same joint distribution as the subset

{
xi+s, xj+s, · · · , xn+s

}
for any

s, where s represents an uniform shift in time, space or time–space.
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But we generally consider a weaker version, covariance stationarity. For the intuition
of stationarity and the connection with the inverse of Sn, see Beenstock et al. [19]. Consider
the pure SAR model in (4) and (5), the covariance matrix for Yn is

Var(Yn) = E
[
YnY′

n
]
= σ2

ϵ S−1
n S

′−1
n ≡ σ2

ϵBn, (9)

where Bn = S−1
n S

′−1
n and S−1

n is defined in (5). Letting bkj be the (k, j) element of the matrix
Bn, by normalizing σ2

ϵ = 1, Yk has variance bkk and covariance bkj with Yj. By Definition 1,
stationarity requires that bkk and bkj remain unchanged asymptotically (this implicitly
assumes that both location j and k are far away from the edge). Note that by Theorem 1,
we have

S−1
n =

∞

∑
k=0

(In − Sn)
k =

∞

∑
k=0

(λWn)
k = In + λWn + λ2W2

n + · · · . (10)

So the stationarity assumption is equivalent to λm−kWm−k
n → 0, for all k as m → ∞.

Since m < n and m → ∞, m represents the “remote” area, and Wm−k
n is the m − k step

neighborhood of unit k. Thus, intuitively, stationarity requires that the shocks from far
away locations will asymptotically not affect the epicenter area.

Another two concepts tightly connected with unit roots and stationarity are the order
of integration and cointegration. The order of integration is originally a concept in time
series that describes the minimum number of differences that a non-stationary process
needs to be (covariance) stationary. Cointegration, on the other hand, describes the mini-
mum order of integration of a combination of two or more series with the same order of
integration. The formal definitions of the order of integration and cointegration are given
in Hamilton [28]:

Definition 2. A time series is integrated of order d, denoted I(d), if (1 − L)dXt is a stationary
process, where L is the lag operator and 1 − L is the first difference.

Definition 3. Time series X and Y are cointegrated of order I(d, b), if both of them are I(d),
and there exists a cointegrated vector (a, b) such that aX + bY ∼ I(d − b).

In time series, the lag operator L is defined by LXt = Xt−1 because of the natural order
of temporal data. In spatial econometrics, we regard Wn as the spatial lag operator and
In − Wn as the first order spatial difference, see Anselin [1] (pp. 22–26). We also use I(d)
and I(a, b) to refer to spatial integration and spatial cointegration respectively.

More specifically, for the pure SAR model in (4) with a row-normalized weight matrix,
if λ = 1, Yn ∼ I(1) since ϵn is stationary. Also, suppose both Yn and Xn are I(1), but they
have a long-term equilibrium relationship Yn = Xnβ + ϵn, then obviously, (Xn, Yn) are
I(1, 1) with cointegrated vector (−β, 1).

2.3. Some Fundamental Assumptions

Different assumptions are made in spatial econometrics for different estimation meth-
ods. The most common ones are listed here, and the implications are explained.

Assumption 1. The disturbances ϵ1, · · · , ϵn are i.i.d. for all n (so uniformly) with zero mean and
finite variance σ2. Additionally, fourth moments exist.

Assumption 2. The elements of the exogenous variables Xn are uniformly bounded for all n.
The limn→∞

X′
nXn
n exists and is nonsingular.

Assumption 3. The matrix Sn is nonsingular.

The existence of up to the fourth moment of disturbances is needed to apply the central
limit theorem for (a system) of the linear-quadratic form (see Kelejian and Prucha [29]
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(p. 226) and Kelejian and Prucha [30] (p. 63)). The nonsigularity of Sn makes sure the
system achieves an equilibrium as well as ensuring that the mean and variance of Yn exist.

Assumption 4. The matrices Wn and S−1
n = (In − λWn)−1 are uniformly bounded (UB) in both

row and column sums for all n. (We say a matrix is UB in row (column) sums if its maximum row
(column) sum is finite. This property preserves under finite matrix multiplication.)

The UB condition for Wn implicitly assumes a limited number of neighbors for all
units even as n → ∞, so the weight matrix Wn is sparse for large n. This assumption is
relaxed in Lee et al. [31] by introducing dominant (popular) units. In practice, the spatial
units have a limited number of neighbors. Though sometimes wn,ij may be defined as the
inverse of the distance between i, j physically or economically, wn,ij tends to be 0 between
far away units as n increases. So in general this assumption is satisfied. The UB of

{
S−1

n
}

is to ensure the covariance matrix Var(Yn) in (9) is still UB, which limits the correlation
between two different units since the UB property preserves under matrix multiplication.

Other assumptions to ensure identification conditions or the derivation of asymptotic
distributions of estimators will be mentioned when needed.

3. Spurious Regression When (Near) Unit Roots Exist

The variance of Yn explodes when unit roots exist, and OLS estimation may perform
unsatisfactorily: the estimators are inconsistent, the test statistics do not have familiar
distributions, and may even converge to a constant. These phenomena have been studied
extensively in time series, and similar symptoms occur in spatial econometrics.

3.1. Spurious Regression of Driftless Series and Spatial Integration

Fingleton [14] studies unit roots and spatial cointegration in spatial econometrics.
Using Monte Carlo simulations, he finds that spatial unit roots will lead to a spurious
regression and proves that when two vectors are spatially cointegrated, even running a
regression on the error-correction model yields inconsistent estimates. Beenstock et al. [19]
distinguish between the terms spurious regression and nonsense regression and argue that,
Fingleton [14] refers to nonsense regression instead of spurious regression. When Yn and
Xn are driftless random walks, the nonsense regression occurs because of the increased
variances of Yn and Xn over time. On the other hand, the spurious regression occurs when
Yn and Xn are independent random walks with drift, which causes their means to increase
over time. See also Mur and Trívez [32].

To run the simulation, two independent pure SAR processes Yn and Xn containing
spatial unit roots are generated separately as in (5). But as discussed in Section 2.1, S−1

n
does not exist under a row-normalized weight matrix when λ = 1. To avoid this, Fingleton
introduces the “unconnected central cell”, which manually sets one row of the spatial
weight matrix equal to 0 to avoid circularity. This is a time-series analogy because there is
always a starting point in temporal data (t = 1). By doing so, the singular point is slightly
larger than 1, and the existence of S−1

n is ensured [32]. Regressing Xn on Yn, the t-statistic
and coefficient of determination R2 show the significance of the parameter between two
unrelated variables when spatial unit roots exist. Letting e be the OLS residuals, Moran’s I,
defined as

IMoran =
n

∑n
i=1 ∑n

j=1 wn,ij

e′Wne
e′e

=
e′Wne

e′e
(when Wn is row-normalized),

(11)

is the spatial version of the Durbin–Watson statistic, and thus is a measure of spatial
autocorrelation. The simulation results of Moran’s I show a high level of positive spatial
autocorrelation in the residuals and evidence for the presence of a spurious regression.
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To remedy this situation, spatial differencing is introduced to the SAR process with
unit roots:

∆Yn = γ∆Xn + ϵn, (12)

where ∆Yn = Yn − WnYn and ∆Xn = Xn − WnXn. When both Yn and Xn are spatial I(1)
processes, we have ∆Yn = ϵY and ∆Xn = ϵX. The regression of the first-order spatial
difference variable is equivalent to regressing two independent I(0) processes, which
should theoretically yield γ̂ = 0.

Next, spatially cointegrated series are considered. To generate (Xn, Yn) ∼ I(1, 1),
the “error-correction representation” is used. The idea is adopted from Robert [33] that
the existence of error-correction representation is a necessary and sufficient condition for a
cointegrated time series. The spatial analogy is

Yn = WnYn + c(WnXn − WnYn) + e1n,

Xn = WnXn + d(WnXn − WnYn) + e2n,

e1n ∼ N
(

0, σ2
1 In

)
,

e2n ∼ N
(

0, σ2
2 In

)
,

(13)

where WnXn −WnYn is the equilibrium error assumed (for simplicity) stationary and hence
the name “error-correction”. The spatial unit root series Xn and Yn have a long-term
equilibrium Xn = Yn. Note that (13) has two equations and two unknowns and Wn is a
noncircular matrix.

Moran’s I statistic may act as a useful indicator for cointegration because the cointe-
gration regression (regress Yn on Xn) involves endogenous variables. Also, the first-order
regression is inappropriate because of omitted variable bias concerning the equilibrium
error WnXn − WnYn. Rearranging (13) yields the appropriate specifications:

Yn − WnYn = c(WnXn − WnYn) + e1n,

Xn − WnXn = d(WnXn − WnYn) + e2n.
(14)

But OLS estimation for either c or d is inconsistent because of the presence of a spatially
lagged dependent variable, which is different from the traditional time series counterpart.

3.2. Spurious Regression with Deterministic Trends

Fingleton [14] studies the effect of spatial unit roots by simulation while Mur and
Trívez [32] show that the variance of the spatial unit roots series explodes. For the DGP
in (4)

Yn = λWnYn + ϵn =⇒ Yn = (In − λWn)
−1ϵn = S−1

n ϵn, (15)

since the contiguity-based spatial weight matrix is symmetric, Wn can be decomposed as
Wn = QnΛnQ−1

n no matter whether it is row-normalized or not. Thus Sn = In − λWn =
Qn(In − λΛn)Q−1

n = Qn∆nQ−1
n where Λn is the eigenvalue matrix of Wn and thus ∆n is

also diagonal. So, Mur and Trívez [32] derive the variance of Yn as

Var(Yn) = σ2(B′
nBn

)−1

= σ2Qn∆−1
n Q−1

n
(
Q′

n
)−1∆−1

n Q′
n

= σ2Qn∆−1
n
(
Q′

nQn
)−1∆−1

n Q′
n,

(16)

with
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Qn∆−1
n =

 q11 · · · q1n
...

. . .
...

qn1 · · · qnn

diag
{

1
1 − λρ1

, · · · ,
1

1 − λρn

}
=


q11

1−λρ1
· · · q1n

1−λρn
...

. . .
...

qn1
1−λρ1

· · · qnn
1−λρn

. (17)

Let mij be the element of row i and column j of the matrix (Q′
nQn)

−1, and the variance of
the r-th element of Yn is then

Var(Yn,r) = σ2
n

∑
i

n

∑
j

qirqjr

(1 − λρi)
(
1 − λρj

)mij. (18)

If Wn is row-normalized, at least one ρi = 1, which means that if the spatial unit roots
exist and λ = 1, Var(Yn) explodes. If Wn is not row-normalized so that Qn is symmetric
and orthogonal with Q′

nQn = In, Var(Yn) = σ2Qn∆−2
n Qn, then Mur and Trívez [32] show

the variance of the observation at r reduces to

Var(Yn,r) = σ2
n

∑
i=1

q2
ir

(1 − λρi)
2 = ∞, when λ =

1
ρi

. (19)

But when λ is not one of the singular points of Sn, Var(Yn) is not necessarily a function
of n, i.e., the variances of Yn do not increase as the sample size grows [32]. This is in
line with the discussion of stationarity in Section 2.2 and reveals the possible source for
nonsense regression concerned with the spatial unit root SAR series [34] (p. 303).

Mur and Trívez [32] focus on the spurious regression when a spatial deterministic
trend exists and show that under such circumstances similar symptoms related to unit
roots occur. Consider the DGP

Yn = διn + λWnYn + ϵn. (20)

=⇒ Yn = (In − λWn)
−1(διn + ϵn) (21)

= δι
‡
n + S−1

n ϵn, (22)

where ιn is an n × 1 unit vector and ι
‡
n = S−1

n ιn. Comparing the term δι
‡
n in (22) with the

time trends in a typical time series model, “ι
‡
n” is similar to the time trend “t”: t is different

in terms of the relative position in time and the element of ι
‡
n is different in terms of its

relative position in space. Also, the presence of such a trend term in the SAR process leads
to spurious regression. Consider the simple regression

Y1n = α + Y2nβ + µn, (23)

where Y1n and Y2n are unrelated SAR processes generated by (20), respectively

Y1n = δ1ιn + λ1Wn1Y1n + ϵ1n ⇒ Y1n = δ1S−1
1n ιn + S−1

1n ϵ1n,

Y2n = δ2ιn + λ2Wn2Y2n + ϵ2n ⇒ Y2n = δ2S−1
2n ιn + S−1

2n ϵ2n.
(24)

Assuming ϵ1n and ϵ2n are independent white noises, we expect the estimate of β in (23) to
be 0. However, this is generally not the case which means spurious regression occurs. This
can be seen from the fact that the correlation coefficient between Y1n and Y2n given in Mur
and Trívez [32]

rY1n ,Y2n =
∑r(Y1n,r − Ȳ1n)(Y2n,r − Ȳ2n)√

∑r(Y1n,r − Ȳ1n)
2 ∑r(Y2n,r − Ȳ2n)

2
→ 1, n → ∞. (25)
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Though Fingleton argues that a high value of Moran’s I statistics may be a good
indicator for the existence of spatial unit roots and spatial cointegration, he cannot dis-
tinguish between them, or even from the (genuine) positive spatial autocorrelation case.
Some testing methods are developed and summarized in Section 5. The trend SAR series
proposed by Mur and Trívez [32] seems to receive less attention, which may be due to the
fact that when the mixed SAR process contains only a constant exogenous variable and Wn
is row-normalized, multicollinearity occurs; see Kelejian and Prucha [7] (p. 105), Lee [35]
(p. 258), Lee [5] (p. 1907).

3.3. Spurious Regression under the near Unit Roots with a Row-Normalized, Circular
Weight Matrix

The spurious regression considered in the previous two sections is under a row-
normalized, noncircular weight matrix, which implicitly assumes an unconnected central
unit in the spatial system, and is too restrictive to be used in empirical applications. Thus,
Lee and Yu [34] study the spurious regression under a circular, row-normalized spatial
weight matrix. The DGP process for the (mixed) SAR series is

Yjn = λjnWjnYjn + Zjnγj + ϵjn, j = 1, · · · , m. (26)

In this case, λjn ̸= 1, since the unit roots are singular points of Wjn. They study the
consequence when λn approaches 1, namely

λn0 = 1 − 1
ψn

, (27)

where ψn → ∞ as n → ∞.

3.3.1. Decomposition of Yn

Though the variance of Yn explodes as λn → 1, Yn can be decomposed into a stable part
and an unstable part by the decomposition of the weight matrix Wn. This decomposition
given in Lee and Yu [15] is used in Yu et al. [10,36], Yu and Lee [16] to study unit roots in
a spatial dynamic panel data (SDPD) model. Because of its importance, this procedure is
summarized here. See Baltagi et al. [37] and Lee and Yu [15,34] for more information.

Theorem 3. Suppose that Wn is a row-normalized weight matrix from a symmetric matrix Cn,
i.e., Wn = Λ−1

n Cn, where Λn is a diagonal matrix with its diagonal elements formed by the row
sums of Cn. Then (i) the eigenvalues of Wn are all real; and (ii)Wn is diagonalizable.

(i) can be easily seen from the fact that all symmetric matrices have real eigenvalues.
For (ii)

Wn = Λ−1
n Cn =⇒ Λ

1
2
n WnΛ− 1

2
n = Λ− 1

2
n CnΛ− 1

2
n . (28)

Let D∗
n be the eigenvalue matrix of Λ− 1

2
n CnΛ− 1

2
n , and R∗

n be the corresponding orthog-

onal eigenvector matrix, i.e., Λ− 1
2

n CnΛ− 1
2

n = R∗
nD∗

nR∗′
n . Lee and Yu [15] show Wn can be

expressed as:

Wn = Λ− 1
2

n

(
R∗

nD∗
nR∗′

n

)
Λ

1
2
n

=

(
Λ− 1

2
n R∗

n

)
D∗

n

(
R∗−1

n Λ
1
2
n

)
=

(
Λ− 1

2
n R∗

n

)
D∗

n

(
Λn

− 1
2 R∗

n

)−1
.

(29)
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Let Rn = Λ− 1
2

n R∗
n, Dn = D∗

n. By definition, Rn is the eigenvector of Wn and Dn = D∗
n

is the corresponding eigenvalue, so the eigendecomposition of Wn is

Wn = RnDnR−1
n . (30)

Moreover, the largest eigenvalues of a row-normalized matrix are 1 in absolute value.
Without loss of generality, Lee and Yu [15] assume there are mn eigenvalues equal to 1
and let

Dn = diag{1mn , dn,mn+1, · · · , dnn}, (31)

where 1mn is 1 × mn vector of ones and |dni| ≤ 1 for all i. So the eigenvalue matrix Dn can
be decomposed into two parts:

Dn = Jn + D̃n, (32)

where Jn = diag{1mn , 0, · · · , 0} and D̃n = diag{0, · · · , 0, dn,mn+1, · · · , dnn}. Accordingly,

Wn = RnDnR−1
n = Rn

(
Jn + D̃n

)
R−1

n

= Rn JnR−1
n + RnD̃nR−1

n = Wu
n + W̃n,

(33)

where Wu
n = Rn JnR−1

n and W̃n = RnD̃nR−1
n .

Lee and Yu [15] note that Jn Jn = Jn and JnD̃n = 0, so

Wu
n Wu

n = Wu
n , Wu

n W̃n = 0, WnWu
n = Wu

n . (34)

Denoting Sn(λ) = In − λWn = Rn(In − λDn)R−1
n , and Sn = Sn(λn0) where λn0 is the true

value of λ, they obtain S−1
n (λ) = Rn(In − λDn)

−1R−1
n and thus

In − λn0Dn = diag{(1 − λn0), · · · , (1 − λn0), (1 − λn0dn,mn+1), · · · , (1 − λn0dnn)}, (35)

=⇒(In − λn0Dn)
−1 = diag

{
ψn, · · · , ψn,

1
1 − λn0dn,mn+1

, · · · ,
1

1 − λn0dnn

}
, (36)

since λn0 = 1 − 1
ψn

. Similarly,

(
In − λn0D̃n

)−1
= diag

{
1mn ,

1
1 − λn0dn,mn+1

, · · · ,
1

1 − λn0dnn

}
. (37)

Comparing the first mn diagonals of (In − λn0Dn)
−1 and

(
In − λn0D̃n

)−1, it is easy to

obtain (In − λn0Dn)
−1 = ψnλn0 Jn +

(
In − λn0D̃n

)−1, thus

S−1
n (λn0) = ψnλn0Wu

n +
(

In − λn0W̃n
)−1. (38)

Denote Gn = WnS−1
n , by (38) and (34):

Gn = ψnλn0Wu
n + Wn

(
In − λn0W̃n

)−1. (39)

Thus, Lee and Yu [15] decompose Yjn = S−1
jn (λjn)(Zjnγj + ϵjn) into two parts by (38):

Yjn = ψjnYu
jn + Ỹjn, (40)

where Yu
jn = λjnWu

jn
(
Zjnγj + ϵjn

)
and Ỹjn =

(
In − λjnW̃jn

)−1(Zjnγj + ϵjn
)
.

It can be seen from (38) that when λn0 → 1, S−1
n (λn0) is ill-conditioned because

ψn → ∞ and hence the variance of Yn explodes. This is caused by the first unstable term
in (40) (the second term is stable). Thus, Yjn is of order ψjn, which may grow too fast to
yield useful asymptotic analysis. Thus, a rate-adjusted factor 1

ψjn
is needed to maintain
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a controllable rate. A similar idea applies to QMLE and 2SLS methods for estimation as
shown later.

3.3.2. Spurious Regression of OLS under Near Unit Root

To study spurious regression, following Fingleton [14], Lee and Yu [34] consider the
DGP that is similar to (26) but without exogenous variables:

Yjn = λjnWjnYjn + ϵjn, j = 1, · · · , m. (41)

Denote Y−1,n = [Y2n, · · · , Ymn], Xn = [ιn, Y−1,n] where ιn is the n × 1 vector of ones.
Let λ be a scalar, β = (β2, · · · , βm)

′ be an (m − 1)× 1 vector and δ ≡ (λ, β′)′. OLS, which
may yield spurious regression, is then

Y1n = αιn + Y−1,nβ + Vn = Xnδ + Vn, (42)

where Vn is an n × 1 vector of disturbances. To make sure the variable of interest is under
controllable order, scale Yjn and S−1

jn S′−1
jn as

Y∗
jn =

1
ψjn

Yjn, Sjn =
1

ψ2
jn

S−1
jn S′−1

jn , j = 1, · · · , m. (43)

Lee and Yu [34] introduce a sufficient condition for Assumption 4 that ensures the UB
of S−1

n , by (38):

Assumption 5.
(

In − λjnW̃jn
)−1 and Wu

jn are UB.

Under Assumption 5, Sjn is UB. To study the properties of OLS estimation, it is suffi-

cient to show the asymptotic behaviors of 1√
n X∗′

n Y∗
1n and 1

n Y∗′
in Y∗

jn, where X∗
n =

[
ιn, Y∗

−1,n

]
.

Proofs of these properties are about orders of matrices and random vectors as well as
first and second moments of quadratic forms (some useful lemmas can be found at
https://www.asc.ohio-state.edu/lee.1777/wp/sar-qml-r-appen-04feb.pdf, accessed on
28 March 2024). The OLS estimates for α and β:

(
α̂n, β̂′

n
)′ = (X′

nXn)
−1(X′

nY1n) can be
expressed in terms of 1√

n X∗′
n Y∗

1n and 1√
n X∗′

n X∗
n

√
n
(

α̂n
β̂n

)
= ψ1nΥ−1

m

(
1
n

X∗′
n X∗

n

)−1( 1√
n

X∗′
n Y∗

1n

)
, (44)

where

Υm =

(
1 0
0 Υ2m

)
and Υ2m =


ψ2n 0 · · · 0
0 ψ3n · · · 0
...

...
. . .

...
0 0 · · · ψmn

. (45)

Lee and Yu [34] notice that the scaling factor Υm is needed because the columns of Xn
have different orders (1, ψ2n, · · · , ψmn) and Y1n is of order ψ1n. Based on this fact, they give
the following result:

1
n

X∗′
n X∗

n = D∗
n,xx + Op

(
1√
n

)
, (46)

where D∗
n,xx ≡ diag

{
1, σ2

2
1
n tr(S2n), · · · , σ2

m
1
n tr(Smn)

}
, Op(

1√
n ) means the remaing terms

of 1
n X∗′

n X∗
n are at most of order 1√

n and Sjn symbols are defined in (43), for all j = 2, · · · , m.

https://www.asc.ohio-state.edu/lee.1777/wp/sar-qml-r-appen-04feb.pdf
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Moreover, 1√
n X∗′

n Y∗
1n has limiting variance matrix:

Σ∗
m = σ2

1 diag
{

lim
n→∞

1
n

l′nS1nln, σ2
2 lim

n→∞

1
n

tr(S2nS1n), · · · , σ2
m lim

n→∞

1
n

tr(SmnS1n)

}
. (47)

Lee and Yu [34] also adjust Assumption 2 to ensure 1
n X∗′

n X∗
n is of full rank when n → ∞

and obtain the asymptotic distributions of the OLS estimators:

Assumption 6. limn→∞
1
n tr
(
Sjn
)
̸= 0 for j = 1, 2, · · · , m.

Denoting

D∗
xx ≡ lim

n→∞
D∗

n,xx = diag
{

1, σ2
2 lim

n→∞

1
n

tr(S2n), · · · , σ2
m lim

n→∞

1
n

tr(Smn)

}
, (48)

then √
n

ψ1n
Υm
(
λ̂n, β̂′

n
)′ d→ N

(
0, [D∗

xx]
−1Σ∗

m[D
∗
xx]

−1
)

. (49)

Since Y−1,n is independent of Y1n, one may expect insignificant β̂ in (42). How-

ever, whether β̂ j converges to 0 in probability or not depends on the factor
√

n
ψ1n

ψjn for

2 ≤ j ≤ m (note that Υm in (49) is diagonal): if
√

n
ψ1n

ψjn → ∞, β̂ jn
p→ 0 is

√
n

ψ1n
ψjn-consistent;

if
√

n
ψ1n

ψjn → c < ∞, β̂ jn is asymptotically normal because its limiting variance does not

converge to 0; if
√

n
ψ1n

ψjn → ∞, β̂ jn is not bounded in probability and diverges. Intuitively,
spurious regression will not occur if ψ1n approaches ∞ faster than ψjn, or equivalently, λ1n
approaches 1 more quickly than λjn [34].

3.3.3. Other Test Statistics

It is also important to discuss the statistical properties of other test statistics based on (42),
which could be potentially useful for distinguishing spurious regression. Lee and Yu [34] give
the following theorem as a prerequisite:

Theorem 4. Under Assumptions 1 and 4, for any nonstochastic UB square matrix Bn,

1
n

Y∗′
1nBnPnY∗

1n = Op

(
1
n

)
. (50)

where Pn = Xn(X′
nXn)

−1X′
n is the projection matrix of Xn

Based on this theorem, Lee and Yu [34] show the order of the estimated variance of
the disturbances σ̂2

n is

1
ψ2

1n
σ̂2

n =
1

ψ2
1n

(
e′nen

n − m

)
= σ2

1 tr(S1n) + Op

(
1√
n

)
, (51)

and

tβ j

d→ N

(
0, lim

n→∞

n · tr
(
SjnS1n

)
tr
(
Sjn
)
· tr(S1n)

)
, for every 2 ≤ j ≤ m, (52)

F d
=

1
(m − 1)

U′
mUm, (53)
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where Um is an m − 1 random vector with its elements ujm ∼ N
(

0, limn→∞
ntr(SjnS1n)

tr(Sjn)tr(S1n)

)
.

Thus tβ j does not have a familiar asymptotic standard normal distribution, and the F-
statistic has no familiar χ2(m − 1) distribution either.

Even though the t- and F-statistic are not reliable, Lee and Yu [34] suggest the com-
bination of R2 and Moran’s I could be a good indicator for spurious regression under
near unit roots. Let M0

n = In − 1
n lnl′n, where ln is an n × 1 vector of ones, the coefficient of

determination R2 is

R2 := 1 − e′nen

Y′
1n M0

nY1n
= 1 −

e′nen/
(
nψ2

1n
)

Y′
1n M0

nY1n/
(
nψ2

1n
) = Op

(
1
n

)
p→ 0. (54)

And the Moran’s I statistic is

IMoran :=
1
n e′nWnen

1
n e′nen

=
tr
(

S∗′−1
1n WnS∗−1

1n

)
tr
(

S∗′−1
1n S∗−1

1n

) + Op

(
1√
n

)
p→ 1, when Wn = W1n.

(55)

3.3.4. Constant Terms in the DGP of Yjn’s

Lee and Yu [34] also study the constant term and unit roots at the same time. It could
be shown that the estimation of β is the same as in (49) after reparameterization. Consider
the DGP of series Yc

jn with near unit roots and a constant term cjn as

Yc
jn = λjnWjnYc

jn + cjnιn + ϵjn, for every j = 1, · · · , m. (56)

Regress Yc
1n on ιn and Yc

−1,n:

Yc
1n = αcιn + Yc

−1,nβc + Vc
n . (57)

where αc is a constant and Yc
−1,n is similarly defined as Y−1 above. Since Wjn is row-

normalized, Wjnιn = ιn, we have Yc
jn = S−1

jn
(
cjnιn + ϵjn

)
= ψjncjnιn + S−1

jn ϵjn = ψjncjnιn +

Yjn. So (57) could be rewritten as:

Y1n =

(
αc − ψ1nc1n +

m

∑
j=2

ψjncjnβc
jn

)
ιn + Y−1,nβc + Vc

n . (58)

Compare (58) and (42), OLS estimation of βc is the same as that of β and thus the
corresponding statistics would be the same.

3.4. “Spurious” Regression with Equal Weights

Baltagi and Liu [38] show that under the special case where the spatial weight matrix
is row-normalized and with equal spatial weights, i.e.,

wn,ij =

{
0 , if i = j,

1
n−1 , if i ̸= j.

(59)

spurious regression will not occur. This spatial weight matrix “is naturally suggested if
all units are neighbors to each other and there is no other natural or observable measure
of distance [39]”, such as interactions between students in a class or workers in a firm, etc.
Without loss of generality, the DGP is assumed to be

Yn = λ1WnYn + ϵ1n,

Xn = λ2WnXn + ϵ2n.
(60)
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Consider the regression
Yn = αιn + Xnβ + Vn. (61)

By the Frisch–Waugh–Lovell Theorem, the OLS estimation of β is β̂ = (X′
nEnXn)

−1X′
nEnYn,

where En = In − Jn
n and Jn is an n × n matrix of ones. Kelejian and Prucha [39] show the

inverse of the matrix Snk = In − λkWn, k = 1, 2, is

S−1
nk = δk1 Jn − δk2 In, (62)

where δk1 =
λk

(n−1+λk)(1−λk)
and δk2 =

n−1
n−1+λk

. Using the fact that En Jn = 0, Baltagi and Liu [38]

show 1
n X′

nEnXn
p−→ σ2

2 and 1√
n X′

nEnYn
d−→ N

(
0, σ2

1 σ2
2
)
, so the asymptotic distribution of

β̂ is given by

√
nβ̂ =

(
1
n

X′
nEnXn

)−1( 1√
n

X′
nEnYn

)
d−→ N

(
0, σ2

1 /σ2
2

)
. (63)

The asymptotic distribution of β̂ does not depend on λ1 and λ2 and is
√

n consistent
(compared with (49)), which means that the spurious regression does not occur.

4. Estimation and Inference

The spurious regression studied in the previous section suggests that OLS is not a
good estimator in the SAR model with spatial unit roots. QMLE and 2SLS are alternative
methods of estimation. This section briefly reviews these estimators and their performance
under near unit roots.

When the error term of the DGP has a spatial autoregressive structure, OLS and
(feasible) generalized least squares ((F)GLS) estimators are consistent. The efficiency
of the OLS estimator was considered by Krämer and Donninger [40], Tilke [41] for the
symmetric spatial weight matrices, and generalized by Krämer and Baltagi [42] with a
broader covariance matrix. But the symmetry of the weight matrix is too restrictive to
be used in practice, so Martellosio [43] generalizes this to nonsymmetric weights ma-

trices. The efficiency of the OLS estimator is defined as η :=
tr[var(Xβ̂GLS)]
tr[var(Xβ̂OLS)]

. But these

papers generally focus on the relationship between Wn and X, for example, when the
column space of Wn is contained by the column space of X. Following Lee and Yu [34],
Baltagi et al. [37] derive the asymptotic properties of OLS, (F)GLS of β and point out
important differences from conventional theory based on stationary spatial error.

A special SAR model has also been considered in regular lattices under spatial unit
roots with the form

Yk,l =
p1

∑
i=0

p2

∑
j=0

αi,jYk−i,l−j + ϵk,l , α0,0 = 0. (64)

The simplest case of this special SAR model is the doubly geometric spatial autoregres-
sive process:

Yk,l = αYk−1,l + βYk,l−1 − αβYk−1,l−1 + ϵk,l . (65)

It is called “unilateral” because only the previous units have effects on the latter ones and
have a lower triangular weight matrix. It can be considered as the combination of two
autoregressive (AR) models [44]. This model has been widely used in the area of image
processing, agriculture trials, digital filtering, and other different fields. Model (64) is
unstable when either |α| ≥ 1 or |β| ≥ 1 because of the existence of spatial unit roots [45,46].

A more complicated special case of the unilateral model is

Yk,l = αYk−1,l + βYk,l−1 + γYk−1,l−1 + ϵk,l . (66)
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Because of its simple form, the estimation and inference of (64) can be derived without
too many assumptions, as will be seen shortly. Moreover, when spatial unit roots exist,
the limit of the variance of Yk,l are analytically obtained in Baran [47] when the parameters
(α, β, γ) are located on the interior, on the edges, and on the vertices of the domain of
stability. Paulauskas [48] explicitly shows that the growth rate of the variance of Y is
different in dimensions d = 2, 3 and d = 4. Though this approach studies spatial unit roots
from a different angle than that of Fingleton [14], it points to some similarity as in a recent
paper [49] that will be discussed in Section 6.

Another possible way to remedy the problem caused by spatial unit roots in the SAR,
SEM model is to relax the compactness assumption. When some parameters approach the
boundary of the parameter space, consistency of extremum estimators could be obtained
with compact parameter spaces. Thus the compactness assumption is standard in spatial
econometrics because of the existence existence of the singular point 1

ρmax
, see proofs in

Kelejian and Prucha [6] Lee [5], Gupta [50]. But such an assumption is also restrictive in
the sense that if we choose an arbitrary compact set on the open parameter space, the true
global optimizer may be exclusive, especially for near unit root cases. A recent paper by
Liu et al. [51] generalizes Theorem 2.7 in Newey and McFadden [52] (p. 2133), which relaxes
compactness when the objective function of an extremum estimator is concave and allows
the non-stochastic objective functions to depend on the sample size n. This generalization
is suitable for spatial econometrics models because the sample observations are usually
in triangular arrays. (A triangular array is a doubly indexed sequence of numbers or
polynomials. Each row of the array is only as long as the row’s index. For example, the ith
row contains only i elements.) The consistency of the QMLE of the SAR model and the
MLE of the SAR Tobit model are investigated. But a closed-form solution is not obtained.
On the other hand, Gupta [53] proposes a Newton-step computational algorithm of QMLE
for a large-parameter-size SAR model, which is free from the compactness assumptions.
Under the normality assumption, it has the same asymptotic efficiency as MLE, but has a
closed-form solution and is computationally simple.

4.1. QMLE and 2SLS Methods for the (Mixed) SAR Model
4.1.1. Quasi-Maximum Likelihood Estimation Method

Lee [5] investigates the asymptotic distribution of the QMLE estimator of the mixed
SAR model, which is the starting point for further analysis when spatial unit roots exist.
This analysis is based on the discussion of the singularity of the information matrix of
the log-likelihood function. Especially when the information matrix is singular, a scaling
factor 1√

hn
is needed, where 1

hn
is the order of the elements of the spatial weight matrix Wn

and thus 1√
hn

is the order elements of Gn = WnS−1
n . We have seen in (39) that the order of

elements of Gn is ψn in the near unit roots case; thus, a similar scaling factor will be needed.
The (mixed) SAR model under consideration is

Yn = Xnβ + λWnYn + Vn, (67)

with its reduced form

Yn = S−1
n (Xnβ0 + Vn)

= Xnβ0 + λ0GnXnβ0 + S−1
n Vn,

(68)

since In + λ0Gn = S−1
n .

Also, Lee [5] imposes a weaker assumption about the spatial weight matrix and derives
the information matrix.

Assumption 7. The elements wn,ij of Wn are at most of order h−1
n , denoted by O(1/hn), uniformly

in all i, j where the rate sequence {hn} can be bounded or divergent. The ratio hn/n → 0 as n goes
to infinity.
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Let Vn(δ) = Yn − Xnβ − λWnYn, where δ = (β′, λ)′, then the log-likelihood function
of (67) is

ln Ln(θ) = −n
2

ln(2π)− n
2

ln σ2 + ln|Sn(λ)| −
1

2σ2 V′
n(δ)Vn(δ), (69)

where θ =
(

β′, λ, σ2)′. The information matrix is

E
(

1√
n

∂ ln Ln(θ0)

∂θ

1√
n

∂ ln Ln(θ0)

∂θ′

)
= −E

(
1
n

∂2 ln Ln(θ0)

∂θ∂θ′

)
+ Ωθ,n, (70)

where

−E
(

1
n

∂2 ln Ln(θ0)

∂θ∂θ′

)

=


1

σ2
0 n

X′
nXn

1
σ2

0 n
X′

n(GnXnβ0) 0
1

σ2
0 n
(GnXnβ0)

′Xn
1

σ2
0 n
(GnXnβ0)

′(GnXnβ0) +
1
n tr(Gs

nGn)
1

σ2
0 n

tr(Gn)

0 1
σ2

0 n
tr(Gn)

1
2σ4

0

.
(71)

with Gs
n = Gn + G′

n. The existence of the extra Ωθ,n is because Vn is not necessarily
normally distributed.

To ensure the asymptotic distribution of QMLE θ̂ exists, Σθ = − limn→∞ E
(

1
n

∂2 ln Ln(θ0)
∂θ∂θ′

)
must be well defined. Lee [5] proves the nonsingularity of Σθ can be guaranteed by the fact
that there does not exist a nonzero vector λ =

(
λ′

1, λ2, λ3
)′ such that a linear combination

of columns of Σθ is 0. This condition could be simplified as: there does not exist a λ2 ̸= 0,
such that{

lim
n→∞

1
nσ2

0
(GnXnβ0)

′ Mn(GnXnβ0)+

lim
n→∞

1
n

[
tr
(
G′

nGn
)
+ tr

(
G2

n

)
− 2

n
tr2(Gn)

]}
λ2 = 0.

(72)

Since each term in (72) is greater or equal to 0 (the first term is non-negative because it is sym-
metric; for the second term, tr(GnG′

n) + tr
(
G2

n
)
− 2

n tr2(Gn) =
1
2 tr
[
(C′

n + Cn)(C′
n + Cn)

′
]
=

1
2 tr(Cs′

n Cs
n) ≥ 0 where Cn = Gn − tr(Gn)

n In and Cs
n = C′

n +Cn), Lee [5] studies the singularity
of the information matrix in terms of these two terms, respectively. For the first term, by the
partition matrix formula, limn→∞

1
n (Xn, GnXnβ0)

′(Xn, GnXnβ0) is nonsingular if and only
if limn→∞

1
n X′

nXn and limn→∞
1
n (GnXnβ0)

′Mn(GnXnβ0) are nonsingular. Moreover, un-
der Assumption 7, if GnXnβ0 and Xn are independent, one sufficient condition for the
nonsingularity of Σθ could be:

Assumption 8. limn→∞
1
n (Xn, GnXnβ0)

′(Xn, GnXnβ0) exists and is nonsingular.

However, Lee [5] states that if GnXnβ0 and Xn are linearly dependent, for exam-
ple, when Wn is row-normalized and the relevant regressor is only the constant term,
Assumption 8 should be adjusted to guarantee the second term in (72) is greater than 0:

Assumption 9. limn→∞
1
n (GnXnβ0)

′Mn(GnXnβ0) = 0 and the {hn} is a bounded sequence
and, for any λ ̸= λ0,

lim
n→∞

(
1
n

ln
∣∣∣σ2

0 S−1
n S

′−1
n

∣∣∣− 1
n

ln
∣∣∣σ2

n(λ)S
−1
n (λ)S

′−1
n (λ)

∣∣∣) ̸= 0. (73)
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Then under Assumption 7 and either 8 or 9, the asymptotic distribution of QMLE θ̂
will be √

n
(
θ̂n − θ0

) D→ N
(

0, Σ−1
θ + Σ−1

θ ΩθΣ−1
θ

)
, (74)

where Ωθ = limn→∞ Ωθ,n, Σθ = − limn→∞ E
(

1
n

∂2 ln Ln(θ0)
∂θ∂θ′

)
.

The above results are based on Σθ being invertible of which a necessary condition
is that {hn} is a bounded sequence. However, when limn→∞ hn = ∞, Σθ will become
singular because 1

n tr
[
(C′

n + Cn)(C′
n + Cn)

′
]
= O

(
1

hn

)
= o(1). Also, the singularity of the

information matrix implies that the score function will be too flat to be useful and thus an
adjustment of the rate should be imposed as in Lee [5]

Assumption 10. The {hn} is a divergent sequence, elements of Mn(GnXnβ0) have the uniform
order O

(
1√
hn

)
, and limn→∞

(
hn
n

)
(GnXnβ0)

′Mn(GnXnβ0) = c with 0 ≤ c < ∞. Under this
situation, either (a) c > 0, or (b) if c = 0

lim
n→∞

(
hn

n
ln
∣∣∣σ2

0 S−1
n S

′−1
n

∣∣∣− hn

n
ln
∣∣∣σ2

n(λ)S
−1
n (λ)S

′−1
n (λ)

∣∣∣) ̸= 0, (75)

whenever λ ̸= λ0.

Lee [5] gives the asymptotic distributions of the QMLE under this rate-adjusted
assumption:√

n
hn

(
λ̂n − λ0

) D→ N
(

0, σ2
λ

)
,√

n
hn

(
β̂n − β0

) D→ N
(

0, σ2
λ lim

n→∞

(
X′

nXn
)−1X′

n(GnXnβ0)(GnXnβ0)
′Xn
(
X′

nXn
)−1
)

,

√
n
(

σ̂2
n − σ2

0

)
=

1√
n

n

∑
i=1

(
v2

i − σ2
0

)
+ oP(1)

D→ N
(

0, µ4 − σ4
0

)
.

(76)

4.1.2. Generalized Spatial Two-Stage Least Squares (GS2SLS) Method

Kelejian and Prucha [7] proposed the GS2SLS method for the “cross-sectional (first-
order) autoregressive spatial model with (first-order) autoregressive disturbances”:

Yn = Xnβ + λWnYn + un |λ| < 1
= Znδ + un,

un = ρMnun + ϵn, |ρ| < 1,
(77)

where Zn = (Xn, WnYn) and δ = (β′, λ)′. Since WnYn is endogenous, it should be instru-
mented. Assume ρ is known (a consistent estimator is given by Kelejian and Prucha [6]),
a Cochrane–Orcutt (CO)-type transformation applied to (77) yield the transformed regression

Yn∗ = Zn∗δ + ϵn

= (In − ρMn)Znδ + ϵn

= (Zn − ρMnZn)δ + ϵn.

(78)

MnZn should be instrumented. The ideal instruments are of course

E[Zn] = (Xn, WnE[Yn]) and E[MnZn] = (MnXn, MnWnE[Yn]). (79)

Then, by (10), E[Yn] = (In − λWn)
−1Xnβ =

[
∑∞

i=0 λiWi
n
]
Xnβ, the ideal instruments are:

Hn =
[

Xn, W1
n Xn, W2

n Xn, · · · , MnXn, MnW1
n Xn, MnW2

n Xn, · · ·
]
. (80)
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In practice, Hn =
[
Xn, W1

n Xn, W2
n Xn, MnXn, MnW1

n Xn, MnW2
n Xn

]
is used.

Assumptions about the instrument matrix are made to ensure that limn→1
1
n H′

nZn
exists and is of full rank. In the near unit roots case, similar to the QMLE method, scaling
factors are needed to guarantee this property as we will see later. With these assumptions,
the GS2SLS procedure has three steps, as in Kelejian and Prucha [7], as follows:

1. Run 2SLS on Yn = Znδ + un with instruments Hn. This yields δ̃n =
(
Ẑ′

nẐn
)−1Ẑ′

nYn,

where Ẑn = PHn Zn =
(

Xn, ŴnYn

)
, PHn is the projection matrix of Hn,

and δ̃n = δ + Op(n− 1
2 ) .

2. Estimate ρ by Kelejian and Prucha [6] according to the GMM system: ρn = Gnλ + Vn

where λ =
(
ρ, ρ2, σ2)′, then solve λ̃ = G′

ngn, or by ˜̃λ = argminρ,σ2 V′
nVn. Both λ̃ and

˜̃λ are consistent, but ˜̃λ is more efficient.
3. Assuming ρ is known, run 2SLS on the CO transformed regression (78) with instru-

ments Hn yields δ̂n =
(
Ẑn∗ Ẑn∗

)−1Ẑ′
n∗Yn∗ , where

Ẑn∗ = PHn Zn∗ = PHn [Xn − ρMnXn, WnYn − ρMnWnYn]

=
[

Xn − ρMnXn, ̂WnYn − ρMnWnYn

]
.

(81)

By replacing ρ by its consistent estimation ρ̂n (in Step 2). The feasible 2SLS estimator is

δ̂F,n =
[
Ẑn∗(ρ̂n)

′Ẑn∗(ρ̂n)
]−1Ẑn∗(ρ̂n)Yn(ρ̂n). (82)

Obviously, this procedure is for a SARAR model. If it is a SAR model, only step 1 is
needed and Hn =

[
Xn, W1

n Xn, W2
n Xn, · · ·

]
.

4.1.3. Best Generalized Spatial Two Stage Least Squares (BGS2SLS) Estimators

Lee [8] does not drop the higher-order terms in (80) but use the fact that WnE[Yn] =

Wn(In − λWn)
−1Xnβ = GnXnβ by the definition of Gn and proposes the best instrument:

H∗
n = (In − ρMn)

[
Xn, Wn(In − λWn)

−1Xnβ
]

= (In − ρMn)[Xn, GnXnβ].
(83)

With the corresponding simple instrumental variable estimator, the BGS2SLS is

δ̂B,n =
[
H∗′

n Zn
]−1H∗′

n Yn. (84)

If there is no SAR structure in the disturbance term, the best instrument is

H∗
n = [Xn, GnXnβ], (85)

and β in (85) could be replaced by any consistent estimator such as the KP-GS2SLS estimator.
Compared with (80), H∗

n does not drop off the higher-order terms and is numerically
equivalent to the ideal instrument, which in turn yields asymptotically optimal instrumental
variable estimators.

4.2. Near Unit Roots in the SAR Model

Lee and Yu [15] study the asymptotic distribution of QMLE and 2SLS estiamtors of
the SAR model by decomposing Yn (see Section 3.3.1). The model is given as

Yn = λn0WnYn + Xnβ0 + ϵn, (86)
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where λn0 = 1 − 1
ψn

. And the reduced form, again, is

Yn = S−1
n (Xnβ0 + Vn) = Xnβ0 + λ0GnXnβ0 + S−1

n Vn. (87)

4.2.1. QMLE

Obviously, the generated regressor GnXnβ0 is explosive because of ψn in Gn, see (39).
This is very similar to the case in Assumption 10 (a) with limn→∞ hn = ∞ in Section 4.1.1.
This implies that the convergence rate of estimators of ρn0 is not the usual

√
n case as

in (76).
Additional assumptions are made in Lee and Yu [15] to control the magnitude of the un-

stable part of Wn (Assumption 11), and specify the identification condition (Assumption 12),
which are adjusted from Assumption 8:

Assumption 11. (1) limn→∞
mn
n > 0; (2) limn→∞ n−1tr(W ′u

n Wu
n ) > 0; (3) for any finite

constant c, limn→∞ n−1tr
[
(In − cWu

n )
′(In − cWu

n )
]
> 0.

Assumption 12. β′
0 limn→∞

(
n−1X′

nW ′u
n MnWu

n Xn
)

β0 > 0 holds.

Assumption 11 (1) (2) guarantee that mn is not too small compared to n and (3) implies
that it is not too large. Assumption 12 is equivalent to (see Lee and Yu [15] (p. 338, Lemma 1
(7))) limn→∞

1
nψ2

n
(GnXnβ0)

′Mn(GnXnβ0), which is a rate-adjusted version of Assumption 8,
that ensures the identification uniqueness and implies nonsingularity of Σθ . For a detailed
discussion of these two assumptions, see Baltagi et al. [37] (p. 6). Also, since the adjusted
rate is 1

ψ2
n

, QMLE λ̂n would be
√

nψn-consistent, see (76) derived under Assumption 10.
The information matrix will be the same as in (70). In Section 3.3.2, when studying the

spurious regression of OLS, we mentioned that the scaling factor Υm is needed in terms of
the order of Xn. Here, for the QMLE, similar scaling factor will also be introduced because
elements of Σn and Ωn have different orders as the existence of Gn. The second column
and row of Σn and Ωn, which are the derivatives with respect to the spatial coefficient
λn contain Gn, thus, they have to be scaled by a factor 1

ψn
. Specifically, the (2, 2) element

should be scaled by a factor 1
ψ2

n
. This can be done by a left and right multiplying matrix

Υ−1
θ,n, where

Υθ,n =

(
Υδ,n 0(k+1)×1

01×(k+1) 1

)
and Υδ,n =

(
Ik 0k×1

01×k ψn

)
. (88)

Thus, Lee and Yu [15] give

√
nΥθ,n

(
θ̂n − θn0

)
= −

(
Υ−1

θ,n
1
n

∂2 ln Ln
(
θ̃n
)

∂θ∂θ′
Υ−1

θ,n

)−1

Υ−1
θ,n

1√
n

∂ ln Ln(θn0)

∂θ
. (89)

Let Σ = limn→∞ Υ−1
θ,nΣnΥ−1

θ,n and Ω = limn→∞ Υ−1
θ,nΩnΥ−1

θ,n and assume they exist,
the asymptotic distribution of θ̂n is

√
nΥθ,n

(
θ̂n − θn0

) D→ N
(

0, Σ−1 + Σ−1ΩΣ−1
)

. (90)

Recently, Rossi and Lieberman [54] combine the near unit roots with a similarity-based
weighted matrix and study the consistency of the QMLE estimator when the spatial coeffi-
cient 0 ≤ λ < 1 and λ = 1, by allowing uncentered units. The element of similarity-based

weighted matrix is wi,j =
s(xi ,xj ;w0)

∑j ̸=i s(xi ,xj ;w0)
, where s

(
xi, xj; w0

)
is some function that measures

the similarity between unit i and j according to some parameter w0. The parameters they
are most interested in are θ2 = (λ, w′)′. They establish the connection between the λ and the
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order of uniform absolute row-sum norm of S−1
0 , ∥S−1

0 ∥∞ =
∥∥S−1(θ20)

∥∥
∞ = O(nγ). This

means that λ0 = 1 ⇔ γ = 1 [54] (p. 11, Proposition 1). Recall that Var(Yn) = σ2
ϵ S−1

n S
′−1
n ,

so when γ = 0, the variance is independent of n, corresponding to the standard SAR
setup (λ < 1 and fixed). In the case 0 < γ < 1, the variance increases with the sample
size but with a lower speed, which is the case that we have seen when studying near
unit root; but when γ = 1, λ = 1, the variance increases so fast that the non-standard
limit distribution of θ = (λ, w) has to be established on a case-by-case basis, according
to the resulting S−1

n . Their result is much more complicated than that of Lee and Yu [15]
because of the introduction of similarity structure in the weight matrix, but are much more
flexible since now Wn is no longer fixed but data-driven, and is potentially more useful in
empirical work.

4.2.2. GS2SLS and BGS2SLS

Lee and Yu [15] derive the 2SLS estimators and their asymptotic distributions using
the procedures mentioned above. Using instruments defined in (80), the GS2SLS estimator
of δn0 is

δ̂n,2sls =
(
Z′

nPHn Zn
)−1Z′

nPHnYn. (91)

Since Zn = [Xn, WnYn] contains Wn, the adjustment by Υδ,n is needed. The asymptotic
properties of the GS2SLS estimators of λn0 and β0 are obtained as follows:

Υδ,n
√

n
(
δ̂n,2sls − δn0

)
=

( √
n
(

β̂n,2sls − β0
)

√
nψn

(
λ̂n,2sls − λn0

) ) d→ N(0, Φ2sls) (92)

where Φ2sls = σ2
0

(
limn→∞

1
n Υ−1

δ,nZ′
nPHn ZnΥ−1

δ,n

)−1
. So the GS2SLS estimator λ̂n,2sls of λn0 is

√
nψn-consistent, which is higher than the usual

√
n rate in Kelejian and Prucha [7] and

Lee [8], but β̂n,2sls has the usual
√

n rate of convergence.
Choosing the instrument H∗

n = [Xn, GnXnβ0] as in (85), the BGS2SLS estimator is
δ̂n,b2sls = (H∗′

n Zn)
−1H∗′

n Yn with asymptotic distribution:

Υδ,n
√

n
(
δ̂n,b2sls − δn0

) d→ N(0, Φb2sls) (93)

where Φb2sls = σ2
0

(
limn→∞

1
n Υ−1

δ,n H∗′
n H∗

nΥ−1
δ,n

)−1
. Since Φb2sls − Φ2sls is negative semidefi-

nite, the BGS2SLS estimator is more efficient.
The above result is based on the fact that GnXnβ and Xn are independent, which

makes sure that the instrument matrix is of full rank, otherwise the 2SLS estimator will be
inconsistent [9]. Liu [55] shows that even though GnXnβ and Xn are linearly dependent,
i.e., GnXnβ = Xncn, where cn is a nonzero vector, we still have ρ̂2SLS − ρ = Op

(
1

ψn

)
,

β̂k,2SLS − βk = Op

(
ckn
ψn

)
+ Op

(
1√
n

)
under near unit roots case; and ρ̂2SLS − ρ = Op(1),

β̂k,2SLS − βk = Op(ckn) + Op

(
1√
n

)
under the regular case, as long as cn = o(1). This is

equivalent to GnXnβ and Xn, which are asymptotically independent.
To provide guidelines for empirical studies, Lee and Yu [15] conduct simulations to

compare the performance of QMLE and 2SLS methods. QMLEs are relatively robust
whether the error term is normally distributed or not. Moreover, as n increases (and the
spatial coefficient is closer to the spatial unit roots), the QMLEs perform better than the
2SLS estimators because of smaller variances. One interesting phenomenon is that the best
2SLS estimators are even worse than the regular 2SLS estimators in some cases, which
violates the theoretical result as shown in (93). One possible reason for this is that the best
2SLS estimator requires an initial consistent estimator by construction (see (85)) and under
spatial unit roots, such an initial estimator may not be accurately calculated.
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4.3. Near Unit Roots in the SEM Model

Baltagi et al. [37] extend the study of near unit roots from SAR model to SEM model
by considering the OLS, GLS and FGLS estimation and properties of the corresponding
statistics. The model is given as

Yn = Xnβ0 + un,

un = λn0Wnun + ϵn,
(94)

with λn0 = 1 − 1
ψn

. Similar to Lee and Yu [15], un could be decomposed to

un = S−1
n ϵn = ψnWu

n ϵn +
(

In − λn0W̃n

)−1
ϵn. (95)

One more assumption that they impose is

Assumption 13. The elements of Xn are nonstochastic and bounded, uniformly in n, limn→∞ n−1X′
nXn

exists and is nonsingular. limn→∞ n−1X′
nWu

n Wu′
n Xn exists. Furthermore, limn→∞ n−1X′

nS′
nSnXn

exists and is nonsingular.

The OLS estimator β̂OLS = (X′
nXn)

−1X′
nYn has the asymptotic distribution when

ψn√
n → 0

√
n

ψn

(
β̂OLS − β0

) d→N

(
0, σ2

0

(
lim

n→∞

1
n

X′
nXn

)−1

(
lim

n→∞

1
n

X′
nWu

n Wu′
n Xn

)(
lim

n→∞

1
n

X′
nXn

)−1
)

,

(96)

and when ψn√
n → c < ∞, β̂OLS − β0 = Op(1). Thus β̂OLS = β0 + Op

(
ψn√

n

)
, which is

√
n

ψn
-consistent and is slower than the stationary error term case.

Baltagi et al. [37] also study the asymptotic properties of the GLS and FGLS estimators.
If λn0 is known, β̂GLS = (X′

nS′
nSnXn)

−1X′
nS′

nSnYn, and

√
n
(

β̂GLS − β0
) d→ N

(
0, σ2

0

(
lim

n→∞

1
n

X′
nS′

nSnXn

)−1
)

, (97)

which implies that β̂GLS is robust for the near unit roots in the error term because it has√
n rate of convergence. The feasible GLS (FGLS) could be achieved by replacing λ by a

consistent estimator λ̂n, which yields

β̂FGLS =
(
X′

nŜ′
nŜnXn

)−1X′
nŜ′

nŜnYn, (98)

where Ŝn = In − λ̂nWn. It can be seen that FGLS is identical to the QMLE: concentrated log
likelihood function of (94) with respect to λ is

ln Ln(λ) = −n
2
(ln 2π + 1)− n

2
ln σ̂2

n(λ) + ln|Sn(λ)|, (99)

where

σ̂2
n(λ) = n−1u′

nSn(λ)
′ P̄n(λ)Sn(λ)un, (100)

P̄n(λ) = In − Sn(λ)Xn
[
X′

nSn(λ)
′Sn(λ)Xn

]−1X′
nSn(λ)

′. (101)
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The QMLE is of order ψn
(
λ̂n − λn0

)
= op(1), which is ψn-consistent and

β̂n
(
λ̂n
)
=
[

X′
nSn
(
λ̂n
)′Sn

(
λ̂n
)
Xn

]−1
X′

nSn
(
λ̂n
)′Sn

(
λ̂n
)
Yn,

σ̂2
n
(
λ̂n
)
=

1
n

u′
nSn
(
λ̂n
)′ P̄n

(
λ̂n
)
Sn
(
λ̂n
)
un.

(102)

Comparing with (98), β̂n
(
λ̂n
)

is a FGLS of β using λ̂n. Thus, the QMLE β̂ML and
the infeasible GLS estimator β̂GLS have the same asymptotic distribution as shown before.
Next, Baltagi et al. [37] consider the Wald test statistic for the null hypothesis H0 : Rβ = r
for OLS, GLS and FGLS, where R is a q × k matrix of rank q < k and r is q × 1. For OLS,

WOLS :=
(

Rβ̂OLS − r
)′[

σ̂2
OLSR

(
X′

nXn
)−1R′

]−1(
Rβ̂OLS − r

)
d→ξ ′
[

σ2
0

(
lim

n→∞

1
n

tr
(
Wu′

n Wu
n
))

R
(

lim
n→∞

1
n

X′
nXn

)−1
R′
]−1

ξ,
(103)

where

ξ ∼ N
(

0, σ2
0 R( lim

n→∞
n−1X′

nXn)
−1( lim

n→∞
n−1X′

nWu
n Wu′

n Xn)( lim
n→∞

n−1X′
nXn)

−1R′
)

, (104)

does not have a standard χ2 distribution, which is similar to the F-statistic shown above.
However, the GLS Wald statistic

WGLS =
(

Rβ̂GLS − r
)′[

σ2
0 R
(
X′S′

nSnX
)−1R′

]−1(
Rβ̂GLS − r

) d−→ χ2
k , (105)

has a chi-squared limiting distribution.
Baltagi et al. [37] conduct extensive simulations. Using the root mean squared error

(RMSE) as the evaluation criteria, the QML (FGLS) estimators perform uniformly better
than the OLS estimator. In particular, when the spatial coefficient is sufficiently close to
1 and the sample size n increases, the RMSE of the OLS estimator grows dramatically.
Together with the fact that the Wald test statistic based on the QML method has a standard
Chi-squared distribution, QMLE is recommended when near spatial unit roots exist in the
spatial error model.

4.4. Doubly Geometric Spatial Autoregressive Process

The main difference between the SAR and the doubly geometric spatial autoregressive
models is that the spatial dependence form of the latter is clearly specified. However,
for the SAR model, such dependence relies on the specification of Wn whose explicit form
varies in different situations.

For model (65), based on the observation
{

Xk,ℓ : 1 ⩽ k ⩽ m and 1 ⩽ ℓ ⩽ n
}

, Baran [47]

shows that the asymptotic normality of the estimators
(
α̂m,n, β̂m,n

)
is
√

mn
(

α̂m,n − α

β̂m,n − β

)
D−→

N
(
0, Σα,β

)
in the stable case (|α| < 1 and |β| < 1), with some covariance matrix Σα,β. For the

unstable case (αn → 1, βn → 1), using the martingale central limit theorem, Bhattacharyya
et al. [56,57] show “one step Gauss-Newton” estimators are asymptotically normal with
convergence rate n3/2. This is different from the classical time series AR(1), where the
OLS estimator converges to a fraction of functionals of the standard Brownian motion:

T
(
a′OLS − 1

)
⇒ W(1)2−1

2
∫ 1

0 W(r)2dr
[58] (p. 281).

Baran and Pap [59] consider the more complicated model as in (66). The model is
stable if and only if (α, β, γ) ∈ S, where S is the open tetrahedron with vertices V :=
{(1, 1,−1), (1,−1, 1), (−1, 1, 1), (−1,−1,−1)}. They also prove that the OLS estimator is
asymptotically normally distributed with the convergence rate n when the model is stable,
and n3/2 otherwise. (The simpler model Yk,l = αYk−1,l + βYk,l−1 + ϵk,l , with possibly α = β
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was investigated in Baran et al. [60], Baran et al. [44], Baran and Pap [61] under stable and
unstable cases. Under different settings, the limiting distribution of the OLS estimator is
normal but has different rates of convergence.)

Roknossadati and Zarepour [62,63] study the limiting behavior of M-estimation for the
near unit roots of model (65). The M-estimator

(
α̂n, β̂n

)
of (αn, βn) is defined to minimize

of the objective function

g(αn, βn) =
n

∑
i=2

n

∑
j=2

λ
(
Yij − αnYi−1,j − βnYi,j−1 + αnβnYi−1,j−1

)
, (106)

for some convex function λ(·). Roknossadati and Zarepour [62] show that the self-
normalized M-estimators are asymptotically normal, and when the series is stable, the con-
vergence rate of M-estimators is still n3/2, same as in Bhattacharyya et al. [56,57]. But if it is
unstable, i.e., when the model has infinite variance innovations, the M-estimates have a
higher consistency rate.

5. Tests for Spatial Unit Roots and Nonstationarity

Recognizing the possible consequences of spatial unit roots, it is necessary to test for it.
In fact, in nonstationary cases, the estimator is inconsistent and diverges [64]. If the series
contains spatial unit roots, one may employ the spatial first difference as recommended by
Fingleton [14]: after the first-order difference, such series will be converted to a stationary
one, otherwise it is over-differenced and spatial correlation still exists. Based on this idea,
Lauridsen and Kosfeld [17,18] propose two-stage LM tests to check for spatial unit roots.
However, such LM tests have a high power function because of LM > LR > Wald in finite
samples and are not useful for spatial cointegration since they mis-specify the regression in
the second stage. A Wald test is proposed by Lauridsen and Kosfeld [65] but it does not
have a usual χ2 distribution so simulation has to be conducted before each test to obtain
the critical values. A different approach introduced by Beenstock et al. [19] uses the fact
that when spatial unit roots exist, the variance explodes and the spatial impulse does not
die out as distance increases, so they iterate on the parameter space to find out the value
of the unit roots (for irregular lattice) and then generate nonstationary series to conduct
interval estimation.

Martellosio [66] derives the power properties of invariant tests, for example, û′Qû
û′ û ,

where û is the OLS residuals and Q is a fixed matrix. When Q = Wn, we obtain the
Cliff–Ord test. When the regression contains only a constant, the Cliff–Ord test reduces to
Moran’s test as introduced before, which is best locally invariant as shown by King [67].
It has been shown that for the SEM model, as λ ↑ 1

ρmax
, the test power vanishes. For the

SAR model, as λ ↑ 1
ρmax

, the limiting power is either 0 or 1. Krämer [68] shows similar
conclusions but focuses on the symmetric weight matrix. Martellosio [69] further shows
the power of any test vanishes as spatial correlation increases for a set of regression spaces.
Heteroskedasticity robust tests have been studied. For example, Born and Breitung [70],
Baltagi and Yang [71] design diagnostic tests for SEM and SAR employing the outer product
of gradients (OPG) variant of the LM test which are robust against heteroskedastic (and
non-normal) errors. But these tests suffer from the same deficiency as in Martellosio [66]
because such test is asymptotically equivalent to Moran’s I. Baltagi and Yang [72] have
also shown that the standard LM test undergoes finite sample distortion when spatial
dependence is heavy in both spatial and panel data settings. Recently Preinerstorfer [73]
suggests some modified tests to avoid this “zero-power trap” phenomenon, which works
well for small spatial autocorrelation, but still has limiting power smaller than 1 (only 0.619
by simulation). Thus, the invariant test of I(0) null hypothesis is not satisfactory when
spatial unit roots exist, and methodologies to determine it (Tests of the I(1) null hypothesis)
deserve more attention.
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5.1. Two-Stage LM Test for the Sources of Spurious Spatial Regression

Lauridsen and Kosfeld [17] develop a two-stage LM test to distinguish between two
possible sources for spurious regression. The first one is the existence of spatial (near) unit
roots in the regressand and/or regressors as in Fingleton [14], Lee and Yu [34]; the second is
that the spatial error term itself is nonstationary. So the LM tests are essentially testing if the
spatial process is stable or not. The idea originates from the fact that Fingleton [14] suggests
a high value of Moran’s I statistic as an indicator for both spatial nonstationarity and
spurious regression, but we cannot distinguish between them or even distinguish between
the nonstationarity and the positive spatial correlation among the error terms, which by
definition imply a high value of Moran’s I. Specifically, we are trying to distinguish if (i) the
Xn is a SAR process and we regressed Yn on Xn or (ii) the model itself is SEM as Yn = Xnβ +
ϵn, where ϵn = λϵWnϵn + µn, because both (i) and (ii) can cause spatial autocorrelation.

There are at least three advantages of the LM tests [17]. First is that compared with
Wald or LR, LM is usually simpler to compute because it is constructed under H0. Second
is that with the LM test, it is possible to control for some omitted model features such as
heterogeneity and autoregression, as in Anselin [74], which will be discussed later. The last
one is that, other statistics may not have a standard asymptotic distribution, such as the
OLS Wald type statistic as in Baltagi et al. [37]. The proposed two-stage LM test is based on
the SEM model and all four possible results are summarized in Lauridsen and Kosfeld [17]
(Table 1):

1. Under H0 : λϵ = 0, the LM error statistic (LME) developed by Anselin [74] (p. 11,
Equation (35)) is

LME =

(
e′Wne/σ2)2

tr(W2
n + W ′

nWn)
∼ χ2(1). (107)

Thus large values of LME reject the null hypothesis, which implies either 0 < λϵ < 1
or λϵ = 1.

2. The next step is to test if H0 : λϵ = 1. This could be carried out by using the spatial
differencing we introduced before. Under H0, ∆ϵ = µ, thus the first order difference
on the regression, ∆Yn = ∆Xnβ + µn, yields i.i.d. error µn, which means the value
of differenced LME (DLME) should be close 0 under H0. But if λϵ < 1, ∆ represents
overdifferencing, i.e., ∆ϵn = (In − Wn)(In − λϵWn)−1µn, so spatial correlation in the
error term still exists, and we cannot reject H0.

Similar procedures could be used to investigate whether Yn or any Xn are spatially
nonstationary, as the case in Lee and Yu [34]. Letting Zn be one of Yn, Xn1, Xn2, · · · ,
Lauridsen and Kosfeld [17] suggest using the regression

Zn = αιn + ϵn,

∆Zn = α∆ιn + ∆ϵn = ∆ϵn,
(108)

to obtain LME and DLME, respectively. Zn is regressed on a constant term because there is
no meaningful regressor but we still need the residuals.

Spatial cointegration could also be tested using this LM test. Thus, after determining
Yn and Xn are nonstationary, regress Yn on Xn and ∆Yn on ∆Xn to obtain LME and DLME.
The cointegration relation exists if LME is 0; and non-cointegration if LME is positive and
DLME is 0; the limiting case of “near cointegration” occurs if LME and DLME are positive.

Moreover, Lauridsen and Kosfeld [18] generalize their two-stage LM test to account for
unobserved heteroskedasticity. They specify the covariance matrix of ϵn,
Ω = diag{σ2

1 , · · · , σ2
n}, have the diagonal element σ2

i = f (Zi, λZ), where Zi is P × 1
vector of observations of exogenous variables for region i, related to σ2

i via the P × 1 vector
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of parameters λZ. So the statistic in (107) should be adjusted as in Anselin [74] (p. 9,
Equation (29)):

LMEH =

(
e′Wne/σ2)2

tr(W2
n + W ′

nWn)
+

f ′Z(Z′Z)−1Z′ f
2

∼ χ2(P + 1), (109)

with fi =
e2
i

σ2 −1 and Z as the n×P matrix containing the Z vectors that cause heteroskedasticity.
However, the Lauridsen and Kosfeld test procedure is not without problems. Been-

stock et al. [19] point out that this procedure is not suitable for testing spatial cointegration
since the second stage is misspecified. To see it more clearly, regress ∆Yn = β∆Xn + vn.
The LM procedure asserts that if vn is not spatially correlated, then Xn and Yn are spatially
integrated; and if vn is spatially correlated, Xn and Yn are not spatially integrated because
of overdifferencing. Nevertheless, regressing ∆Yn on ∆Xn is equivalent to regressing two
white noise series, ϵY and ϵX; because Y and X are both I(1). Hence, the corresponding
residuals must be not spatially correlated as long as ϵY and ϵX are independent, regardless
of whether vn is spatially correlated, nonstationary, or not.

5.2. A Wald Test for Spatial Nonstationarity

Lauridsen and Kosfeld [65] suggest a Wald post-test statistic. Based on MLE, under H0 :
Rθ = q, the general form of the Wald test is W = (Rθ − q)′(RVR′)−1(Rθ − q), where
V = I−1 is the inverse of information matrix. If we specify the null hypothesis as λ = 1,

then with R = (0′, 1, 0) and q = 1, we have W = (λ−1)2

Vλ
, where Vλ is the diagonal element

of V corresponding to λ. However, as mentioned before, Wald statistics may not have a
standard distribution so simulations are conducted. Unlike Fingleton [14], to generate SAR
series with spatial unit roots, Lauridsen and Kosfeld [65] do not introduce the noncircular
matrix. Thus λ = 1 is a singular point of (In − λWn) so the inverse does not exist. To solve
this issue, they use the Moore–Penrose pseudoinverse.

According to Monte Carlo simulation, they find the critical limit of the Wald test under
spatial nonstationarity is higher than the χ2(1) distribution, especially for the 5th and
10th percentile.

5.3. Test Unit Roots and Cointegration in the Sense of Spatial Impulses

Beenstock et al. [19] come up with an innovative method to test spatial unit roots and
spatial cointegration by considering the behavior of the variance and the spatial impulse.
Also, they do not assume unconnected spatial units or row normalize the spatial weight
matrix either. Thus, based on the topology of the unit neighborhood, the spatial unit
roots are λ∗ = 1

n in the regular lattices where n is the maximum and general number of
neighbors of each unit. For example, n = 2, for bilateral space, n = 4 for rook lattice and
n = 8 for queen lattice, with λ∗ = 1

2 , 1
4 , 1

8 respectively. (“The weight matrix with first-order
contiguity according to the rook criterion has the cells immediately above, below, to the
right, and to the left, for a total of four neighboring cells. The weight matrix with first-order
contiguity according to the queen criterion is eight cells immediately surrounding the
central cell” [75] (p. 131). For the introduction of other types of the spatial weight matrices,
see Kelejian and Robinson [26] (pp. 94–95).) And with spatial unit roots, (In − λ∗Wn)−1 is
still well-defined because of the existence of the edge effect, that is, there exist some units
having fewer neighbors than n. However, even though (In − λ∗Wn)−1 exists, the variance
tends to explode even in finite sample space, which provides us with a way to determine
the spatial unit roots for any arbitrary irregular lattices.

5.3.1. Spatial Impulse

The spatial impulse response is essentially the consequence of the shocks from one
location to another. Intuitively, shocks should have no effect on the remote units if the
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spatial data are stationary. Beenstock et al. [19] first consider the simplest SAR model in
lateral space:

Yn,j = λ
(
Yn,j+1 + Yn,j−1

)
+ un,j, j = −∞, · · · , ∞,

=⇒
(

1 − λ−1L + L2
)

Yn,j = −λ−1un,j−1, (110)

where L denote a spatial lag operator such that LiYn,j = Yn,j−i. The auxiliary equation is

x2 − λ−1x + 1 = 0. (111)

When the discriminant of the above equation is greater than 0, 0 < λ < 1
2 , and there

are two different solutions, x1 < 1 < x2, by Vieta’s formula. Hence, Beenstock et al. [19]
express Yn,j as

Yn,j =
λ−1

x−1
1 − x1

[
∞

∑
i=1

xi
1un,j−i +

∞

∑
i=0

xi
1un,j+i

]
, (112)

=⇒
∂Yn,j

∂un,j−i
=

∂Yn,j

∂un,j+i
=

λ−1xi
1

x−1
1 − x1

,

where (112) is known as the Wold representation that expresses Yn,j in terms of the shocks.
The impulse from location j − i to i tends to 0 because x1 < 1. Also, x1 varies with λ. When
λ = λ∗ = 1

2 , x1 = x2 = 1, so the impulse does not die out with distance and explodes. This
fact can also be seen from

Var(Yn,j) =
λ−2(1 + x2

1
)

(
1 − x2

1
)(

x−1
1 − x1

)2 σ2
u . (113)

If 0 < λ < 1
2 , Var(Yn,j) is finite and independent of j; if λ = 1

2 , x1 = 1, and Var(Yn,j)
is infinite.

For the bilateral space case, λ∗ = 1
n are the spatial unit roots as shown before. Be-

cause of the edge effect, the singular point is strictly greater but approaches λ∗. This
fact shows a downside of the row-normalized spatial weight matrix: it overstates the
true weight of the unit at the edge of the lattice. For example, in a rook lattice, the units
have three neighbors with weight 1

3 at the edge, and four neighbors with weight 1
4 in the

center. The row-normalized procedure assigns a higher weight to the neighbors of edge
units. This weight assignment is not necessarily reasonable and makes the spatial unit
roots the same as the singular points. Moreover, without row-normalization, the edging
units play the role of the unconnected unit as in Fingleton [14]. The general SAR model
in bilateral space is Yn = λWnYn + un and the Wold representation is Yn = Anun, where
An = (In − λWn)−1 = In + ∑∞

i=1 λiWi
n. Let the spatial impulse response be defined as

dYn,j
dun,j

= ajj and
dYn,j
dun,i

= aji. Analytical solutions of spatial impulse response in bilateral
and higher dimension lattices are not obtained, but Beenstock et al. [19] expect ajj to be
positively related to the number of spatial units because of the larger spillover effect and aji
varies inversely with the distance between i and j in the stationary case. If spatial unit roots
exist, as in the lateral case, the impulse aji would not die out as the distance increases. This
is supported by the simulation, though only the finite sample case could be simulated, see
Beenstock and Felsenstein [76] (Figures 5.2 and 5.4). Compared with λ < λ∗, when λ = λ∗,
it obviously shows a qualitative difference in the persistence of spatial impulses, as well as
in the tendency for the explosion of the variance.
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In the irregular lattices, the number of neighbors for the unit is undetermined generally,
so the spatial unit roots, λ∗, cannot be calculated as the reciprocal of n. However, since the
nonstationarity implies that spatial impulses do not disappear, one can find the empirical
spatial unit roots by simulation.

The simulation method in Beenstock et al. [19] to calculate the critical value is pretty
flexible and can be adapted to different models. For example, when both dynamic and
spatial terms are included, Beenstock and Felsenstein [23] develop a similar procedure for
testing cointegration in nonstationary panel data when estimating the spatial spillover
effect in housing construction for Israel.

5.3.2. Spatial Unit Roots and Cointegration Tests

Knowing the spatial unit roots λ∗, Beenstock et al. [19] conduct Monte Carlo simu-
lations to generate the artificial SAR series and use the MLE method to estimate SAC to
obtain the corresponding distributions under different topologies (different sample size,
criteria, etc.). Results show that the empirical distribution of SAC could be used to construct
interval estimation and critical values for statistics that test spatial unit roots. For the spatial
cointegration test, a similar procedure applies, but OLS estimation is used.

5.4. Some Applications

Kosfeld and Lauridsen [77] offer an application of the two-stage LM test in Section 5.1
to the income and productivity convergence in the German regional labor market. They
find highly significant LME and DLME statistics (refer to formulas above like (107)) for
all variables, which means the spatial unit roots are rejected. Yesilyurt and Elhorst [20]
estimate the spatial interaction effects of inflation in Turkey. Because the regional inflation
rates have a high tendency to co-move over time, they question whether the inflation rates
of different regions are stationary in space. Using the two-stage LM statistics from (108),
they find that the inflation curve is stationary in space. Olejnik [21] studies the income
process of the extended European 25 based on the augmented Solow model taking into
account the spatial autocorrelation effect. The stationarity of the error term as well as
all variables in the model are investigated. No problem of spurious regression is found.
Machado et al. [22] examine the spatial correlation of traffic accidents of vulnerable road
users (such as pedestrians and cyclists) in big cities and detect the factors that contribute to
these accidents. Because their study covers several cities, the model specifications may vary
across different locations. Thus they use the two-stage LM statistic to choose the best model,
see Machado et al. [22] (Table 4). Though the Wald post-test in Lauridsen and Kosfeld [65]
is asymptotically equivalent to the LM test, “It is generally recommended to choose among
these alternatives on the basis of computational ease [78] (p. 94)”.

6. Related Topics

Spatial panel data have been studied extensively. The spatial dependence is incorpo-
rated in the error component [12,75,79] or by spatial lag dependence [11,80]. See Baltagi [2]
for a textbook discussion. Also, the panel data model can have time lagged dependent
variables. If the panel data model includes both spatial and dynamic features, it is named
as spatial dynamic panel data (SDPD) model by Yu et al. [10]. Yu et al. [10], Yu and Lee [16]
and Yu et al. [36] study the QMLE estimator of the SDPD model under stable, unit roots,
and spatial cointegration respectively. The concept of unit roots under the SDPD model is a
combination of the spatial and dynamic one. To see this more clearly, Yu et al. [10] specify
the model as

Ynt = λ0WnYnt + γ0Yn,t−1 + ρ0WnYn,t−1 + Xntβ0 + cn0 + Vnt, (114)

where Ynt = (y1t, y2t, · · · , ynt)
′ and Vnt = (v1t, v2t, · · · , vnt)

′ are n × 1 column vectors.
Since Sn(λ) = In − λWn, assuming Sn is invertable, the reduced form is

Ynt = AnYn,t−1 + S−1
n Xntβ0 + S−1

n cn0 + αt0S−1
n ιn + S−1

n Vnt, (115)
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where An = S−1
n (γ0 In + ρ0Wn). If the infinite sums are well-defined, then by continu-

ous substitution

Ynt =
∞

∑
h=0

Ah
nS−1

n (cn0 + Xn,t−hβ0 + Vn,t−h). (116)

So instead of focusing on the singular points of Sn, An should be considered, which con-
tains λ, γ and ρ: the parameter of contemporaneous spatial effect, time lagged variable and
time–spatial effect. A similar process as in Section 3.3.1, letting w̄n = diag{w̄n1, w̄n2, · · · , w̄nn}
be the eigenvalue matrix of Wn, Yu et al. [10] show that the eigenvalue matrix of An is
Dn = (In − λ0w̄n)

−1(γ0 In + ρ0w̄n), which can be decomposed as Dn = γ0+ρ0
1−λ0

Jn + D̃n.

The power matrix of An follows as Ah
n =

(
γ0+ρ0
1−λ0

)h
Rn JnR−1

n + Bh
n with Bh

n = RnD̃h
nR−1

n

since the eigenvector matrix Rn is orthogonal and JnD̃n = 0. Thus, whether Ynt is stable or
not depends on the value of γ0+ρ0

1−λ0
compared with 1. Consequently, the decomposition of Ynt,

which is a generalization of (40), can be expressed as

Ynt = Yu
nt + Ys

nt + Yα
nt, (117)

where Ys
nt is a possible stable part, Yu

nt is a possible unstable part, and Yα
nt is the time effect

part, see Lee and Yu [81] for details. A data transformation procedure is imposed by them
to eliminate both the time effects and the possible unstable term. Based on their analysis,
the eigenvalues of An, the asymptotic properties of QMLE and bias are derived. When
eigenvalues of An are all less than 1 (γ0 + λ0 + ρ0 < 1), or some equal to 1 (γ0 + λ0 + ρ0 = 1
and γ0 ̸= 1), or all equal to 1 (γ0 + λ0 + ρ0 = 1 and γ0 = 1), the information matrix has
different properties, see Yu and Lee [16] (Table 5).

Thus, the test for the unit eigenvalues of An is of great importance. Most attention is
paid to the unit roots in the time dimension, i.e., γ0 = 1 and equivalently, if λ0 + ρ0 = 0.
Unit root tests in panel data under spatial dependence have been extensively studied, see
Baltagi [2] (Section 12.3) for a summary. Also, the performance of different tests has been
considered in Baltagi et al. [24]. The test for H0 : γ0 + ρ0 + λ0 = 1 has been investigated in
Lee and Yu [81] (Section 14.3.4). Such a test works well when λ0 + γ0 + ρ0 < 1. However,
when λ0 + γ0 + ρ0 > 1 and T is small, it is not reliable. Thus, further study of the unit root
test for the SDPD model should be investigated.

Recently, another approach to describe strong spatial dependence has been proposed
by Müller and Watson [49]. Since the spatial units are not neatly arranged, i.e., irregular
lattice, they do not model the spatial dependence by SAR model but “posit a continuous
parameter model of spatial variation [49]”. They use the Lévy–Brownian motion to define
the spatial I(1) process, L(s), s ∈ Rd, which is a generalization of the Wiener process that
is widely used in time series in d dimensions (when d = 2, it could be regarded as a
random walk on the plane). The advantage of the Lévy–Brownian motion is that such a
process is isotropic, which means the relative variance between two locations is determined
by the distance but not the orientation (see Anselin [1] (p. 42)). The functional central
limit theorem (FCLT) is established to measure the asymptotic behavior of such a process.
When regressing two independent I(1) processes, spurious regression also occurs since
classical, HAC-corrected and clustered standard errors F statistics diverge to infinity, which
is similar to that in Fingleton [14]. To remedy this situation, “difference” regression is again
considered. Unlike time series, Müller and Watson [49] introduce the isotropic differences
that treat all directions symmetrically. That is, they regard the weighted values of the
neighborhood as the “average” value of the current location, just as WnYn in the SAR model.
And the difference transformation is defined as y∗l = 1

n ∑ℓ ̸=l κb
(
λ−1

n |sℓ − sl |
)
(yℓ − yl),

where κb is some weighting function. Their simulations show regressions using isotropic
differences do not suffer from spurious regression problems and valid inference can be
conducted. Some test procedures for H0 : I(1) and H0 : I(0) are also suggested.
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7. Conclusions

This paper briefly surveys spatial unit roots in spatial models. First, some fundamental
concepts in spatial econometrics are introduced. Spatial unit roots in SAR and SEM models
may lead to spurious regression. For the estimation and inference in the presence of
spatial unit roots, QMLE and 2SLS methods are generally used and have satisfactory
properties after scaling. The compactness assumption has been recently relaxed in spatial
econometrics which potentially makes the spatial unit roots no longer a concern but
its implication to concepts like stationarity, and spatial cointegration should be further
investigated. The doubly geometric spatial autoregressive process, has been widely used
in some scientific fields of which the most concern is about regular lattice. Similar to time
series, exact orders of convergence for different estimators are obtained because of its
simple specification. But this limits its application in economics where irregular lattice and
different types of weight matrices are applied.

To detect possible spatial unit roots, as well as spatial cointegration, several test
procedures have been proposed. Their applications are rather limited and depend heavily
on simulations to obtain critical values. This could be explained by the fact that statistics
under spatial scenarios generally do not have standard asymptotic distributions, not to
mention the irregular lattice.

Lastly, some related topics were introduced. The idea of singular points is generalized
in SDPD model because such a model includes the time lagged variable that is based on
the traditional SAR model. However, the existing literature focuses on the temporal unit
roots in the SDPD model. Recently, an innovative way to study spatial unit roots describes
the underlying spatial process using Lévy–Brownian motion, which is a generalization and
spatial analogy to the time series counterpart. The limitations of different approaches and
further research were also discussed.
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