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Abstract: With the increasing demand for road traffic safety assessment, global concerns about
road safety have been rising. This is particularly evident with the widespread adoption of V2X
(Vehicle-to-Everything) technology, where people are more intensively focused on how to leverage
advanced technological means to effectively address challenges in traffic safety. Through the research
of driving style recognition technology, accurate assessment of driving behavior and the provision of
personalized safety prompts and warnings have become crucial for preventing traffic accidents. This
paper proposes a risk field construction technique based on environmental data collected by in-vehicle
sensors. This paper introduces a driving style recognition algorithm utilizing risk field visualization
and mask learning technologies. The research results indicate that, compared to traditional classical
models, the improved algorithm performs excellently in terms of accuracy, stability, and robustness,
enhancing the accuracy of driving style recognition and enabling a more effective evaluation of
road safety.

Keywords: driving style recognition; driving risk field; mask learning; environmental data; safety
tips and warnings; vehicle-to-everything

MSC: 68T07

1. Introduction

With the continuous growth of urban traffic congestion and the increasing number
of vehicles, traffic accidents have become a serious societal issue. In this context, V2X
(Vehicle-to-Everything) technology, as a key component of intelligent transportation sys-
tems, offers new solutions to enhance traffic safety, playing a crucial role in improving road
safety [1]. V2X technology enables vehicles to communicate wirelessly, sharing information
such as location, speed, and direction, fostering real-time connectivity among vehicles,
and facilitating information exchange with infrastructure, pedestrians, and other traffic
participants. Despite the potential of V2X technology to enhance communication and
coordination among vehicles, preventing traffic accidents still poses challenges. One reason
is the behavioral differences among drivers, and existing technologies have not fully lever-
aged V2X data to address this issue effectively. Research on driving style recognition plays
a vital role in improving road safety assessment and preventing traffic accidents. Through
the study of driving style recognition, a more accurate assessment of a driver’s driving
habits and style can be achieved, leading to personalized safety prompts and warnings and
ultimately reducing the occurrence of traffic accidents.

Driver style recognition methods are primarily categorized into unsupervised learn-
ing, semi-supervised learning, and supervised learning. Unsupervised learning [2–6]
and semi-supervised learning [7–9] methods require a smaller amount of data but face
challenges in obtaining reliable sample features within limited data. In situations where
data are sufficiently abundant, researchers opt for supervised learning for driver style
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recognition [10–16]. This approach achieves high accuracy but demands high requirements
for both the quantity and quality of training data.

Researchers have seldom considered the variations in environmental data in the al-
gorithms for discriminating driving styles. However, it is evident that driving styles that
involve the same operations differ across different environments. With advancements in
sensor technology and the gradual proliferation of V2X (Vehicle-to-Everything) technology,
smart vehicles now acquire a more diverse and extensive set of driving data. Consequently,
there is a growing body of research related to assessing environmental conditions. The
concept of a driving risk field serves as a model for evaluating driving risks on roads.
By modeling a driving risk field, one can assess environmental risks and gather relevant
variable information about the current environmental conditions. Through real-time mon-
itoring and analysis of driving risks, this model allows for the assessment of real-time
risks [17–25] in driving environments and the planning of feasible paths [21]. It also
facilitates the prediction of potential risks under different road and traffic conditions.

In comparison to traditional machine learning methods, contrastive learning, as a
form of self-supervised learning, has gained widespread research and application in fields
such as computer vision and natural language processing. It is characterized by high data
efficiency, strong generalization capabilities, and robust resistance to interference, achieving
results that approach or even surpass the performance of supervised learning [26–28].
Mask learning, as a branch of contrastive learning, can handle more complex data features
and exhibits superior performance compared to traditional contrastive learning methods.
Currently, mask learning has demonstrated outstanding performance in the fields of image
recognition and video recognition [29,30].

This study aims to explore a new approach for comprehensively assessing driving
styles through changes in driving risk. We believe that the evaluation of driving styles
should not be solely based on characteristics observed at a single moment but should
instead delve into the trends of driving risk variations over a period of time. For instance, a
driver who transitions suddenly from a prolonged period of low-risk driving to a high-risk
state may indicate a temporary lapse of attention, reflecting a more aggressive driving
tendency. Similarly, a consistent high-risk driving state may reveal a lower sensitivity to
risk perception, manifesting as an impulsive driving pattern.

Furthermore, we recognize the pivotal role of environmental factors in driving risk
variations and have thus introduced the concept of driving risk fields to address the over-
sights in earlier research. By further refining the driving risk field model, we strive to
comprehensively consider various factors that influence driving risk, including vehicle dy-
namics, road environmental factors, and individual driver braking behavior characteristics.
This enhancement not only enriches the dataset for prediction models but also significantly
enhances the dimensionality and precision of the data.

To address the challenges of processing high-dimensional data, we have adopted a
driving style recognition model similar to the MAE architecture, which efficiently extracts
features from high-dimensional data, demonstrating significant advantages in handling
such data. Compared to traditional methods, this model exhibits more stable performance
when dealing with complex data, effectively overcoming the limitations of traditional
methods in handling high-dimensional data with decreasing performance.

In summary, this study aims to achieve accurate identification of driving styles by
improving the driving risk field model and combining advanced feature extraction and
recognition techniques, thereby providing stronger technical support for road traffic safety.

2. Method
2.1. Design of Driving Risk Field Model

The driving risk field is divided into the “Vehicle Driving Risk Field” and the “Road
Boundary Risk Field Model”. The former assesses the risks generated during the vehicle’s
travel, while the latter evaluates the risks associated with road boundaries (including solid
and broken lines).



Mathematics 2024, 12, 1363 3 of 15

In the past, research on driving risk fields has exhibited several notable shortcomings.
Firstly, these studies have failed to adequately consider the braking reaction characteristics
of drivers when operating a vehicle, which is a crucial factor in real-world driving scenarios.
Secondly, some risk value functions exhibit excessively large differences over similar
distances, potentially leading to inaccurate assessments of driving risks. Additionally,
when road participants change, the computational burden of existing models often becomes
significant, compromising their efficiency in practical applications.

To address these issues, we propose utilizing the sigmoid function to optimize the
model. By incorporating the sigmoid function, we aim to more accurately capture the
braking reaction characteristics of drivers, thereby enhancing the model’s precision. Based
on this, we introduce a novel vehicle driving risk field model that incorporates the braking
reaction time. The braking reaction time, defined as the duration from when a driver detects
the need to brake to the point when their foot reaches the brake pedal, serves as a critical
metric for assessing driving safety. By comprehensively considering the braking reaction
time and other relevant factors, our model offers a more comprehensive assessment of
driving risks, providing effective support for road traffic safety.

Some studies have suggested [20] that from the perspective of physical fields, vehicles
driving on roads are subject to a virtual “force” due to the presence of driving risks.
Under the influence of this force, vehicles adjust their motion state to ensure driving safety,
which is very similar to the phenomenon of particles being affected by forces in physical
fields. Following this consideration, Tian et al. [20], drawing inspiration from the Yukawa
potential [31] for field construction, formulated the driving risk field model in the form of
an exponential function, integrating both physical attributes and kinematic states. When the
vehicle heading angle is 0°, the driving risk assessment formula constructed by Tian et al.
is shown in Formula (1).

Ei = λ1Meq−ie
λ2mj∆v

|k| · e−βa cos θ · k
|k| (1)

In this context, Ei represents the driving risk generated by object i towards its sur-
roundings, vi denotes the speed magnitude of object i, λ1, λ2, and β are coefficients to
be determined, θ is the angle between the distance vector from the vehicle’s centroid to
a certain point around the vehicle and the positive direction of the x-axis, ∆v represents
the speed difference, a is the acceleration of the vehicle, meq−i is the equivalent mass of
object i, mj is the mass of object j, k is the distance vector from the vehicle’s centroid to a
point around the vehicle, and |k| is the scalar distance from the vehicle’s centroid to that
specific point.

The definition of equivalent mass is crucial for assessing the potential hazards encoun-
tered during vehicle operation. It takes into account both the mass and speed of a vehicle
to quantify the risk it poses to other road users. Put simply, the greater the mass and speed
of a vehicle, the larger its equivalent mass becomes, thus increasing the potential driving
risk. This viewpoint is strongly supported by multiple studies, including the findings of the
World Bank and the World Health Organization’s report on “Road Safety Countermeasures
in Developing Countries” published in 2004. The report points out that in developing
countries, there is a significant correlation between the number of traffic accidents, the
number of injured individuals, and the number of fatalities, and the average road speed,
exhibiting a relationship of the second, third, and fourth power, respectively.

Building on this theoretical foundation, Wu and their colleagues [17,32] conducted fur-
ther research on the impact of speed on driving risk, utilizing a polynomial incorporating
speed power function terms to represent this effect. By leveraging accident data from high-
ways, they fitted relevant parameters and derived an empirical formula (Formula (2)) for
vehicle equivalent mass. By substituting this empirical formula into the calculation formula
for vehicle equivalent mass, the original formula (Formula (1)) was transformed into a new
formula (Formula (3)). This transformation not only enhances the accuracy of risk assess-
ments but also provides a more scientific and effective tool for our subsequent research.
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Meq−i = 1.566miv6.687
i × 10−14 + 0.3345 (2)

Ei =
(

1.566miv6.687
i × 10−14 + 0.3345

)
λ1e

λ2mj∆v

|k| · e−βa cos θ · k
|k| (3)

Let A = e
λ2mj∆v

|k| and B = e−βa cos θ . The formula is then transformed into Formula (4).

Ei = λ1meq−i A · B · k
|k| (4)

The function A serves to assess the level of risk based on the Time-to-Collision (TTC)
model [20], while the function B is designed to evaluate the risk distribution under different
angles. According to Formula (1), it is evident that function A is an exponential function,
indicating that, when ∆v remains constant, the rate of change is also an exponential function.
Over the domain [0, +inf], the derivative of this function is consistently less than 0, but the
absolute value of its rate of change gradually decreases.

However, scientific studies indicate that drivers have a reaction time when encounter-
ing danger. During this braking reaction time, drivers are in an unconscious state and are
unable to actively perform braking, steering, or other operations. Therefore, during this
period, the risk should be higher, and the rate of change in risk should be smaller. After
exceeding the reaction time, it can be assumed that drivers have the ability and initiate a
response, at which point the rate of change in risk should reach its maximum and gradually
decrease. Therefore, to align with the operational characteristics of drivers, and based on
relevant research and experiments, the sigmoid function is chosen as the core function for
part A. The formula for function A is then modified to meet driver behavior, as shown in
Formula (5).

A = c1 × sigmoid
(
−c2

(
|k| − creaction v − v2

2amax

))
(5)

where c1, c2, and creaction are constants. c1 is a threshold constant, a positive constant
such that the threshold of A is constrained within the range (0, c1); c2 is another positive
constant controlling the horizontal shape of the sigmoid function, with larger values of c2
leading to a quicker saturation of A; creaction is a positive constant representing the driver’s
braking reaction time. |k| is the distance from the experimental point to the current vehicle’s
center of mass; v is the speed of the vehicle itself; and amax is the maximum acceleration
of the vehicle. Ultimately, the Vehicle Driving Risk Field Model is obtained, as shown in
Formula (6).

Ei = λ1meq−ic1 × sigmoid
(
−c2

(
|k| − creaction v − v2

2amax

))
eβa cos θ · k

|k| (6)

The Road Boundary Risk Field refers to a collection of potential hazards or adverse
factors associated with the road edge. It describes various risks that may occur along
the road boundary, such as traffic accidents, conflicts between pedestrians and vehicles,
visibility issues, and more. It assists decision makers in understanding potential risk factors,
optimizing road design and traffic planning, and implementing preventive measures to
reduce the occurrence of traffic accidents.

Based on research on the Road Boundary Risk Field [17,20], the formula for the road
risk field used is depicted in Formula (7).

E = c3e
−s2

2γ 2 (7)

where c3 is a positive constant used to control the maximum field strength; s is the perpen-
dicular distance from a point to the lane line; and γ is a positive constant used to control
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the decay rate of the field strength from the boundary line to the center, with a larger γ
resulting in slower decay.

2.2. Driving Style Recognition Based on Mask Learning Technology

The masked autoencoder (MAE) [29] is a self-supervised learning method used in
computer vision. It is based on the Vision Transformer (ViT) architecture, known for its
strong scalability and simplicity. The MAE method trains by randomly masking parts of
input images and reconstructing the missing pixels. Today, MAE is also applied to process
temporal images, with VideoMAE [30] being an extension that views images as individuals
within temporal data, making it suitable for handling video data. Similarly, each frame of
a risk field can be considered as an image, and the temporal data of the risk field can be
likened to video data, enabling relevant feature extraction.

In this research, we have developed a driving style recognition process grounded
in the MAE philosophy with the goal of effectively classifying driving risk styles. The
classification aims to categorize driving styles into “Aggressive”, “Moderate”, and “Con-
servative”. This procedure is principally divided into two phases: the pre-training phase
and the downstream training phase. Figure 1 illustrates the training process and network
architecture.

MSE Loss

Mask Extract and Padding

Input

Calculate Predict

rotate

vague

Data Enhance

Driving risk
field image

MLP
Head

Class
Aggressive
Moderate

Conservative

vit-backbone

B. Downstream training process

Backbone
（Vision Transformer）
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Figure 1. The overall training process and structure of masked autoencoder.

As indicated on the left side of Figure 1, in the pre-training phase, we initially apply
data augmentation techniques such as rotation and blurring to the input images to enhance
the model’s generalization abilities. Once augmented, we mask certain regions of the image
to replicate the visual system’s handling of incomplete information. Then, segments from
the unmasked image are extracted and processed through the backbone network. We chose
the Vit-Base as our backbone network, which employs the self-attention mechanism from
Transformers, particularly suited for image-centric tasks. The processed image segments
are then passed on to the Header network, a densely connected neural network consisting
of multiple dense layers. Each dense layer features neurons tightly interconnected, with
each neuron connecting to all neurons from the preceding layer. The Header network
is tasked with predicting the content of the masked portions of the image. During this
process, the mean square error (MSE) loss between the prediction and the actual image is
computed to guide the model’s self-optimization in future iterations. Additionally, in our
research on driving style recognition, we recognize that the data augmentation approach
differs from that of traditional image recognition. Traditional image recognition mainly
focuses on detecting the presence of relevant semantics within the image and emphasizes
the extraction of image contour features; on the other hand, driving style recognition is
less sensitive to the extraction of image contour features but more attentive to the variation
differences between adjacent risk field intensity images and certain statistical parameters.
Therefore, data augmentation strategies from traditional image recognition cannot be
entirely applicable, and we opt for only those data augmentation strategies that marginally
impact semantics. The final determined data augmentation strategy is the application of
random rotation and blurring to temporal images. Rotation itself does not affect semantics,
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so each data augmentation instance includes a random rotation, and the range of random
rotation is between −10 degrees and 10 degrees; blurring is randomly applied with a
minimal probability and range during the data augmentation process.

As shown on the right side of Figure 1, we have selected the ViT-Base architecture
as our backbone network due to its exemplary performance in processing visual infor-
mation. The “Embedded Patch” module divides the input image into 16x16 patches and
adds positional encoding to these feature vectors. Afterward, these patches are trans-
formed into a series of lower-dimensional vectors through a linear layer to be fed into
the Transformer model. Subsequently, a series of self-attention layers process each vec-
tor within the sequence, with each layer capable of establishing intricate dependencies
between different patches. The entire network also employs residual connections and layer
normalization to refine the process, which aids in preventing gradient vanishing issues in
deep networks while also expediting the training procedure. This entire process, through
the cohesion of pre-training and downstream training, fortifies the model’s capability in
identifying driving risks. This comprehensive training methodology not only enhances
the model’s efficiency in recognizing complex driving risk images but also, through an
in-depth combination of self-supervised and supervised learning, is set to improve driving
style recognition performance.

3. Experiment
3.1. Experimental Design

The experiment utilized a dataset constructed by X. Liu et al. [13]. This dataset was
acquired through Liu’s self-built vehicle data collection platform, capturing natural driving
trajectories such as straight driving and lane changes on roads. The data were collected on
highways and urban roads in Shanghai, covering various regions of the city and amassing
over 1000 km of travel data. The dataset includes diverse road conditions and spans
different time periods throughout the day.

For the experiment, representative left lane change and right lane change data were
selected from the dataset. Figure 2 illustrates the trajectory routes of lane change data. In
these sets, each line of a different color represents a different lane change trajectory. It is
notable that the starting point of each lane change trajectory is located in the very center
of the lane, while the end point is the last trajectory point where the vehicle stops after
completing the lane change. In establishing the coordinate system, we used the starting
point of each lane change trajectory as the origin of coordinates. The forward direction of
the lane is defined as the positive direction of the x-axis, and rotating the positive direction
of the x-axis counterclockwise by 90 degrees yields the positive direction of the y-axis. Such
a definition constructs a global Cartesian coordinate system, enabling us to describe more
accurately the position and movement of the vehicles on the road. Additionally, in the data
collection experiment, the width of each lane was 4.4 m.
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Figure 2. Visualization of lane change data.
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Table 1 illustrates the basic attributes of the dataset. In this context, the lon_speed
field represents longitudinal speed, and the lat_speed field represents lateral speed, both
measured in meters per second. The lon_acc field corresponds to longitudinal acceleration,
the lat_acc field corresponds to lateral acceleration, and both are measured in meters per
second squared. The Angleheadingrate field represents the yaw rate.

Table 1. Basic properties of the dataset.

lon_speed lat_speed lon_acc lat_acc Angleheadingrate

mean 9.610189 1.153941 −0.189604 −0.001717 0.050463

std 1.233309 0.436482 0.535301 0.588758 3.525656

min 6.495732 −0.099031 −4.649437 −2.236996 −9.725

25% 8.669245 0.786684 −0.531937 −0.498131 −3.004

50% 9.476567 1.168756 −0.222171 −0.048021 −0.018

75% 10.347681 1.496506 0.132453 0.543476 3.317

max 13.376584 2.453871 3.579057 1.606629 9.001

The experiment will utilize the aforementioned dataset and, after further preprocess-
ing, generate a new dataset for driver style recognition. We will compare the use of different
data extraction modules and prediction networks, examining the differences across various
models.

3.1.1. Data Preprocessing

The original dataset has a sampling frequency of 100 Hz, recording data every 0.01 s.
Following previous research [13], this experiment uses data collected every 0.3 s as input
to discern driving styles. For every 30 raw data entries, 30 images of driving risk fields
are generated. The data preprocessing workflow is as shown in Figure 3. Subsequently,
the images of driving risk fields are fed into the model for driving style discrimination.
Figure 4 illustrates the variation pattern of field strength when both the road boundary risk
field and vehicle risk field coexist under different parameters. The field strength generated
by both types of fields is vector-based. Directly adding these vectors does not assess the
overall level of risk but only the combined field strength of the experimental object in
multiple fields. Therefore, a vector modulus superposition method is employed to assess
the risk level at a specific point.

. . . . .

. . . . .

. . . . .

Generation of driving
risk field images

Time series variables with a
number of variables 30 times
that of the original single data

30 frame driving risk field image

Figure 3. Data preprocessing process.
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The speed is 1m/s, the speed 
direction is the positive x-axis 
direction, and the acceleration 
is 0m/s2

The speed is 5m/s, the speed 
direction is the positive x-axis 
direction, and the acceleration 
is 0m/s2

The speed is 5m/s, the speed 
direction is the positive x-axis 
direction, the acceleration is 
3m/s2, and the direction is the 
positive x-axis direction

The speed is 5m/s, the speed 
direction is in the direction of the 
bisector of the x-axis positive 
direction and the y-axis positive 
direction angle, and the 
acceleration is 0m/s2

Figure 4. Field strength images of road boundary risk field and vehicle risk field coexisting under
different parameters.

After obtaining the driving risk images, the dataset is labeled for driving style. Re-
ferring to the labeling method proposed by X. Liu et al. [13], relevant statistical properties
are computed. A Gaussian Mixture Model is used for pre-labeling, with a cluster count of
3. The three driving styles are categorized as aggressive, moderate, and conservative. We
posit that data points with a confidence level greater than 90% have a distinct driving style
classification. Conversely, other data points exhibit some classification ambiguity, yet the
labels themselves are accurate. Therefore, data points with confidence levels below 90% can
be utilized to assess robustness. The experiment selects data points with confidence levels
exceeding 90% for each driving style as their labels. For these data points, 20% are used as
the training set, 80% as the validation set, and the remaining points with confidence levels
below 90% are designated as the test set. The experiment will conduct relevant tests on
this dataset.

3.1.2. Comparative Experiment

We will prove the effectiveness of the models under the MAE framework through
comparative experiments, and the model comparison framework is illustrated in Figure 5.

Original time
series data

Data
preprocessing

Driving risk
field model

Risk field
picture

Pretrain MAE backbone
(PreTrain backbone network)

Untrained MAE backbone
(Untrained backbone network)

Driving style recognition module

Patch and Position
Embedding

LSTM

LSTM2
(768)

LSTM1
(768)

t-th
picture data

LSTM2
(768)

LSTM1
(768)

(t+1)-th
picture data

LSTM2
(768)

LSTM1
(768)

(t+29)-th
picture data

...

...

Dense
(128)

Dense
(3)

Class
Aggressive
Moderate

Conservative

Figure 5. Model comparison framework.

Three models are designed for comparison: MAE-Pretrain, MAE-Untrained (ViT), and
LSTM. The ViT model and LSTM model each have advantages in image feature extraction
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and temporal feature extraction, making them classic benchmark models. Additionally,
since MAE, as a training framework, shares the same backbone network and ViT-base
network structure, the MAE-Untrained model is equivalent to the ViT-base model. Com-
paring MAE-Pretrain and MAE-Untrained is essentially comparing the effectiveness of
the pre-trained structure of MAE. Long Short-Term Memory (LSTM) [33] is a variant
of recurrent neural networks (RNNs) and is a classic model in extracting temporal data
features. Moreover, X. Liu et al. proposed using LSTM for driver style recognition [13],
demonstrating the effectiveness of LSTM in extracting features from temporal variables.

3.2. Experimental Parameters

As part of the upstream task training, the MAE-Pretrain model employs a masking
rate of 70% to enhance the model’s generalization capabilities. The Decoder network
architecture utilizes the TransformerEncoder structure, repeated eight times, with an em-
bed_dim of 512. Correspondingly, the Encoder network architecture is also based on the
TransformerEncoder, repeated twelve times, and has an embed_dim set to 768. In the
upstream task, the header section comprises a single linear layer with 768 neurons, whose
primary function is to transform the output of the Decoder network into an image, fulfilling
the output requirements of the target task.

When transitioning to the downstream task, the backbone network directly adopts the
model obtained from the upstream task training to ensure the effectiveness of knowledge
transfer. The head network consists of two LinearLayers, with the number of neurons in the
first and second layers being 768 and 3, respectively. This design facilitates the extraction
and refinement of feature information. The loss function chosen is the cross-entropy
function, suitable for classification tasks.

The MAE-Untrained model, on the other hand, has not undergone the pre-training
phase. Therefore, its network structure and loss function remain consistent with the MAE-
Pretrain model in downstream tasks, maintaining fairness in comparisons. Additionally, in
the context of LSTM models, a two-layer stacked LSTM model with a hidden layer feature
count of 768 is employed, and the cross-entropy function is selected as the loss function.

The experiment was conducted using the Ubuntu 20.04 system and the NVIDIA
A4000 graphics card for training. During the pre-training phase of MAE-Pretrain, the
AdamW optimizer was used, employing a cosine annealing schedule for learning rate
adjustment, and a total of 200 epochs were trained. For both the MAE-Pretrain and MAE-
Untrained downstream tasks, the AdamW optimizer was utilized, employing a cosine
annealing with restarts scheduler for learning rate adjustment. Full fine-tuning was applied
as the training method for these downstream tasks, with each task trained for a total of
200 epochs. Additionally, an LSTM model was trained separately using the SGD optimizer,
also adopting a cosine annealing with restarts scheduler for learning rate adjustment, and
underwent 200 epochs of training.

3.3. Result Analysis

The processing and analysis of experimental data demonstrate the accuracy, stability,
and robustness of the MAE-based model. In the experiments assessing generalization under
different conditions, both models exhibit excellent performance, accurately discerning
driving styles.

Figure 6 illustrates the accuracy and loss variations during the training process of
different models under two operating conditions. Figure 6a,c depict the data changes
during left lane change conditions, while Figure 6b,d show the data changes during right
lane change conditions. Whether in left lane change or right lane change conditions, the
accuracy of the MAE-Pretrain model is consistently higher than that of the MAE-Untrained
and LSTM models at any given moment. Based on the statistical data presented in Table 2
and an integrated analysis of the statistical characteristics of left-turn and right-turn condi-
tions, it can be observed that the accuracy characteristics are noteworthy. The MAE-Pretrain
model has an average accuracy of around 97%, with peak accuracy consistently exceeding
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98%. In comparison to the other two classical models, its accuracy is significantly improved.
Moreover, the accuracy curves of the MAE-Pretrain model and the LSTM model fluctuate
more smoothly in both conditions, with the MAE-Pretrain model exhibiting greater sta-
bility than the LSTM model. In contrast, the fluctuation of the MAE-Untrained model is
pronounced. Combining the relevant statistical data from Tables 2 and 3, it is evident that
the range and variance of the MAE-Pretrain model are significantly smaller than the other
two models. Additionally, its average accuracy surpasses the other two models, indicating
better training stability.
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Figure 6. Accuracy and loss changes during downstream task training under left and right lane
changing conditions. (a) Accuracy variation graphs of the three models under left lane change
conditions, (b) Accuracy variation graphs of the three models under right lane change conditions,
(c) Loss variation graphs of the three models under left lane change conditions, (d) Loss variation
graphs of the three models under right lane change conditions.
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Table 2. Statistical data on accuracy during downstream task training process.

MAE ViT LSTM MAE ViT LSTM

count 200 200 200 count 200 200 200

mean 97.64517 56.54148 88.47549 mean 96.58314 63.51776 81.86565

std 1.33474 25.01102 4.08483 std 2.04889 24.80087 3.34323

min 89.54546 23.08712 52.67578 min 86.17064 22.00397 55.38651

25% 97.36269 32.08334 87.33887 25% 96.14584 39.7123 80.29914

50% 97.95455 49.89584 89.24805 50% 97.10318 70.1885 82.56579

75% 98.4375 82.06439 90.60059 75% 97.89683 88.69544 83.8456

max 98.97727 95.17046 93.20313 max 98.47223 92.93651 86.51316

Left Right

Table 3. Statistical data on losses during downstream task training.

MAE ViT LSTM MAE ViT LSTM

count 200 200 200 count 200 200 200

mean 0.02443 0.09204 0.26841 mean 0.04367 0.18668 0.39453

std 0.05108 0.05989 0.10822 std 0.07612 0.08009 0.11427

min 1.00E-06 0.0219 0.14414 min 0.00001 0.07958 0.24852

25% 0.00269 0.0219 0.20878 25% 0.00373 0.1404 0.31935

50% 0.01306 0.07677 0.25021 50% 0.02319 0.17134 0.37981

75% 0.02795 0.11113 0.29671 75% 0.0526 0.2116 0.437

max 0.61776 0.471 1.07257 max 0.82601 0.63153 1.07428

Left Right

To further evaluate the effectiveness of the experiments, testing was conducted on
additional data with confidence levels below 90%, i.e., the trained models were applied to a
new dataset for testing. Table 4 illustrates the difference in accuracy between the validation
set and the test set under different methods.

Table 4. The difference in accuracy between the validation set and the test set under different methods.

MAE ViT LSTM MAE ViT LSTM

Val-acc 98.97727 95.17046 93.20313 Val-acc 98.47223 92.93651 86.51316

Test-acc 90.2789 84.9561 78.7145 Test-acc 88.9945 81.5197 80.27

Left Right

The MAE model achieved the highest accuracy on all three sets, especially on the test
set, which had a significantly larger data quantity than the training and validation sets.
This implies that, in scenarios with a small amount of high-confidence data as input, the
robustness of the MAE-based driving style recognition model is significantly stronger than
that of other models.

In conclusion, by taking into account Figure 6 and Tables 2–4, we can deduce the
advantages of the MAE model in comparison to other models, as outlined in Table 5.
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Table 5. Performance improvement comparison of MAE model relative to ViT and LSTM models.

ViT LSTM

Accuracy (Training Set) At least 3% improvement At least 5% improvement

Stability Significantly improved Improved

Accuracy (Test Set) At least 5% improvement At least 8% improvement

Regarding the superior accuracy, stability, and robustness of the MAE-Pretrain model
in comparison, we have the following hypotheses: The effectiveness of the MAE-Pretrain
model in accuracy, stability, and robustness stems from its superior feature extraction
performance in the upstream task. The reason for this superiority lies in the high similarity
between the pre-training task under the mask mode and the downstream task in driving
style recognition.

The MAE-Pretrain and MAE-Untrained models have identical network structures,
with the only difference being their involvement in upstream task training, indicating the
crucial role of the upstream task in improving accuracy. Generally, in the full fine-tune
training mode, when the similarity between the upstream and downstream tasks is high,
i.e., when the two tasks require similar features, the effect is better. Based on this experience,
it can indirectly suggest that the reconstruction features extracted from the upstream tasks
of the two methods in this paper, i.e., driving risk field visualization and MAE temporal
image reconstruction, are closely related and effective for driving style discrimination.

From another perspective, both image-based models achieved higher maximum accu-
racy than the LSTM model, indicating that after visualizing the driving risk field, features
can be better extracted through image-based methods.

As the features extracted from the upstream task have high similarity to the target
features required by the downstream task, the MAE-Pretrain model experiences minor
changes to the backbone network during downstream task training, leading to relatively
small variations in loss and accuracy. In contrast, the MAE-Untrained model, without
pre-training, needs continuous learning and adjustment to find the extremum of the loss
function, resulting in larger fluctuations.

Furthermore, in discussing the architecture of this paper, Figure 1A illustrates the
upstream task. Within this task, the Encoder module plays a crucial role in extracting the
inherent features from the sequential image series. The quality of this feature extraction
directly impacts the capabilities of the downstream task. On the other hand, the Decoder
module utilizes a relatively simple feature reconstruction network to reconstruct image
information. Figure 1B depicts the downstream task, which relies heavily on the Encoder
module from the upstream task. If the Encoder module is able to extract features effectively,
it will significantly enhance the training speed, accuracy, and overall performance of the
downstream task.

4. Conclusions

In this research, we present a cutting-edge methodology for risk evaluation and
driving style identification, designed to navigate the complexities of driving environments.
Utilizing a method that constructs driving risk field images based on braking reaction
times, and coupled with an autoencoder-based driving style recognition algorithm that
leverages masked learning for data feature enhancement, our approach not only offers a
fresh perspective in visualizing risk fields but also fully exploits the potential of masked
learning for data augmentation, refining the risk discrimination process.

Regarding performance evaluation, the model demonstrates at least a 3% increase
in accuracy over the ViT and at least a 5% increase over LSTM networks on the training
dataset. In terms of stability, it shows marked improvements compared to both ViT and
LSTM. Most notably, on the testing dataset, the model’s accuracy outperforms ViT by at
least 5% and LSTM by at least 8%.



Mathematics 2024, 12, 1363 13 of 15

In summary, the model proposed in this paper not only introduces innovation in
the construction of driving risk field imagery but also exhibits significant advantages in
data feature extraction. Empirical evidence confirms its superior performance in accuracy,
stability, and robustness, promising to offer an effective technological solution for driving
safety evaluation and personalized driving style recognition.

The main contributions of this paper are as follows:

1. An innovative method for constructing a driving risk field based on braking reaction
time is proposed. This method breaks through the limitations of existing research
by more comprehensively considering the actual reaction characteristics of drivers
during the driving process, thus improving the accuracy and reliability of driving risk
assessment.

2. The concept of converting the driving risk field into image representation is creatively
proposed, and the idea of masked autoencoder is utilized for feature extraction. This
innovation provides a more effective means of feature extraction for the pre-trainer,
thereby contributing to the enhancement of subsequent driving style recognition
performance.

3. A multi-stage training approach is adopted, which effectively reduces the influence of
subjective factors on transfer tasks while addressing the common clustering bias issues
in traditional unsupervised clustering algorithms. The application of this method
improves accuracy and stability, providing more reliable technical support for the
practical application of driving risk style recognition.

4. In response to the problem of decreasing effectiveness of traditional time-series algo-
rithms in handling high-dimensional data, this paper innovatively adopts algorithms
from the field of computer vision to address this issue, providing a new perspective
for driving style recognition.

Further research:
We will enrich the data augmentation techniques used in the upstream task stage, con-

sidering factors such as the driver’s position in the main driving seat within the vehicle. We
will explore generating similar paths and evaluate driving style recognition by comparing
the driving styles of generated paths with the original paths.
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